
Online Stochastic Optimization in the Large: Application to Kidney Exchange

Pranjal Awasthi

Machine Learning Department

Carnegie Mellon University

pawasthi@cs.cmu.edu

Tuomas Sandholm

Computer Science Department

Carnegie Mellon University

sandholm@cs.cmu.edu

Abstract

Kidneys are the most prevalent organ transplants,
but demand dwarfs supply. Kidney exchanges en-
able willing but incompatible donor-patient pairs
to swap donors. These swaps can include cycles
longer than two pairs as well, and chains triggered
by altruistic donors. Current kidney exchanges ad-
dress clearing (deciding who gets kidneys from
whom) as an offline problem: they optimize the
current batch. In reality, clearing is an online prob-
lem where patient-donor pairs and altruistic donors
appear and expire over time. In this paper, we study
trajectory-based online stochastic optimization al-
gorithms (which use a recent scalable optimal of-
fline solver as a subroutine) for this. We identify
tradeoffs in these algorithms between different pa-
rameters. We also uncover the need to set the batch
size that the algorithms consider an atomic unit.
We develop an experimental methodology for set-
ting these parameters, and conduct experiments on
real and generated data. We adapt the REGRETS
algorithm of Bent and van Hentenryck for the set-
ting. We then develop a better algorithm. We also
show that the AMSAA algorithm of Mercier and
van Hentenryck does not scale to the nationwide
level. Our best online algorithm saves significantly
more lives than the current practice of solving each
batch separately.

1 Introduction

The role of kidneys is to filter waste from blood. Kidney dis-
ease is common around the world and often lethal. Death can
be postponed by dialysis treatment, but the quality of life on
dialysis is extremely low, and only 12% of dialysis patients
survive 10 years [13]. Furthermore, dialysis treatment is ex-
pensive, and it is nearly impossible for dialysis patients to be
productive in society.

The only permanent cure for kidney disease is a trans-
plant. Kidney transplants outnumber all other organ trans-
plants combined. Unfortunately, demand for deceased-donor
kidneys dwarfs supply. In the United States alone, over

79,000 patients await a kidney. In 2008, 4,268 died waiting.1

People have two kidneys, but a person can live fine with
just one. This has beget the practice of voluntary live-donor
kidney transplants. However, usually willing donors (even
from within the same family) are incompatible—due to blood
type, tissue type, or other reasons—with the patient. Further-
more, buying and selling of organs is illegal in most countries,
including the US.

Kidney exchanges have recently emerged as a way of mit-
igating this problem. They enable willing but incompatible
donor-patient pairs to swap donors. These swaps can in-
clude cycles longer than two pairs as well, and chains trig-
gered by altruistic donors. In 2007, Abraham, Blum, and
Sandholm developed an algorithm that can optimally solve
the NP-complete kidney exchange clearing problem (decid-
ing who gets kidneys from whom) on a nationwide scale [1].
However, that algorithm, and, to our knowledge, all current
kidney exchanges, address the clearing problem as an offline
problem: whenever they optimize, they optimize the current
batch as if it were the last. In reality, clearing is an online
problem where patient-donor pairs and altruistic donors ap-
pear and expire over time.

We prove that no prior-free algorithm can do sufficiently
well on this online problem. Therefore, we leverage the ex-
cellent probabilistic information that is available (about blood
and tissue type distributions, etc.). Conceptually this infor-
mation could be incorporated in the classical way into a multi-
stage integer stochastic program which would then be solved
to come up with the optimal plan. Unfortunately, such true
stochastic optimization techniques are not capable of effi-
ciently solving problems of the size required in this domain.2

In contrast, online stochastic algorithms are suboptimal but
scalable ways of solving stochastic integer programs [2, 5, 8,
9, 12]. The idea is to sample a subset of the future scenarios
(trajectories), solve the offline problem on each of them, as-
sign a score to each possible action, and select the action that
is the best overall.

In this paper, we study such algorithms in the large, with
application to kidney exchange. Our problem differs from

1United Network for Organ Sharing (UNOS), www.unos.org.
2In fact, Algorithm 3 in this paper approximates such true

stochastic optimization, and as we will show, even that approximate
variation does not scale well.

