On Solving Boolean Multilevel Optimization Problems*

Josep Argelich Inés Lynce Joao Marques-Silva
INESC-ID INESC-ID/IST CASL/CSI
Lisbon Technical University of Lisbon University College Dublin
josep @sat.inesc-id.pt ines @sat.inesc-id.pt jpms@ucd.ie

Abstract

Many combinatorial optimization problems entail
a number of hierarchically dependent optimization
problems. An often used solution is to associate a
suitably large cost with each individual optimiza-
tion problem, such that the solution of the resulting
aggregated optimization problem solves the origi-
nal set of optimization problems. This paper starts
by studying the package upgradeability problem in
software distributions. Straightforward solutions
based on Maximum Satisfiability (MaxSAT) and
pseudo-Boolean (PB) optimization are shown to be
ineffective, and unlikely to scale for large problem
instances. Afterwards, the package upgradeability
problem is related to multilevel optimization. The
paper then develops new algorithms for Boolean
Multilevel Optimization (BMO) and highlights a
number of potential applications. The experimen-
tal results indicate that algorithms for BMO al-
low solving optimization problems that existing
MaxSAT and PB solvers would otherwise be un-
able to solve.

1

Many real problems require an optimal solution rather than
any solution. Whereas decision problems require a yes/no
answer, optimization problems require the best solution, thus
differentiating the possible solutions. In practice, there must
be a classification scheme to determine how one solution
compares with the others. Such classification may be seen
as a way of establishing preferences that express cost or sat-
isfaction.

A special case of combinatorial optimization problems
may require a set of optimization criteria to be observed, for
which is possible to define a hierarchy of importance. Not
only you establish a hierarchy in your preferences, but also
the preferences are defined in such a way that the set of poten-
tial solutions gets subsequently reduced. Such kind of prob-

Introduction

*The authors thank Nic Wilson and Jorge Orestes for insight-
ful comments. This work is partially funded by European projects
Mancoosi (FP7-ICT-214898) and Coconut (FP7-ICT-217069), and
by FCT project Bsolo (PTDC/EIA/76572/2006).

393

lems are present not only in your daily life but also in many
real applications.

Clearly, the problems we target can be encoded as a con-
straint optimization problem, making use of the available
technology for dealing with preferences. Preference han-
dling is a current hot topic in Al with active research lines in
constraint satisfaction and optimization [Rossi et al., 2008].
Broadly, preferences over constraints may be expressed quan-
titatively or qualitatively. Soft constraints model quantitative
preferences by associating a level of satisfaction with each of
the solutions [Meseguer et al., 2006], whereas CP-nets model
qualitative preferences by expressing preferential dependen-
cies with pairwise comparisons [Boutilier er al., 2004]. Fur-
thermore, preference-based search algorithms can be gener-
alized to handle multi-criteria optimization [Junker, 2004].

A straightforward approach to solve a special case of a con-
straint optimization problem, for which there is a total rank-
ing of the criteria, would be to establish a lexicographic order-
ing over variables and domains, such that optimal solutions
would come first in the search tree [Freuder et al., In Press].
But this has the potential disadvantage of producing a thrash-
ing behavior whenever assignments that are not supported by
any solution are considered, as a result of decisions made at
the first nodes of the search tree [Junker, 2004].

Maximum satisfiability (MaxSAT) naturally encodes a
constraint optimization problem over Boolean variables
where constraints are encoded as clauses. A solution to the
MaxSAT problem maximizes the number of satisfied clauses.
Weights may also be associated with clauses, in which case
the sum of the weights of the satisfied clauses is to be max-
imized. The use of the weighted MaxSAT formalism allows
to solve a set of hierarchically dependent optimization prob-
lems. Pseudo-Boolean (PB) optimization may also be used
to solve this kind of problems, given that weighted MaxSAT
problem instances can be translated to PB [Heras et al., 2008].
Each clause is extended with a relaxation variable that is
then included in the cost function, jointly with the respective
weight.

Boolean satisfiability (SAT) and PB have been extended
in the past to handle preferences. For example, SAT-based
planning has been extended to include conflicting prefer-
ences [Giunchiglia and Maratea, 20071, to which weights are
associated, thus requiring the use of an objective function in-
volving the preferences and their weights. In addition, al-

gorithms for dealing with multi-objective PB problems have
been developed [Lukasiewycz et al., 20071, in contrast to tra-
ditional algorithms that optimize a single linear function.

