
Trading Off Solution Quality for Faster Computation
in DCOP Search Algorithms∗

William Yeoh Xiaoxun Sun Sven Koenig

Computer Science Department

University of Southern California

Los Angeles, CA 90089-0781, USA

{wyeoh, xiaoxuns, skoenig}@usc.edu

Abstract

Distributed Constraint Optimization (DCOP) is a key
technique for solving agent coordination problems. Be-
cause finding cost-minimal DCOP solutions is NP-hard,
it is important to develop mechanisms for DCOP search
algorithms that trade off their solution costs for smaller
runtimes. However, existing tradeoff mechanisms do not
provide relative error bounds. In this paper, we introduce
three tradeoff mechanisms that provide such bounds,
namely the Relative Error Mechanism, the Uniformly
Weighted Heuristics Mechanism and the Non-Uniformly
Weighted Heuristics Mechanism, for two DCOP algo-
rithms, namely ADOPT and BnB-ADOPT. Our exper-
imental results show that the Relative Error Mecha-
nism generally dominates the other two tradeoff mech-
anisms for ADOPT and the Uniformly Weighted Heuris-
tics Mechanism generally dominates the other two trade-
off mechanisms for BnB-ADOPT.

1 Introduction

Many agent coordination problems can be modeled as Dis-
tributed Constraint Optimization (DCOP) problems, includ-
ing the scheduling of meetings [Maheswaran et al., 2004],
the allocation of targets to sensors in sensor networks [Ali
et al., 2005] and the coordination of traffic lights [Junges
and Bazzan, 2008]. Complete DCOP algorithms, such as
ADOPT [Modi et al., 2005], find globally optimal DCOP so-
lutions but have a large runtime, while incomplete DCOP al-
gorithms, such as DBA [Zhang et al., 2005], find only locally
optimal DCOP solutions but have a significantly smaller run-
time. Because finding optimal DCOP solutions is NP-hard
[Modi et al., 2005], it is important to develop mechanisms
for DCOP algorithms that trade off their solution costs for
smaller runtimes. Some complete DCOP algorithms, for ex-
ample, allow users to specify an error bound on the solution

∗This material is based upon work supported by, or in part by, the
U.S. Army Research Laboratory and the U.S. Army Research Office
under contract/grant number W911NF-08-1-0468 and by NSF un-
der contract 0413196. The views and conclusions contained in this
document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the
sponsoring organizations, agencies, companies or the U.S. govern-
ment. An earlier version of this paper without the Non-Uniformly
Weighted Heuristics Mechanism and with many fewer experimental
results appeared in AAMAS 2008 as a short paper.

cost. ADOPT is an example. Some incomplete DCOP algo-
rithms allow users to specify the size k of the locally optimal
groups. These DCOP algorithms partition the DCOP prob-
lem into groups of at most k agents and guarantee that their
DCOP solution is optimal within these groups. The class of
k-optimal algorithms [Pearce and Tambe, 2007] is an exam-
ple. However, efficient implementations for k-optimal algo-
rithms are so far known only for k ≤ 3 [Bowring et al., 2008].

We therefore seek to improve the tradeoff mechanisms of
a subclass of complete DCOP algorithms, namely complete
DCOP search algorithms. ADOPT is, to the best of our
knowledge, the only complete DCOP search algorithm with
such a tradeoff mechanism. Its Absolute Error Mechanism
allows users to specify absolute error bounds on the solution
costs, for example that the solution costs should be at most
10 larger than minimal. The downside of this tradeoff mech-
anism is that it is impossible to set relative error bounds, for
example that the solution costs should be at most 10 percent
larger than minimal, without knowing the optimal solution
costs. In this paper, we therefore introduce three tradeoff
mechanisms that provide such bounds, namely the Relative
Error Mechanism, the Uniformly Weighted Heuristics Mech-
anism and the Non-Uniformly Weighted Heuristics Mecha-
nism, for two complete DCOP algorithms, namely ADOPT
and BnB-ADOPT [Yeoh et al., 2008]. BnB-ADOPT is a
variant of ADOPT that uses a depth-first branch-and-bound
search strategy instead of a best-first search strategy and has
been shown to be faster than ADOPT on several DCOP prob-
lems [Yeoh et al., 2008]. Our experimental results on graph
coloring, sensor network scheduling and meeting scheduling
problems show that the Relative Error Mechanism generally
dominates the other two tradeoff mechanisms for ADOPT
and the Uniformly Weighted Heuristics Mechanism gener-
ally dominates the other two tradeoff mechanisms for BnB-
ADOPT.