405

most prior work in that the action space is enormous, and the
sequences of events and actions are very long. We present
approaches for dealing with that. We identify tradeoffs in
these algorithms between different parameters, especially the
lookahead depth and the number of sample trajectories. We
also uncover the need to set the batch size that the algo-
rithms consider an atomic unit. We develop an experimental
methodology for setting these parameters, and conduct exper-
iments on real and generated data. We adapt the REGRETS
algorithm [2, 8] for the setting. We then develop a better al-
gorithm. We also show that the AMSAA algorithm [9] does
not scale.

Our best online algorithm saves significantly more lives
(both in the sense of statistical significance and practical im-
portance) than the current practice of solving each batch sepa-
rately. One reason for this is that the current approach is my-
opic rather than anticipatory. Furthermore, the current my-
opic approach keeps the pool in a depleted state where the
remaining patients tend to be difficult to match (for instance,
they have difficult-to-match blood and/or tissue types). Part
of the benefit of viewing the problem as an online problem is
that such depletion should occur only to an effective extent.

1.1 Additional related research

Several authors have studied the problem of solving stochas-
tic versions of various combinatorial problems. For a class
of combinatorial optimization problems, Gupta et al. give
a framework for converting an approximation algorithm for
the offline problem into an approximation algorithm for the
stochastic version of the problem [6, 7]. The main idea is
to form a problem instance by sampling from the distribu-
tion of future scenarios, solving the deterministic problem
on each scenario and customizing the solution once the ac-
tual scenario has been observed. That paper gives theoretical
guarantees on the quality of the solution, provided that the ap-
proximation algorithm for the offline problem satisfies certain
properties (which may not hold for kidney exchange). Their
approach is computationally prohibitive for kidney exchange
because it involves running the offline algorithm on the graph
obtained by taking the union of a number of scenarios.

There has also been a bit of recent work on online kid-
ney exchange. Ünver studies the problem under the objec-
tive of minimizing average waiting cost [11]. The paper
ignores tissue type incompatibility and assumes patients do
not expire. Assuming Poisson arrivals, the paper interest-
ingly proves that certain dispatch rules—which do not use
optimization—constitute an optimal policy. Zenios studies
kidney exchange restricted to 2-cycles [13]. He models the
exchange as a birth and death process, where no patients ex-
pire but long wait is penalized by a fixed cost. His objective is
to maximize average quality-adjusted life years. The optimal
policy is analytically derived: it uses no optimization algo-
rithms. It is a simple policy that limits the number of patients
that can take part in pairwise exchange. Patients not admit-
ted to that exchange queue for altruistic donors (the wait time
here is assumed to be zero).

2 Problem formulation

A kidney exchange can be represented as a directed graph.
Figure 1 shows an example. Each patient-donor pair forms a
vertex in the graph. Each edge (u → v) is assigned a weight
that denotes the goodness of the donor kidney in vertex v for
the patient in vertex u. Altruistic donors can be included as

A

B

C

D

E

F

G

H

Figure 1: Example kidney exchange graph.

vertices with one edge of the kind described above; in ad-
dition, a dummy edge of weight zero is included from each
such vertex to each donor-patient vertex. The weight of a cy-
cle, wc, is the sum of the weights of the edges participating
in it. In the offline problem, the goal is to find a collection
of vertex-disjoint cycles that has maximum collective weight,
under the constraint that no cycle is of length greater than
some cap L. A cap is used because longer cycles are logis-
tically more difficult or infeasible (because all operations in
the cycle have to be conducted simultaneously so no donor
has the opportunity to back out) and because longer cycles
are more likely to fail due to last-minute incompatibility de-
tection. Most current kidney exchanges, and the proposed na-
tionwide kidney exchange by the United Network for Organ
Sharing (UNOS), usually use L = 3. The problem is NP-
complete for L ≥ 3, but can be optimally solved in practice
at a nationwide scale using a recent algorithm [1].

In this paper we present a solution to the stochastic version
of this problem. At each time step, new vertices can appear
and existing ones can expire; the distribution of this process
is known (not in closed form but in a form that supports sam-
pling). The objective is to choose a collection of cycles with
maximum weight in expectation. Let Gt denote the graph at
time t, and let P be the distribution according to which the
graph changes over time. Let C(L, G) be the set of all cy-
cles in G no longer than L. Introduce a 0/1 variable xc for
each cycle c ∈ C(L, G). Let C(L) = ∪T

t=0C(L, Gt) and
V = ∪T

t=0Vt. The online problem is

max
c∈C(L,G0)

EP [max
c∈C(L,G1)

EP [. . . max
c∈C(L,GT)

∑
wcxc]]

subject to
∑

c:vi∈c

xc ≤ 1, ∀vi ∈ V

with c ∈ {0, 1}, ∀c ∈ C(L)

406

3 No prior-free online algorithm performs

well

The usual approach to dealing with online problems in theo-
retical computer science is to take a prior-free approach. The
algorithm tries to do as well as possible, and a hypothetical
adversary picks the sequence of events. Performance is com-
pared against a solution that is optimal in hindsight: the com-
petitive ratio is the solution quality of the hindsight optimum
(OPT) divided by the solution quality of the algorithm.