This paper is organized as follows. The next section de-
scribes the problem of package upgradeability in software
systems. being developed. Section 3 introduces multilevel
optimization and relates it with a variety of problems. Af-
terwards, specific multilevel optimization algorithms are pro-
posed, being based on MaxSAT and PB. Experimental results
show the effectiveness of the new algorithms.

2 A Practical Example

We have all been through a situation where the installation of
a new piece of software turns out to be a nightmare. These
kinds of problems may occur because there are constraints
between the different pieces of software (called packages).
Although these constraints are expected to be handled in a
consistent and efficient way, current software distributions are
developed by distinct individuals. This is opposed to tradi-
tional systems which have a centralized and closed develop-
ment. Open systems also tend to be much more complex, and
therefore some packages may become incompatible. In such
circumstances, user preferences should be taken into account.

The constraints associated with each package can be de-
fined by a tuple (p, D,C), where p is the package, D are
the dependencies of p, and C are the conflicts of p. D is a
set of dependency clauses, each dependency clause being a
disjunction of packages. C'is a set of packages conflicting
with p. Previous work has applied SAT-based tools to en-
sure the consistency of both repositories and installations, as
well as to upgrade consistently package installations. SAT-
based tools have first been used to support distribution edi-
tors [Mancinelli ef al., 2006]. The developed tools are au-
tomatic and ensure completeness, which makes them more
reliable than ad-hoc and manual tools. Recently, Max-SAT
has been applied to solve the software package installation
problem from the user point of view [Argelich and Lynce,
2008]. In addition, the OPIUM tool [Tucker et al., 2007] uses
PB constraints and optimizes a user provided single objective
function. One modeling example could be preferring smaller
packages to larger ones.

The encoding of these constraints into SAT is straightfor-
ward: for each package p; there is a Boolean variable z; that
is assigned to true iff package p; is installed, and clauses are
either dependency clauses or conflict clauses (one clause for
each pair of conflicting packages).

Example 1 Given a set of package constraints S = {(p1,

{p2,p5 Vpe},0), (p2, 0, {p3}), (ps, {pa}, {p1}), (p4, 0. {ps,
pe6})}, its encoded CNF instance is the following:

X V To T3 V T4
—x1VasVrzg —x3V Iy
—xe V X3 —xy V s
—Ty V Tg

The problem described above is called software installabil-
ity problem. The possibility of upgrading some of the pack-
ages (or introducing new packages) poses new challenges as
existing packages may eventually be deleted. The goal of the

394

software upgradeability problem is to find a solution that sat-
isfies user preferences by minimizing the impact of introduc-
ing new packages in the current system, which is a reasonable
assumption. Such preferences may be distinguished estab-
lishing the following hierarchy: (1) constraints on packages
cannot be violated, (2) required packages should be installed,
(3) packages that have been previously installed by the user
should not be deleted, (4) the number of remaining packages
installed (as a result of dependencies) should be minimized.

The software upgradeability problem can be naturally en-
coded as a weighted partial MaxSAT problem. In weighted
MaxSAT, each clause is a pair (C,w) where C is a CNF
clause and w is its corresponding weight. In weighted par-
tial MaxSAT, hard clauses must be satisfied, in contrast to the
remaining soft clauses that should be satisfied. Hard clauses
are associated with a weight that is greater than the sum of the
weights of the soft clauses. A solution to the weighted partial
MaxSAT problem maximizes the sum of the weights of the
satisfied clauses.

The following example shows a weighted partial MaxSAT
formula for the upgradeability problem.

Example 2 Given a set of package constraints S = {(p1,
{p2ap5}7 {p4})7 (p27 ®7 w)a (p3a {p2 \/p4}7 0)7 (p47 ®7 (Z))a (p5a
0,0)}, the set of packages the user wants to install I = {p },
and the current set of installed packages in the system A =
{p2}, its weighted partial MaxSAT instance is the following:

(_‘1‘3, 1) (.IQ, 4) (_\33‘1 \ o, 16)
(mz4,1) (71,8) (—x1 V x5,16)
(—zs,1) (mx1 V 124, 16)

(—\$3 vV i) \Y T4, 16)

This example uses a weight distribution that gives prior-
ity to the user preferences over all the other packages, and
also gives priority to the current installation profile over the
remaining packages. The minimum weight (with value 1) is
assigned to clauses encoding packages being installed as a re-
sult of dependencies, whose number should be minimized. A
medium weight (with value 4, resulting from the sum of the
weights of the previous clauses plus 1) is assigned to clauses
encoding packages currently installed in our system, in order
to minimize the number of removed packages. A maximum
weight (with value 8) is assigned to the packages the user
wants to install. Finally, we assign a hard weight (with value
16) to clauses encoding the dependencies and conflicts.