2 DCOP Problems

A DCOP problem is defined by a finite set of agents (or,
synonymously, variables) X = {x1, x2, ..., xn}; a set of fi-
nite domains D = {D1, D2, ..., Dn}, where domain Di is
the set of possible values of agent xi ∈ X ; and a set of
binary constraints F = {f1, f2, ..., fm}, where constraint
fi : Dij

× Dik
→ R

+ ∪ ∞ specifies its non-negative
constraint cost as a function of the values of distinct agents

354



x1

x3

x2

x1

x3

x2

x1 x2 Cost

0 0 3

0 1 8

1 0 20

1 1 3

x1 x3 Cost

0 0 5

0 1 4

1 0 3

1 1 3

x2 x3 Cost

0 0 3

0 1 8

1 0 10

1 1 3

(a) (b) (c)

Figure 1: Example DCOP Problem

xij
, xik

∈ X that share the constraint.1 Each agent assigns
itself repeatedly a value from its domain. The agents co-
ordinate their value assignments via messages that they ex-
change with other agents. A complete solution is an agent-
value assignment for all agents, while a partial solution is an
agent-value assignment for a subset of agents. The cost of
a complete solution is the sum of the constraint costs of all
constraints, while the cost of a partial solution is the sum of
the constraint costs of all constraints shared by agents with
known values in the partial solution. Solving a DCOP prob-
lem optimally means to find its cost-minimal complete solu-
tion.

3 Constraint Graphs and Pseudo-Trees

DCOP problems can be represented with constraint graphs
whose vertices are the agents and whose edges are the con-
straints. ADOPT and BnB-ADOPT transform constraint
graphs in a preprocessing step into pseudo-trees. Pseudo-
trees are spanning trees of constraint graphs with the property
that edges of the constraint graphs connect vertices only with
their ancestors or descendants in the pseudo-trees. For ex-
ample, Figure 1(a) shows the constraint graph of an example
DCOP problem with three agents that can each assign itself
the values zero or one, and Figure 1(c) shows the constraint
costs. Figure 1(b) shows one possible pseudo-tree. The dot-
ted line is part of the constraint graph but not the pseudo-tree.

4 Search Trees and Heuristics

The operation of ADOPT and BnB-ADOPT can be visualized
with AND/OR search trees [Marinescu and Dechter, 2005].
We use regular search trees and terminology from A* [Hart
et al., 1968] for our example DCOP problem since its pseudo-
tree is a chain. We refer to its nodes with the identifiers
shown in Figure 2(a). Its levels correspond to the agents.
A left branch that enters a level means that the correspond-
ing agent assigns itself the value zero, and a right branch
means that the corresponding agent assigns itself the value
one. For our example DCOP problem, the partial solution
of node e is (x1 = 0, x2 = 1). The f∗-value of a node is
the minimal cost of any complete solution that completes the
partial solution of the node. For our example DCOP prob-
lem, the f∗-value of node e is the minimum of the cost of

1Formulations of DCOP problems where agents are responsible
for several variables each can be reduced to our formulation [Yokoo,
2001; Burke and Brown, 2006]. Similarly, formulations of DCOP
problems where constraints are shared by more than two agents can
be reduced to our formulation [Bacchus et al., 2002].

h i onmlkj

a

cb

gfed

x1

x3

x2

(a)

11 15 91631261523

6

66

623116

x1

x3

x2

(b)

11 15 91631261523

12

1212

926149

x1

x3

x2

(c)

Figure 2: Search Trees for the Example

0 0 000000

6

66

3333

x1

x3

x2

(a)

0 0 000000

12

1212

6666

x1

x3

x2

(b)