It is easy to show that in the kidney exchange problem no
prior-free algorithm can do well:

Proposition 1 No deterministic prior-free algorithm can
achieve a competitive ratio better than L/2.

Proof: We construct an instance on which no deterministic
algorithm can achieve ratio better than L/2, see figure. Vertex

B A L

A enters up front and remains for the entire duration. Vertex B
enters up front as well, but is only available for a limited time.
After that the adversary may or may not bring in a cycle of
length L that includes A. The algorithm has to decide whether
to take the short cycle (i.e., 2-cycle A-B) for sure for a payoff
of 2, or wait for the unsure long cycle with potential payoff
L. If the algorithm decides to wait, the adversary does not
bring in the long cycle, so the ratio would be 2

0 = ∞. If the
algorithm decides to take the short cycle, the adversary brings
in the long cycle, so the ratio would be L

2 . The latter ratio is
better. Thus the algorithm always takes the short cycle.

Proposition 2 No randomized prior-free algorithm can
achieve a competitive ratio better than 2L−2

L
.

Proof: Consider the proof above. Now the algorithm can ran-
domize between taking the short cycle (with some probabil-
ity p) and waiting for the unsure long cycle (with probability
1 − p). If the adversary does not bring in the long cycle,
the ratio is 2

p·2 ; if he does, the ratio is L
p·2+(1−p)L . The al-

gorithm’s best strategy is to make the adversary indifferent
between these choices: 2

p·2 = L
p·2+(1−p)L , i.e., p = 2L−2

L
.

Thus the competitive ratio, 2
p·2 , is 2L−2

L
.

One familiar with competitive ratios might argue that the
ratios in the above propositions are not too bad. However,
losses that might be tolerable when measuring, say, compu-
tational resource waste, are not acceptable here since we deal
in human lives. Even with L = 3, Proposition 2 shows that
any prior-free algorithm might only save (on average over the
algorithms randomization) 75% of the lives that can be saved.

4 Online stochastic algorithms

Because no prior-free algorithm can do sufficiently well in
this domain, we want to leverage the probabilistic informa-

tion that we have. Indeed there is excellent information avail-
able about the blood and tissue type distributions (and ex-
piration rates, etc.). We will discuss these in detail in the
experimental section. Conceptually these could be incorpo-
rated into a stochastic program which would then be solved.
Unfortunately stochastic optimization is very far from scal-
ing to problems of the size addressed here. Recently, sample
trajectory-based online stochastic algorithms have attracted
interest for solving stochastic integer programs [2, 5, 8, 12].
Unlike stochastic optimization, they are suboptimal and scal-
able. They are relatively easy to implement, fast, and can
leverage any—in particular the best—available algorithms for
solving the offline problem.

The main idea behind these algorithms is to sample a sub-
set of the future scenarios (trajectories), solve the offline
problem on each of them, assign a score to each possible ac-
tion, and select the action which is the best overall. The fol-
lowing subsections present specific algorithms in this family.
These algorithms are targeted to scale to the large.

4.1 Algorithm 1 (adaptation of REGRETS)

Let Gt be the graph representing the kidney exchange at time
step t and P denote the distribution according to which the
graph changes over time.

The first algorithm we discuss is a slight adaptation of the
REGRETS algorithm [2, 8]. A straightforward implementa-
tion of REGRETS is not scalable here because in our problem
an action would correspond to a collection of cycles—and the
number of such collections is exponential in the number of
cycles (which itself is Θ(|V |L)). This would make the action
space prohibitively large: exponential in the size of the input.
To overcome this, we instead assign a score to each cycle, and
then finally select a set of cycles that has the maximum score.