3 Multilevel Optimization

The software upgradeability problem described in the pre-
vious section can be viewed as a special case of the more
general problem of Multilevel Optimization [Colson et al.,
2007]'. Multilevel optimization can be traced back to the
early 70s [Bracken and McGill, 1973], when researchers fo-
cused on mathematical programs with optimization problems
in the constraints. Multilevel optimization represents a hier-
archy of optimization problems, where the outer optimization

"This problem is also referred to as Multilevel Program-
ming [Candler and Norton, 1977] and Hierarchical Optimiza-
tion [Anandalingam and Friesz, 1992].

problem is subject to the outcome of each of the enclosed op-
timization problems in order. In part motivated by the prac-
tical complexity of the multilevel optimization, most work in
the recent past has addressed the special case of bilevel op-
timization [Colson et al., 2007]. Moreover, and for the spe-
cial case of integer or Boolean variables, existing work is still
preliminary [Denegre and Ralphs, 2009]. It should also be
observed that the general problems of bilevel and multilevel
optimization find a wide range of applications [Colson et al.,
20071, examples of which can be represented with integer or
Boolean variables [Marcotte et al., 2004].

One can conclude that the software upgradeability prob-
lem can be viewed as a special case of multilevel optimiza-
tion, where the constraints are clauses, and the variables have
Boolean domain. The least constrained (or outer) optimiza-
tion problem represents the problem of minimizing the num-
ber of newly installed packages due to dependencies, whereas
the most constrained (or inner) optimization problem repre-
sents the problem of maximizing the installation of packages
in the user preferences.

This paper focuses on the special case of multilevel opti-
mization where the constraints are propositional clauses and
the variables have Boolean domain. This problem will be
referred to as Boolean Multilevel Optimization (BMO). For
BMO, the hierarchy of optimization problems can be cap-
tured by associating suitable weights with the clauses, as il-
lustrated for the package upgradeability problem.

More formally, consider a set of clauses C' = C; U Cy U
... U Cy,, where Cq,C5,...,C),, form a partition of C.
Moreover, consider the partition of C' as a sequence of sets
of clauses:

<Cl702a---acm> (1)
Where a weight is associated with each set of clauses:
<w17w27' "7w7rb> (2)

As with MaxSAT, clauses C,,,, each with weight w,,, are re-
quired to be satisfied, and so are referred to as hard clauses.
The associated optimization problem is to satisfy clauses in
C1UC3U...UC},—1 such that the sum of the weights of the
satisfied clauses is maximized.

Moreover, the hierarchy of optimization problems is cap-
tured by the condition:

wi > Y wy |G

1<j<i

1=2 m

3

geeey

The above condition ensures that the solution to the BMO
problem can be split into a sequence of optimization prob-
lems, first solving the optimization problem for the soft
clauses with the largest weight (i.e. w,,_1), then for the next
clause weight, and so on until all clause weights are consid-
ered. Building on this observation, the next section proposes
dedicated algorithms for BMO.

4 Solving Boolean Multilevel Optimization

This section describes alternative solutions for BMO, in ad-
dition to the weight-based solution described earlier in the
paper. The first solution is based on iteratively rescaling the
weights of the MaxSAT formulation. The second formulation

395

extends the standard encoding of weighted MaxSAT with PB
constraints.

4.1 BMO with MaxSAT

Consider the BMO problem specified by equations (1)-(3).
We will now explain how solving a sequence (m — 1,...,1)
of MaxSAT subproblems can significantly reduce the weights
associated with the clauses.

The first MaxSAT subproblem corresponds to subproblem
m — 1 and is defined as follows:

/\cecm,l (Cv 1)
Ncec,, (€ [Crma| +1)
Initial UB: |Cyp—1| + 1

Note that C,,, corresponds to the set of hard clauses and
the initial upper bound (UB) is given by the weight associated
with the hard clauses 2. In the worst case, the problem has no
solution because at least one hard clause is unsatisfied.