Figure 3: h-Values for the Example

solution (x1 = 0, x2 = 1, x3 = 0) [=23] and the cost of
solution (x1 = 0, x2 = 1, x3 = 1) [=15]. Thus, the f∗-
value of node e is 15. The f∗-value of the root node is the
minimal solution cost. Since the f∗-values are unknown,
ADOPT and BnB-ADOPT use estimated f∗-values, called f -
values, during their searches. They calculate the f -value of a
node by summing the costs of all constraints that involve two
agents with known values and adding a user-specified h-value
(heuristic) that estimates the sum of the unknown costs of the
remaining constraints, similarly to how A* calculates the f -
values of its nodes. For our example DCOP problem, assume
that the h-value of node e is 3. Then, its f -value is 11, namely
the sum of the cost of the constraint between agents x1 and x2

[=8] and its h-value. The ideal h-values result in f -values that
are equal to the f∗-values. For our example DCOP problem,
the ideal h-value of node e is 15−8 = 7. Consistent h-values
do not overestimate the ideal h-values. ADOPT originally
used zero h-values but was later extended to use consistent
h-values [Ali et al., 2005], while BnB-ADOPT was designed
to use consistent h-values. We thus assume for now that the
h-values are consistent.

5 ADOPT and BnB-ADOPT

We now give an extremely simplistic description of the oper-
ation of ADOPT and BnB-ADOPT to explain their search
principles. For example, we assume that agents operate
sequentially and information propagation is instantaneous.
Complete descriptions of ADOPT and BnB-ADOPT can be
found in [Modi et al., 2005; Yeoh et al., 2008].

We visualize the operation of ADOPT and BnB-ADOPT
on our example DCOP problem with the search trees shown
in Figures 4 and 5. Unless mentioned otherwise, we use the
consistent h-values from Figure 3(a), which result in the f -
values from Figure 2(b). The nodes that are being expanded
and their ancestors are shaded grey.

ADOPT and BnB-ADOPT maintain lower bounds for all

355



X X XXXXXX

6

66

XXXX

li = 6
ub = infinity

Step 1

X X XXXXXX

6

66

XX116

li = 6
ub = infinity

Step 2

11 15 XXXXXX

6

611

XX1111

li = 6
ub = infinity

Step 3

X X XXXXXX

6

611

623XX

li = 6
ub = infinity

Step 4

X X 916XXXX

9

911

923XX

li = 9
ub = infinity

Step 5

X X 916XXXX

9

911

923XX

li = 9
ub = 9

Step 6
(a) Absolute Error Mechanism with b = 0

X X XXXXXX

6

66

XXXX

li = 12
ub = infinity

Step 1

X X XXXXXX

6

66

XX116

li = 12
ub = infinity

Step 2

11 15 XXXXXX

6

611

XX1111

li = 12
ub = infinity

Step 3

11 15 XXXXXX

6

611

XX1111

li = 12
ub = 11

Step 4
(b) Relative Error Mechanism with p = 2

X X XXXXXX

12

1212

XXXX

li = 12
ub = infinity

Step 1

X X XXXXXX

9

129

XX149

li = 12
ub = infinity

Step 2

11 15 XXXXXX

11

1211

XX1411

li = 12
ub = infinity

Step 3

11 15 XXXXXX

11

1211

XX1411

li = 12
ub = 11

Step 4
(c) Uniformly Weighted Heuristics Mechanism with c = 2

Figure 4: Simplified Execution Traces of ADOPT

grey nodes and their children, shown as the numbers in the
nodes. ADOPT and BnB-ADOPT initialize the lower bounds
with the f -values and then always set them to the minimum
of the lower bounds of the children of the nodes. Memory
limitations prevent them from maintaining the lower bounds
of the other nodes, shown with crosses in the nodes. ADOPT
and BnB-ADOPT also maintain upper bounds, shown as ub.
They always set them to the smallest costs of any complete
solutions found so far. Finally, ADOPT maintains limits (usu-
ally expressed as the thresholds of the root nodes), shown
as li. It always set them to b plus the maximum of the
lower bounds lb(r) and the f -values f(r) of the root nodes
r [li := b + max(lb(r), f(r))], where b ≥ 0 is a user-
specified absolute error bound. For consistency, we extend
BnB-ADOPT to maintain these limits as well.

ADOPT expands nodes in a depth-first search order. It al-
ways expands the child of the current node with the smallest
lower bound and backtracks when the lower bounds of all un-
expanded children of the current node are larger than the lim-
its. This search order is identical to a best-first search order
if one considers only nodes that ADOPT expands for the first
time. BnB-ADOPT expands nodes in a depth-first branch-
and-bound order. It expands the children of a node in order
of their f -values and prunes those nodes whose f -values are
no smaller than the upper bounds.