Algorithm 1 (adaptation of REGRETS)
Input: Graph Gt, distribution P over future graphs until time T ,

and a non-negative constant δ
Output: A set of vertex-disjoint cycles {c1, c2, . . . , cn} in Gt

1. For each cycle c ∈ Gt, set score(c)← 0
2. Using P , generate m scenarios {ε1, ε2, . . . , εm}
3. For each scenario εi do

4. S ← solution of the offline problem on {Gt, εi}
5. For c ∈ Gt ∩ S, set score(c)← score(c) + value(S)
6. For c ∈ Gt − (Gt ∩ S), set score(c)← score(c)− δ

7. Using another integer program, determine a set of
vertex-disjoint cycles with maximum score, and return it

In Step 4, any offline solver can be used. In particular, we
use the offline solver that was recently developed specifically
for kidney exchanges [1]. It can optimally solve problems at
the projected size of the US nationwide kidney exchange.

Step 6 is to ensure that a cycle that is optimal in a very
small fraction of scenarios does not get selected. We exper-
imented with different values of δ using the generated data
set and methodology described later.3 The results are shown

3For these experiments, the parameters (explained in detail later
on in the paper in the experimental section) were set as follows. The
lookahead was 10, the number of samples was 50, and batch size
was 10. The death rate was set so that without a transplant, 12% of
the patients survive 10 years.

407

in the following table. In the rest of the experiments in this

δ Average number
of lives saved

Standard deviation

0 244.3 3.36
8 248.0 3.32
15 245.7 3.45
20 242.3 4.87
50 243.6 3.12
100 242.8 4.12
500 208.3 3.79

paper, we used δ = 8.

Algorithm 1 is not optimal. We provide a counter-example
on the graph of Figure 1. Let the graph at time 0 contain the
vertices {A, B, C, D}. After one time step, A expires and
either vertices {E, F} or vertices {G, H} enter (with equal
probability). In the former scenario the optimal action is to
choose cycle A − C and cycle B − E − F . In the latter
scenario the optimal action is to choose cycle A − B and
cycle C − G − H . However, the optimal action at time 0 is
to choose cycle A−B −C −D since it has expected weight
4. The other two cycles at time 0 have expected weight 2 + 3

2
each. Hence, Algorithm 1 will not select the optimal action—
because it is not optimal in any one of the trajectories. (This
same example serves to prove that the original REGRETS
algorithm, which would treat collections of cycles as actions,
would also be suboptimal.)

4.2 Algorithm 2

The above counter-example motivated us to try to develop
a better algorithm. The idea is to optimize the scenarios for
each action (i.e., cycle) separately rather than optimizing each
individual scenario separately:

Algorithm 2
Input: Graph Gt and distribution P over future graphs until time T
Output: A set of vertex-disjoint cycles {c1, c2, . . . , cn} in Gt

1. Using P , generate m scenarios {ε1, ε2, . . . , εm}
2. For each cycle c ∈ Gt do

2. Set score(c)← 0
3. For each scenario εi do

4. S ← solution of the offline problem on {Gt − c, εi}
5. set score(c)← score(c) + value(S) + value(c)

6. Using another integer program, determine a set of
vertex-disjoint cycles with maximum score, and return it

We also include a dummy action in the set of possible ac-
tions at each step. It is for the case where choosing no cycle
is the most valuable action. A dummy action has proven use-
ful in prior research on online problems in other contexts [3].
We will show its usefulness in our domain in the experimental
section of this paper.

For Step 5 of Algorithm 2, we also experimented with a
variant where we do not include the term “+value(c)”. It
performed very similarly to the main version of Algorithm 2
shown in the pseudocode above.

4.3 Algorithm 3 (adaptation of AMSAA)

Recent theoretical results relate the solution quality of
REGRETS-based algorithms to a quantity called the Global
Anticipatory Gap (GAG) [8]. The analysis applies to both
Algorithm 1 and 2. The GAG is a property of the problem
and of the probability distribution, P , that describes how the
problem changes over time:

GAG = EP [maxc

∑

t

Δg(Gt)]

Δg(Gt) is the anticipatory gap of a state Gt. It is defined as

Δg(Gt) = minc Δ(Gt, c)

Here Δ(Gt, c) is the expected local loss of state action pair
(Gt, c):

Δ(Gt, c) = EP [O(Gt, ε) − O(Gt, c, ε)|Gt]

This is the difference in solution quality produced by
choosing the best action at state Gt versus action c. Intu-
itively, Δg(Gt) is small if there exists an action in state Gt

that is close to optimal in most of the scenarios. Due to the
huge action space in kidney exchange, this will likely not be
the case for a reasonable probability distribution P . Thus the
Δg(st) are likely large, yielding a high GAG.