For each MaxSAT subproblem following in the sequence,
the weights of the clauses and the initial UB are rescaled, in
such a way that the computed weights can be substantially
smaller than the original weights.

For each subproblem 1, let u; represent the minimum sum
of weights of falsified clauses in C;. In case the weights of
the set of clauses in C; is 1, u; corresponds to the minimum
number of falsified clauses in C;. Also, let p; be the weight
associated with a set of clauses C; in a subproblem. The
remaining MaxSAT subproblems can be defined as follows,
withm —2 <7< 1:

“4)

/\cGCi(C’ 1)

/\cEC’i+1 (Cv (|O1| + 1) p1)

NjZiva Aeec; (e (uj—1 +1) - pj—1)
Initial UB: (tp—1 + 1) - pru—1

Observe that the values of p; are refined for each iteration
of the algorithm, as these values depend on the value of u;_;
and p;_; computed by previous iterations, s.t. p; = (u;_1 +
1) - pj—1 with p; = 1. Note that u;_; can be smaller than
|C;j—1], thus reducing the values of the computed weights.

Finally, the MaxSAT solution for the original problem is
obtained as follows:

(&)

m—1

> wi- (1G] = w)

i=1

(6)

Proposition 1 The value obtained with (6), where the dif-
ferent u; values are obtained by the solution of the (4) and
(5) MaxSAT problems, yields the correct solution to the BMO
problem.

4.2 BMO with PB

The efficacy of the rescaling method of the previous section
is still bound by the weights used. Even though the rescaling
method is effective at reducing the weights that need to be
considered, for very large problem instances the challenge of

“We are considering the MinUNSAT problem, instead of the
equivalent MaxSAT problem.

large clause weights can still be an issue. An alternative ap-
proach is described in this section, which eliminates the need
to handle large clauses weights. This approach is based on
solving the BMO problem as a sequence of PB problems.

Consider the BMO problem specified by equations (1), (2)
and (3). Each set of clauses C; can be modified by adding
a relaxation variable to each clause. The resulting set of re-
laxed clauses is C, and the set of relaxation variables used is
denoted by Y;. For example, if ¢; € C;, the resulting clause
is ¢j» = ¢;Uy;, and y; € Y;. Solving MaxSAT by adding re-
laxation variables to clauses is a standard technique [Amgoud
et al., 1996; Aloul et al., 2002].

The next step is to solve a sequence of PB problems. The
first PB problem is defined as:

min Zyeym.fl Y

/\ceCm ¢

/\CTECT

m—1

st)

cr

Let the optimum solution be v,,_1. v, represents the
largest number of clauses with weight w,,,_1 that can be sat-
isfied, independently of the other clause weights.

Moreover, the remaining PB problems can then be defined
as follows:

min Zyen y
s.t. Aeec,, ©
-1 ®
N (Revee; o)

-1
/\;n:i+1 (Zyeyj y= Uj)

With 1 < ¢ < m — 1, and where the optimum solution is v;.
In this case, v; represents the largest number of clauses with
weight w; that can be satisfied, taking into account that for
larger weights, the number of satisfied clauses must be taken
into account. The last problem to be considered corresponds
to ¢ = 1, for the clauses with the smallest weight.

Finally, given the definition of v;, the PB-based BMO so-
lution is obtained as follows:

m—1
E w; - U;
i=1

As can be concluded, the proposed PB-based approach can
solve the BMO problem without directly manipulating any
clause weights.

(€]

Proposition 2 The value obtained with (9), where the differ-
ent v; values are obtained by the solution of the (7) and (8)
PB problems, yields the correct solution to the BMO problem.

5 Experimental Evaluation

This section describes the experimental evaluation conducted
to show the effectiveness of the new algorithms described
above. With this purpose, we have generated a compre-
hensive set of problem instances of the software upgrade-
ability problem. In a first step, a number of off-the-shelf
MaxSAT and PB solvers have been run. In a second step,
these MaxSAT and PB solvers have been adapted to perform

396

BMO approaches. In what follows we will use BMO"™*¢ to
denote weight rescaling BMO with MaxSAT and BMO™" to
denote BMO with iterative pseudo-Boolean optimization.