ADOPT and BnB-ADOPT terminate once the limits (that
are equal to b plus the tightest lower bounds on the min-
imal solution costs) are no smaller than the upper bounds
[li ≥ ub].2 Thus, ADOPT and BnB-ADOPT terminate with
solution costs that should be at most b larger than minimal,
which is why we refer to this tradeoff mechanism as the Abso-
lute Error Mechanism. Figures 4(a) and 5(a) show execution
traces of ADOPT and BnB-ADOPT, respectively, with the
Absolute Error Mechanism with absolute error bound b = 0
for our example DCOP problem. Thus, they find the cost-
minimal solution.

2The unextended BnB-ADOPT terminates when lb(r) = ub.

6 Proposed Tradeoff Mechanisms

We argued that it is often much more meaningful to spec-
ify the relative error on the solution costs than the abso-
lute error, which cannot be done with the Absolute Error
Mechanism without knowing the minimal solution costs. In
this section, we introduce three new tradeoff mechanisms
with this property, namely the Relative Error Mechanism,
the Uniformly Weighted Heuristics Mechanism and the Non-
Uniformly Weighted Heuristics Mechanism.

6.1 Relative Error Mechanism

We can easily change the Absolute Error Mechanism of
ADOPT and BnB-ADOPT to a Relative Error Mechanism.
ADOPT and BnB-ADOPT now set the limits to p times the
maximum of the lower bounds lb(r) and the f -values f(r) of
the root nodes r [li := p × max(lb(r), f(r))], where p ≥ 1
is a user-specified relative error bound. ADOPT and BnB-
ADOPT still terminate once the limits (that are now equal
to p times the tightest lower bounds on the minimal solution
costs) are no smaller than the upper bounds. Thus, although
currently unproven, they should terminate with solution costs
that are at most p times larger than minimal or, equivalently,
at most (p − 1) × 100 percent larger than minimal, which is
why we refer to this tradeoff mechanism as the Relative Error
Mechanism. The guarantee of the Relative Error Mechanism
with relative error bound p is thus similar to the guarantee of
the Absolute Error Mechanism with an absolute error bound
b that is equal to p−1 times the minimal solution cost, except
that the user does not need to know the minimal solution cost.

Figures 4(b) and 5(b) show execution traces of ADOPT and
BnB-ADOPT, respectively, with the Relative Error Mecha-
nism with p = 2 for our example DCOP problem. For exam-
ple, after ADOPT expands node d in Step 3, the lower bound
[=11] of unexpanded child h of node e is no larger than the
limit [=12]. ADOPT thus expands the child [=h] with the
smallest lower bound in Step 4. The limit is now no smaller
than the upper bound and ADOPT terminates. However, after

356



X X XXXXXX

6

66

XXXX

li = 6
ub = infinity

Step 1

X X XXXXXX

6

66

XX116

li = 6
ub = infinity

Step 2

11 15 XXXXXX

6

611

XX1111

li = 6
ub = infinity

Step 3

11 15 XXXXXX

6

611

XX1111

li = 6
ub = 11

Step 4

X X XXXXXX

6

611

623XX

li = 6
ub = 11

Step 5

X X 916XXXX

9

911

923XX

li = 9
ub = 11

Step 6

X X 916XXXX

9

911

923XX

li = 9
ub = 9

Step 7
(a) Absolute Error Mechanism with b = 0

X X XXXXXX

6

66

XXXX

li = 12
ub = infinity

Step 1

X X XXXXXX

6

66

XX116

li = 12
ub = infinity

Step 2

11 15 XXXXXX

6

611

XX1111

li = 12
ub = infinity

Step 3

11 15 XXXXXX

6

611

XX1111

li = 12
ub = 11

Step 4
(b) Relative Error Mechanism with p = 2

X X XXXXXX

12

1212

XXXX

li = 12
ub = infinity

Step 1

X X XXXXXX

9

129

XX149

li = 12
ub = infinity

Step 2

11 15 XXXXXX

11

1211

XX1411

li = 12
ub = infinity

Step 3

11 15 XXXXXX

11

1211

XX1411

li = 12
ub = 11

Step 4
(c) Uniformly Weighted Heuristics Mechanism with c = 2

Figure 5: Simplified Execution Traces of BnB-ADOPT

ADOPT in Figure 4(a) expands node d in Step 3, the lower
bounds of all unexpanded children of node d are larger than
the limit. ADOPT backtracks repeatedly, expands node c next
and terminates eventually in Step 6. Thus, ADOPT with the
Relative Error Mechanism with relative error bound p = 2
terminates two steps earlier than in Figure 4(a) but with a so-
lution cost that is 2 larger.