Therefore, we implemented the AMSAA algorithm [9],
which specifically addresses a high GAG. It tries to the solve
the multi-step problem directly by approximating it using
sample trajectories and then solving it as a Markov Deci-
sion Process. Again, in our adaptation of it, individual cycles
(rather than collections of cycles) are actions.

Algorithm 3 (adaptation of AMSAA)
Input: Graph Gt and distribution P over future graphs until time T
Output: A set of vertex-disjoint cycles {c1, c2, . . . , cn} in Gt

1. Using P , generate m scenarios ε = {ε1, ε2, . . . , εm}
2. For each state s do // Construct an approximate MDP

3. if s is a final state, then v(s)← offline solution in state s
else v(s)← average value of the offline solution over

all scenarios in ε assuming that no vertex dies
4. Solve that MDP using tree search starting at vertex Gt

5. For each cycle c ∈ Gt, set score(c)← Q(Gt, c)
6. Using another integer program, determine a set of

vertex-disjoint cycles with maximum score, and return it

In Step 4, various search strategies can be used. As in the
prior paper on AMSAA [9], in our experiments we use learn-
ing depth first search (LDFS) [4]

By default we again include a dummy action.

5 Experiments

We conducted experiments on data of two kinds. The first
kind is a real data set that we obtained from the largest current
kidney exchange in the US by helping them conduct exchange
clearing. The data set corresponds to almost two years of real
time. Because even the largest current real kidney exchange
is relatively small—compared to the projected size of the US
nationwide kidney exchange—that data set only has 158 pairs
and 11 altruistic donors (and 4,086 edges).

408

We also benchmarked on larger problems. This second
kind of data was generated by the most commonly used gen-
erator for the problem, which was designed by others to
closely mimic the real-world population [10]. Briefly, pa-
tients are generated with a random blood type, gender, and
probability of being tissue-type incompatible with a randomly
chosen donor. Each patient is then assigned a donor with a
random blood type. If the patient and donor are incompati-
ble, they join the exchange. We generated a training set of
510 pairs, 25 altruistic donors, and 15,400 edges. We also
generated a test set of the same size.

The real and generated data sets differ not only in size,
but also the real data has much lower average degree in the
exchange graph. This is because current greedy approaches
to matching pairs in kidney exchanges leave a depleted pool
where the remaining patients tend to be difficult to match
(they have difficult-to-match blood and/or tissue types). Part
of the benefit of viewing the problem as an online problem—
as we do in this paper—is that such depletion should occur
only to an effective extent.

We considered all transplants equally worthy, i.e., the
weight of each edge in the exchange graph was set to one.

In our experiments, the exchange graph changes over time
as follows. Initially the exchange starts with no vertices. At
each time step a fixed number of vertices enter the graph.
Each vertex has a probability, p, of dying at each time step. In
each experiment, the value of p was set to match the fact that
in reality, on average 12% of patients survive 10 years [13].

After some time, the exchange reaches steady state, i.e., the
number of donors (and patients) entering roughly equals the
number of donors (and patients) leaving. When there are not
too many time steps left in the experiment, the algorithm’s
lookahead reaches all the way to the end of the time horizon.
This might cause some special effects, so we exclude that
ramp-down phase from any steady-state analysis.

In what follows, we first tune the parameters of the algo-
rithms using the training set. We then compare the algorithms
on the separate test set. In contrast, the real data set is rela-
tively small; hence for experiments on real data we use only
one set. Each reported number in each table is an average over
ten runs, and the second number is the standard deviation.

5.1 Tuning the lookahead depth and the number
of sample trajectories

All of the online algorithms work by sampling a number of
scenarios into the future. This number is called the sample
size. Also of interest is the parameter lookahead, which de-
fines how many steps into the future the algorithm sees, i.e.,
how long each trajectory is. If an algorithm uses a large
lookahead, it can make a more informed decisions. However,
due to computational limitations one cannot sample all tra-
jectories. There is a tradeoff between number of trajectories
and lookahead. One straightforward reason for this tradeoff is
that it takes more time to handle a deep trajectory than a shal-
low one. A more subtle reason—demonstrated by our exper-
iments, e.g., Table 1—is that increasing lookahead increases
the number of possible scenarios (exponentially), and there-
fore for a given number of sample trajectories, the coverage
of possible trajectories by samples decreases. Therefore, in-

creasing the lookahead too much actually decreases solution
quality even if one keeps the number of sample trajectories
constant!