The problem instances of the upgradeability problem have
been obtained from the Linux Debian distribution archive 3,
where Debian packages are daily archived. Each daily
archive is a repository. Two repositories corresponding to a
snapshot with a time gap of 6 months have been selected.
From the first repository, the packages for a basic Debian in-
stallation have been picked, jointly with a set of other pack-
ages. From the second repository, a set of packages to be
upgraded have been picked. This set of packages is a subset
of the installed packages. Each problem instance is denoted
as i<x>u<y> where x is the number of installed packages
(apart from the 826 packages of the basic installation) and y
is the number of packages to be upgraded. In the following
experiments the number of x packages ranges from 0 to 4000
and the number of y packages is 98. The y packages corre-
spond to the subset of packages of the basic installation that
have been updated from one repository to the other.

The four MaxSAT solvers used for the evaluation are: In-
cWMaxSatz [Lin et al., 2008], MiniMaxSat [Heras et al.,
2008], Sat4jMaxsat 4 and WMaxSatz [Argelich and Manya,
2007]. The four PB solvers used for the evaluation are:
Bsolo [Manquinho and Marques-Silva, 2004], Minisat+ [Eén
and Sorensson, 2006], PBS4 [Aloul er al., 2002] and Sat4jPB.
Other solvers could have been used, even tough we believe
that these ones are some of the most competitive and over-
all implement different techniques which affect performance
differently. For each solver, a set of instances were run with
the default solver and BMO"*¢ or BMO?. In order to study
the scalability as the number of packages to install increases,
an additional number of instances has been run for the best
performing solver.

The experiments were performed on an Intel Xeon 5160
server (3.0GHz, 1333Mhz FSB, 4MB cache) running Red Hat
Enterprise Linux WS 4. JRE 1.6.0_0.07 was used for Sat4;j.
Each instance was given the timeout of 900 seconds.

Table 1 shows the CPU time required by MaxSAT solvers
to solve a set of given problem instances. Column Default
shows the results for the off-the-shelf solver and column
BMO"*¢ shows the results for the weight rescaling approach
specially designed for solving BMO problems with MaxSAT.
For each instance the best result is highlighted in bold.

Clearly, IncWMaxSatz with BMO"*¢ is the best perform-
ing solver. Nonetheless, every other solver benefits from
the use of BMO"*¢. The only exception is Sat4jMaxsat be-
cause it spends around 8 seconds to read each instance and
with BMO"*¢ the solver is called three times for the instances
considered. Another advantage of using BMO"*¢ is that the
solvers do not need to deal with the large integers represent-
ing the clause weights, which are used in the default encod-
ing. This can be such a serious issue that for some solvers
there are a few problem instances (designated with ’-’) that
cannot be solved.

Table 2 shows the results for PB solvers on solving the

3http://snapshot.debian.net
*“http://www.satdj.com

IncWMaxSatz MiniMaxSat Sat4jMaxsat WDMaxSatz
Instance Default | BMO"*¢ | Default | BMO"¢ | Default | BMO"®¢ | Default | BMO"™¢
i0u98 3.90 3.29 - 89.96 10.74 29.78 | 275.50 13.15
110u98 3.58 3.63 - 90.06 10.60 25.88 | 276.32 13.19
i20u98 4.72 3.67 - 90.24 10.77 2594 | 348.13 13.28
130u98 4.33 3.81 - 90.39 10.80 26.02 | 316.93 14.87
140u98 4.13 3.58 | 25421 92.20 10.37 26.67 | 265.45 14.67
150u98 4.57 3.37 - 91.65 - 27.53 - 18.67
1100u98 7.50 3.97 - 99.79 - 26.54 - 100.98
i200u98 16.22 5.64 - 95.89 - 27.57 - >900
1500u98 22.98 4.82 - 126.97 - 46.51 - >900
11000u98 37.47 5.74 - 195.54 - >900 - >900
12000u98 45.69 7.39 - 223.81 - 685.17 - >900

Table 1: The software upgradeability problem with weighted partial MaxSAT solvers (time in seconds)