6.2 Uniformly Weighted Heuristics Mechanism

The h-values should be as close as possible to the ideal
h-values to minimize the runtimes of ADOPT and BnB-
ADOPT. We therefore multiply consistent h-values with a
user-specified constant weight c ≥ 1, which can result in
them no longer being consistent, similar to what others have
done in the context of A* where they could prove that A*
is then no longer guaranteed to find cost-minimal solutions
but is still guaranteed to find solutions whose costs are at
most c times larger than minimal [Pohl, 1970]. ADOPT and
BnB-ADOPT use no error bounds, that is, either the Abso-
lute Error Mechanism with absolute error bound b = 0 or the
Relative Error Mechanism with relative error bound p = 1.
They terminate once the lower bounds of the root nodes (that
can now be at most c times larger than the minimal solution
costs and thus, despite their name, are no longer lower bounds
on the minimal solution costs) are no smaller than the up-
per bounds. Thus, although currently unproven, ADOPT and
BnB-ADOPT should terminate with solution costs that are at
most c times larger than minimal. Therefore, the Uniformly
Weighted Heuristics Mechanism has similar advantages as
the Relative Error Mechanism but achieves them differently.
The Uniformly Weighted Heuristics Mechanism inflates the
lower bounds of branches of the search trees that are yet to
be explored and thus makes them appear to be less promis-
ing, while the Relative Error Mechanism prunes all remaining
branches once the early termination condition is satisfied.

Figures 4(c) and 5(c) show execution traces of ADOPT
and BnB-ADOPT, respectively, with the Uniformly Weighted
Heuristics Mechanism with constant weight c = 2 for our ex-

Graph Coloring Problems
Correlation of 

Depth of Agents and Informedness of h -Values

0.5

0.6

0.7

0.8

0.9

1.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Normalized Depth of Agents

In
fo

rm
ed

n
es

s 
o

f 
h

-V
al

u
es

Figure 6: Depth of Agents vs. Informedness of h-Values

ample DCOP problem. Figure 3(b) shows the corresponding
h-values, and Figure 2(c) shows the corresponding f -values.
ADOPT terminates two steps earlier than in Figure 4(a) but
with a solution cost that is 2 larger.

6.3 Non-Uniformly Weighted Heuristics Mechanism

The h-values of agents higher up in the pseudo-tree are often
less informed than the h-values of agents lower in the pseudo-
tree. The informedness of h-values is defined as the ratio
of the h-values and the ideal h-values. We run experiments
using the same experimental formulation and setup as [Ma-
heswaran et al., 2004; Yeoh et al., 2008] on graph coloring
problems with 10 agents/vertices, density 2 and domain cardi-
nality 3 to confirm this correlation. We use the preprocessing
framework DP2 [Ali et al., 2005], that calculates the h-values
by solving relaxed DCOP problems (that result from ignoring
backedges) with a dynamic programming approach. DP2 was
developed in the context of ADOPT but applies unchanged to
BnB-ADOPT as well. Figure 6 shows the results. The y-axis
shows the informedness of the h-values, and the x-axis shows
the normalized depth of the agents in the pseudo-tree. The
informedness of the h-values indeed increases as the normal-
ized depth of the agents increases. Pearson’s correlation co-
efficient shows a large correlation with ρ > 0.85. Motivated
by this insight, we multiply consistent h-values with weights
that vary according to the depths of the agents, similar to what
others have done in the context of A* [Pohl, 1973]. We set the

357



ADOPT BnB-ADOPT
Relative Error Bound 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

AE Mechanism 508 515 547 568 571 577 577 577 577 577 577 508 518 545 569 573 579 579 579 579 579 579

RE Mechanism 508 513 543 558 571 572 577 577 577 577 577 508 515 544 559 572 573 579 579 579 579 579