We ran experiments to choose a good value for these two
parameters for each of the algorithms separately. For these
experiments we fixed the batch size to be 10 for the generated
data set, and 5 for the real data set. (As explained above, the
death rate was set so that 12% survive in 10 years.) Algorithm
3 did not scale to the generated data set, so we only ran it
on the real data. The results are shown in Tables 1 and 2.
They show that there are diminishing returns to the number
of samples, as expected. They also show that increasing the
lookahead too much (for a given number of samples) actually
decreases solution quality.

Lookahead Samples Lives saved by

Algorithm 1

Lives saved by

Algorithm 2

5 10 223.8 ± 2.54 234.5 ± 3.25

5 20 224.6 ± 3.15 234.2 ± 3.27

5 50 228.3 ± 2.37 235.9 ± 2.97

10 10 235.4 ± 2.86 233.8 ± 4.12

10 20 240.7 ± 3.21 237.4 ± 3.74

10 50 244.2 ± 2.74 243.2 ± 3.29

20 10 237.3 ± 2.18 250.1 ± 3.17

20 20 238.6 ± 2.94 249.4 ± 3.25

20 50 240.1 ± 3.32 249.8 ± 3.64

Table 1: Algorithms 1 and 2 on generated data.

Lookahead Samples Lives saved by

Algorithm 1

Lives saved by

Algorithm 2

Lives saved by

Algorithm 3

2 5 25.2 ± 1.23 25.45 ± 1.51 28.4 ± 4.33

2 10 27.1 ± 2.16 28.3 ± 1.83 29.6 ± 2.19

2 15 29.8 ± 1.74 30.4 ± 1.62 30.4 ± 2.19

4 5 30.5 ± 1.97 30.3 ± 1.36 28.8 ± 1.09

4 10 32.2 ± 2.21 33.1 ± 1.78 28 ± 1.16

4 15 32.7 ± 2.08 34.1 ± 1.72 31.6 ± 1.67

7 5 32.2 ± 1.43 32.3 ± 2.12 30.8 ± 2.28

7 10 31.9 ± 1.24 32.8 ± 1.41 29.4 ± 1.54

7 15 32.4 ± 1.58 32.2 ± 2.07 30.2 ± 1.78

Table 2: Algorithms 1, 2, and 3 on real data.

Based on these results, we picked reasonable values for the
two parameters for each algorithm for each of the two kinds
of data (these parameter values were chosen based on the
best performance among the parameter combinations tested,
as shown in bold in the tables). These parameter settings were
used in the rest of the experiments.

5.2 Tuning the batch size

Another issue that we need to deal with in scaling online
stochastic optimization into the large is that the horizon of
possible events is too long to conduct meaningful lookahead
on. To address this, we introduce the notion of batching, and
the associated algorithm parameter which we call batch size.
It defines how many arrivals the algorithm considers as one
atomic event. In principle, for an ideal algorithm the best
batch size is one, but because the algorithms are computa-
tionally limited and therefore cannot look ahead arbitrarily
deeply (while ensuring reasonable coverage of the possible
trajectories with sample trajectories), it turns out to be better
to use a batch size significantly greater than one.

409

In practice, batch size determines how often the algorithm
is run. For example, assuming that 10 vertices enter the sys-
tem every month and that the batch size is 20, the algorithm
will be run every two months. Therefore, one step of the algo-
rithm will correspond to a time period of two months, and the
death rate is adjusted accordingly to maintain the real-world
fact that 12% survive 10 years.

We ran a set of experiments to determine the appropriate
batch size for each of the algorithms—including the offline-
based algorithm which runs the offline algorithm for each
batch as if it were the last—for each of the two kinds of data.
Tables 3 and 4 show that the number of lives saved increases
with batch size up to some point and then decreases. For each
algorithm and each kind of data, we ran experiments to sand-
wich this best batch size, and we will use that batch size in
the remaining experiments. As one might expect, the best
batch size is significantly larger for the offline-based algo-
rithm since the algorithm itself is myopic.

Batch

size

Lives saved by

Algorithm 1

Lives saved by

Algorithm 2

5 109.3 ± 2.31 108.6 ± 3.45

10 111.2 ± 2.75 110.4 ± 3.52

12 116.4 ± 3.12 115.8 ± 3.25

15 115.8 ± 3.22 118.2 ± 3.73

18 110.2 ± 2.92 119.1 ± 3.21

20 110.5 ± 3.1 116.3 ± 3.14

Batch

size

Lives saved by

offline-based

algorithm

20 112.6 ± 2.94

40 115.4 ± 3.89

45 111.8 ± 4.36

50 115.2 ± 3.04

60 105 ± 4.02

Table 3: Algorithms 1 and 2 (Left), and the offline-based al-
gorithm (Right) on generated data.