Bsolo Minisat+ PBS4 Sat4jPB
Instance Default | BMO™® | Default | BMO™® | Default | BMO™® | Default | BMO™?
10u98 5.38 23.81 >900 5.97 >900 116.45 3.97 11.72
110u98 25.33 23.63 >900 591 >900 46.26 3.63 11.67
120u98 91.13 23.37 >900 7.77 735.54 59.11 18.05 13.82
130u98 104.18 23.25 >900 7.83 >900 78.88 19.10 13.74
140u98 92.27 23.13 >900 22.52 >900 111.40 48.42 26.48
150u98 103.73 23.00 >900 25.91 >900 64.49 48.35 25.98
1100u98 321.46 22.40 >900 19.22 >900 78.81 41.09 54.86
1200u98 >900 22.19 >900 39.78 >900 70.86 69.53 116.05
1500u98 >900 23.61 >900 >900 >900 91.17 158.52 >900
11000u98 >900 71.51 >900 >900 >900 >900 >900 >900
12000u98 >900 90.15 >900 >900 >900 242.10 >900 40.54

Table 2: The software upgradeability problem with pseudo-Boolean solvers (time in seconds)

same instances. BMO™" boosts the solvers performance,
with Sat4jPB being the only exception (for some instances
it improves, for some other it does not). For the remain-
ing solvers, the improvements are significant: most of the
instances aborted by the default solver are now solved with
BMO?. Although there is no dominating solver, in contrast
to what happens with IncWMaxSatz in the MaxSAT solvers,
Bsolo is the only solver able to solve all the instances with
BMO™?. Also, despite an observable trend of increasing run
times as the size of the instances increase, there are a few out-
liers. This also contrasts with MaxSAT solvers, but it is no
surprise as additional variables can degrade the solvers per-
formance in an unpredictable way.

Finally, we have further investigated IncWMaxSatz, which
was the best performing solver. Figure 1 shows the scala-
bility of the solver comparing the default performance of In-
cWMaxSatz with its performance using BMO"*“. (The plot
includes results for additional instances, with each point cor-
responding to the average of 100 instances.) We should first
note that the default IncWMaxSatz solver is by far more com-
petitive than any other default MaxSAT or PB solver. Its per-
formance is not even comparable with WMaxSatz, despite
IncWMaxSatz being an extension of WMaxSatz. This is due
to the features of IncWMaxSatz that make it particularly suit-
able for these instances, namely the incremental lower bound
computation and the removal of inference rules that are par-
ticularly effective for solving random instances. Nonetheless,

397

b“ b12 b13
b22
— -—
b31 b32 b33

Figure 1: Scalability of the solver IncWMaxSatz in its default
version and using the BMO"*¢ when increasing the number of
packages to install from 0 to 4000

BMO"4¢ has been able to improve its performance and to re-
duce the impact of the size of the instance in the performance.

6 Conclusions

In many practical applications, one often needs to solve a hi-
erarchy of optimization problems, where each optimization
problem is specified in terms of a sequence of nested opti-
mization problems. Examples in Al include specific opti-
mization problems with preferences. Another concrete ex-
ample is package management in software systems, where
SAT, PB and MaxSAT find increasing application. It is pos-
sible to relate these optimization problems with multilevel
(or hierarchical) optimization [Bracken and McGill, 1973;
Candler and Norton, 1977; Colson et al., 2007], which finds
a large number of practical applications.

This paper focus on Boolean Multilevel Optimiza-
tion (BMO) and, by considering the concrete problem of
package upgradeability in software systems, shows that ex-
isting solutions based on either MaxSAT or PB are in general
inadequate. Moreover, the paper proposes two different al-
gorithms, one that uses MaxSAT and another that uses PB,
to show that dedicated algorithms for BMO can be orders of
magnitude more efficient than the best off-the-shelf MaxSAT
and PB solvers.

Despite the very promising results, a number of research
directions can be outlined. One is to evaluate how the pro-
posed algorithms scale for larger problem instances. Another
one is to consider other computational problems in Al that
can be cast as BMO, for example in the area of preferences
and in the area of SAT-based optimization.

References

[Aloul et al., 2002] F. A. Aloul, A. Ramani, I. L. Markov,
and K. A. Sakallah. Generic ILP versus specialized 0-1
ILP: an update. In International Conference on Computer-

Aided Design, pages 450457, 2002.

[Amgoud et al., 1996] L. Amgoud, C. Cayrol, and D. Le
Berre. Comparing arguments using preference ordering
for argument-based reasoning. In Int. Conf. on Tools with
Artificial Intelligence, pages 400—403, 1996.

[Anandalingam and Friesz, 1992] G. Anandalingam and
T. L. Friesz. Hierarchical optimization: An introduction.
Annals of Operations Research, 34:1-11, 1992.

[Argelich and Lynce, 2008] J. Argelich and I. Lynce. CNF
instances from the software package installation problem.
In RCRA Workshop, 2008.

[Argelich and Manya, 2007] J. Argelich and F. Manya. An
improved exact solver for partial Max-SAT. In Int.
Conf. on Nonconvex Programming: Local & Global Ap-
proaches, pages 230-231, 2007.

[Boutilier ef al., 2004] C. Boutilier, R. I Brafman,
C. Domshlak, H. H. Hoos, and D. Poole. CP-nets:
A tool for representing and reasoning with conditional
ceteris paribus preference statements. Journal of Artificial
Intelligence Research, 21:135-191, 2004.

[Bracken and McGill, 1973] J. Bracken and J. T. McGill.
Mathematical programs with optimization problems in the
constraints. Operations Research, 21:37-44, 1973.

[Candler and Norton, 19771 W. Candler and R. Norton.
Multi-level programming. Technical Report DRD-20,
World Bank, January 1977.

[Colson et al., 2007] B. Colson, P. Marcotte, and G. Savard.
An overview of bilevel programming. Annals of Opera-
tions Research, 153:235-256, 2007.

[Denegre and Ralphs, 2009] S. Denegre and T. Ralphs. A
branch-and-cut algorithm for integer bilevel linear pro-
grams. In INFORMS Comp. Soc. Meeting, January 2009.

[Eén and Sorensson, 2006] N. Eén and N. Sorensson. Trans-
lating pseudo-Boolean constraints into SAT. Journal on
Satisfiability, Boolean Modeling and Computation, 2:226,
2006.

398

[Freuder et al., In Press] E. Freuder, R. Heffernan, R. Wal-
lace, and N. Wilson. Lexicographically-ordered constraint
satisfaction problems. Constraints, In Press.

[Giunchiglia and Maratea, 2007] E. Giunchiglia ~ and
M. Maratea. Planning as satisfiability with preferences.
In AAAI Conference on Artificial Intelligence, pages
987-992, 2007.

[Heras et al., 2008] F. Heras, J. Larrosa, and A. Oliveras.
MiniMaxSAT: An efficient weighted Max-SAT solver.
Journal of Artificial Intelligence Research, 31:1-32, 2008.

[Junker, 2004] U. Junker. Preference-based search and
multi-criteria optimization. Annals of Operations Re-
search, 130(1-4):75-115, 2004.

[Lin ef al., 2008] H. Lin, K. Su, and C.-M. Li. Within-
problem learning for efficient lower bound computation in
max-sat solving. In AAAI Conference on Artificial Intelli-
gence, pages 351-356, 2008.

[Lukasiewycz ef al., 2007] M. Lukasiewycz, M. GlaB,
C. Haubelt, and Jiirgen Teich. Solving multi-objective
pseudo-boolean problems. In Int. Conf. on Theory and
Applications of Satisfiability Testing, pages 56—69, 2007.

[Mancinelli et al., 2006] F. Mancinelli, J. Boender,
R. di Cosmo, J. Vouillon, B. Durak, X. Leroy, and
R. Treinen. Managing the complexity of large free and
open source package-based software distributions. In Int.
Conf. Automated Soft. Engineering, pages 199-208, 2006.

[Manquinho and Marques-Silva, 2004] V. Manquinho and
J. Marques-Silva. Satisfiability-based algorithms for
boolean optimization. Annals of Mathematics and Arti-
ficial Intelligence, 40(3-4):353-372, 2004.

[Marcotte et al., 2004] P. Marcotte, G. Savard, and F. Semet.
A bilevel programming to the travelling salesman problem.
Operations Research Letters, 21:240-248, 2004.

[Meseguer et al., 2006] P. Meseguer, F. Rossi, and T. Schiex.
Soft constraints. In Handbook of Constraint Program-
ming, pages 281-328. 2006.

[Rossi et al., 2008] F. Rossi, K. B. Venable, and T. Walsh.
Preferences in constraint satisfaction and optimization. Al
Magazine, 29(4), 2008.

[Tucker et al., 2007] C. Tucker, D. Shuffelton, R. Jhala, and
S. Lerner. OPIUM: Optimal package install/uninstall man-
ager. In Int. Conf. Soft. Engineering, pages 178—188, 2007.