Batch

size

Lives saved by

Algorithm 1

Lives saved by

Algorithm 2

Lives saved by

Algorithm 3

Lives saved by

offline-based

algorithm

3 16.2 ± 2.21 16.4 ± 2.65 16.4 ± 2.06 9.2 ± 4.13

5 20.4 ± 2.34 21.3 ± 2.76 21 ± 1.69 18 ± 3.12

10 25.8 ± 2.4 24.1 ± 2.31 22.2 ± 2.57 20.8 ± 3.01

15 25.2 ± 2.66 26 ± 3.1 25.2 ± 3.55 23.4 ± 2.77

17 24.3 ± 2.98 25.8 ± 2.63 22.8 ± 2.46 22.8 ± 2.56

20 22.6 ± 2.57 25.2 ± 2.7 21.8 ± 2.74 22.4 ± 2.62

Table 4: Algorithms 1, 2, and 3, and the offline-based algo-
rithm on real data.

5.3 Studying the impact of the dummy action

As discussed, we supplemented the action set in Algorithms 2
and 3 with a dummy action so the algorithms can decide to
make no matches and wait. On the downside, this increases
the size of the space of possible plans and thus (to an ex-
tent) decreases the coverage of possible trajectories by actual
sample trajectories (for the fixed lookahead and number of
samples). (Algorithm 1 and the offline-based algorithm do
not need a dummy because they can choose to wait anyway.)

To study the impact of the dummy action, we ran experi-
ments with it included versus removed. In each experiment
we conducted 10 runs and report average performance. We
ran the generated test exchange for 51 virtual months, with
10 vertices joining the graph per month. Solution quality of
Algorithm 2 was 2.2% worse when the dummy action was
removed (standard deviation 1.2%). We simulated the real
data for 31 virtual months with 5 vertices joining per month.
Solution quality of Algorithm 3 was 1.8% worse when the

dummy action was removed (standard deviation 1.0%). So,
the dummy action indeed helps save more lives. This is con-
sistent with prior experiments with dummy actions in other
domains [3]. While in our experiments the dummy action
helps only a small amount, that amount is statistically highly
significant: in none of the 20 total runs did including the
dummy action perform worse than not including it. For all
these reasons, for the rest of the experiments we leave the
dummy actions in.

5.4 Comparing the algorithms

After tuning each algorithm as described in the three subsec-
tions above, we compared the algorithms on the real data and
on a separate test set of the generated data. We ran the gener-
ated exchange for 51 virtual months, with 10 vertices joining
the graph per month. The real data was simulated for 31 vir-
tual months with 5 vertices joining per month. Each experi-
ment was repeated 10 times, and averages are reported.

The results are shown in Figures 2 and 3. The online algo-
rithms outperform the offline-based algorithm. Algorithm 2
yields better results than Algorithm 1.

0 10 20 30 40 50
0

50

100

150

200

250

virtual months

liv
es

 s
av

ed

Algorithm 2
Algorithm 1
Offline−based

Figure 2: Algorithms 1 and 2, and the offline-based algorithm
on generated data. Standard deviations are also shown for
each data point. Steady state is from month 26 to month 35.

In steady state on the generated data, Algorithm 2 outper-
formed the offline-based algorithm by 13.0% (standard de-
viation 2.2%). Algorithm 1 outperformed the offline-based
algorithm by 10.9% (standard deviation 2.0%).

Algorithm 3 did not scale to the generated data, so again it
was tested only on the real data. Overall, the results on the
real (significantly smaller) data set are less conclusive. For
one, it is too short to establish a steady state of meaningful
length. Overall, Algorithm 2 outperformed the offline-based
algorithm by 6.5% (standard deviation 1.7%). Algorithm 1
outperformed the offline-based algorithm by 3.2% (standard
deviation 1.7%). Algorithm 3 outperformed the offline-based
algorithm by 0.7% (standard deviation 0.1%).

410

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

virtual months

liv
e

s
 s

a
v
e

d

Algorithm 3
Algorithm 2
Offline−based
Algorithm 1

Figure 3: Algorithms 1, 2, and 3, and the offline-based algo-
rithm on real data.

While these improvements may seem small as percentages,
these savings represent human lives and are thus very signifi-
cant from a practical perspective (and also statistically signif-
icant). Furthermore, the improvement over current practice is
even greater because in current practice the batch size for the
offline-based approach is ad hoc unlike the tuned batch size
for the offline-based approach here.

6 Conclusions and future research

We showed how online anticipatory algorithms can save a sig-
nificant number of lives (both in the sense of statistical sig-
nificance and practical importance) via better online kidney
exchange clearing. Real-world nationwide kidney exchanges
have already adopted the scalable optimal offline algorithm
that our group developed for kidney exchange in 2007 [1].
The online anticipatory algorithms presented in this paper
thus have the real potential to serve as the next-generation
clearing algorithms for the world’s largest kidney exchanges.

From the perspective of online anticipatory algorithms, our
problem differs from most prior work in that the action space
is enormous. We presented approaches for dealing with that.
We identified tradeoffs in these algorithms between different
parameters such as lookahead and the number of samples. We
also uncovered the need to set the batch size that the algo-
rithms consider an atomic unit. We developed an experimen-
tal methodology for setting these parameters, and conducted
experiments on real and generated data. We adapted the RE-
GRETS algorithm for the setting. We then developed a better
algorithm. We also showed that the AMSAA algorithm does
not scale.

Future research includes extending the algorithms to even
larger graphs. Since the current algorithms are still somewhat
computationally intensive, one approach would be to partition
the exchange graph into approximately independent compo-
nents (based on low weight graph cuts) and run the algorithm
on each of them separately. This is promising for kidney ex-
change since the graph is very sparse in practice.

Also, there is structure in the kidney exchange problem.
(For example, the feasibility of an action depends on the fea-

sibility of other actions.) It would be interesting to use the
structure to design better and/or faster algorithms; the current
algorithms are not specific to kidney exchange.

Acknowledgments

This work was supported by National Science Foundation
grant IIS-0427858 and by the Carnegie Mellon University
Center for Computational Thinking, which is funded by Mi-
crosoft Research. We thank Intel Corporation and IBM for
machine gifts. We thank Luc Mercier and the anonymous re-
viewers for comments on earlier versions of this paper.

References

[1] David Abraham, Avrim Blum, and Tuomas Sandholm.
Clearing algorithms for barter exchange markets: en-
abling nationwide kidney exchanges. ACM EC-07.

[2] Russell Bent and Pascal van Hentenryck. Regrets only!
Online stochastic optimization under time constraints.
AAAI-04.

[3] Russell Bent and Pascal van Hentenryck. Waiting and
relocation strategies in online stochastic vehicle routing.
IJCAI-07.

[4] Blai Bonet and Hector Geffner. Learning depth-first
search: A unified approach to heuristic search in deter-
ministic and non-deterministic settings, and its applica-
tion to MDPs. ICAPS-06.

[5] Craig Boutilier, David Parkes, Tuomas Sandholm, and
William Walsh. Expressive banner ad auctions and
model-based online optimization for clearing. AAAI-08.

[6] Anupam Gupta, Martin Pál, R. Ravi, and Amitabh
Sinha. Boosted sampling: approximation algorithms for
stochastic optimization. STOC-04.

[7] Anupam Gupta, Martin Pál, R. Ravi, and Amitabh
Sinha. What about Wednesday? Approximation algo-
rithms for multistage stochastic optimization. APPROX-
RANDOM-05.

[8] Luc Mercier and Pascal van Hentenryck. Performance
analysis of online anticipatory algorithms for large mul-
tistage stochastic integer programs. IJCAI-07.

[9] Luc Mercier and Pascal van Hentenryck. Amsaa: A
multistep anticipatory algorithm for online stochastic
combinatorial optimization. CPAIOR-08.

[10] S Saidman, A Roth, T Sönmez, U Unver, and F Del-
monico. Increasing the opportunity of live kidney do-
nation by matching for two and three way exchanges.
Transplantation, 81, 2006.

[11] Utku Unver. Dynamic kidney exchange. Mimeo, 2007.

[12] Pascal van Hentenryck, Russell Bent, and Yannis Ver-
gados. Online stochastic reservation systems. CPAIOR-
06.

[13] Stefanos A. Zenios. Optimal control of a paired-kidney
exchange program. Management Science, 48(3), 2002.

411