UWH Mechanism 508 514 535 555 593 607 622 644 654 675 704 508 515 533 558 594 609 630 663 705 724 727

NUWH Mechanism 508 513 540 559 596 605 618 651 660 663 663 508 514 541 559 596 605 620 648 660 669 669

Sensor Network Scheduling – 9 Agents

ADOPT BnB-ADOPT
Relative Error Bound 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

AE Mechanism 116 119 124 130 133 134 133 135 135 136 136 116 118 124 130 133 136 138 138 138 139 139

RE Mechanism 116 118 122 127 131 133 133 133 133 135 135 116 117 122 127 131 133 135 135 137 138 138

UWH Mechanism 116 119 124 130 139 144 148 154 153 155 160 116 118 126 134 142 148 153 158 156 160 165

NUWH Mechanism 116 118 125 133 141 144 148 152 159 162 165 116 118 126 135 143 148 151 156 162 163 166

Meeting Scheduling – 10 Agents

ADOPT BnB-ADOPT
Relative Error Bound 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

AE Mechanism 54207 54256 56819 61326 64204 64380 64539 64539 64539 64539 64539 54207 54221 56018 63149 67681 69326 69732 69863 69863 69863 69863

RE Mechanism 54207 54284 54771 57381 60146 62754 63998 64525 64539 64539 64539 54207 54207 54454 56088 61277 64515 67271 68891 69231 69601 69863

UWH Mechanism 54207 54207 54944 57423 62344 64391 64792 66488 67411 67913 68473 54207 54207 54733 58410 62636 66160 66812 68253 69541 70389 70840

NUWH Mechanism 54207 54207 54697 58071 62022 64342 66065 66987 68216 68010 68481 54207 54207 54639 58443 63105 66156 67878 69483 70120 70143 70942

Graph Coloring – 10 Agents

ADOPT BnB-ADOPT
Relative Error Bound 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

AE Mechanism 67675 67795 71744 78149 79322 79591 79591 79591 79591 79591 79591 67675 67705 71566 78770 82645 83439 83768 83768 83768 83768 83768

RE Mechanism 67675 67700 68894 73059 77387 78556 79197 79591 79591 79591 79591 67675 67691 68705 72027 77020 80160 82223 82845 83439 83768 83768

UWH Mechanism 67675 67795 68868 73084 76433 77808 79632 80747 80889 82046 83452 67675 67675 68543 71864 76812 80605 81947 82578 82824 82509 82509

NUWH Mechanism 67675 67689 69055 72684 75716 77863 78658 79431 80787 82109 82580 67675 67675 67675 67683 67878 69296 69613 70676 72036 72983 73926

Graph Coloring – 12 Agents

ADOPT BnB-ADOPT
Relative Error Bound 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

AE Mechanism N/A 76669 80699 89978 92415 93095 93095 93095 93095 93095 93095 76465 76465 80231 91334 96922 99717 99717 99717 99717 99717 99717

RE Mechanism N/A N/A 77411 82443 87841 91373 92907 93095 93095 93095 93095 76465 76465 77401 80865 87210 93726 97048 98925 99166 99717 99717

UWH Mechanism N/A N/A 77285 81422 86407 91124 91881 92713 94694 95195 96683 76465 76465 77064 80848 87589 92584 95716 97479 97701 97992 97958

NUWH Mechanism N/A N/A 77648 81513 86780 89816 91509 93413 94263 94455 95422 76465 76465 76465 76479 76837 77334 78424 79773 81234 82661 84266

Graph Coloring – 14 Agents

Table 1: Experimental Results on the Solution Costs

weight of agent xi to 1+(c−1)× (1−d(xi)/N), where c is
a user-specified maximum weight, d(xi) is the depth of agent
xi in the pseudo-tree and N is the depth of the pseudo-tree.
This way, the weights decrease with the depth of the agents.
Everything else is the same as for the Uniformly Weighted
Heuristics Mechanism. The resulting weights are no larger
than the weights used by the Uniformly Weighted Heuristics
Mechanism with constant weight c. Thus, although currently
unproven, ADOPT and BnB-ADOPT should terminate with
solution costs that are at most c times larger than minimal.

7 Experimental Results

We compare ADOPT and BnB-ADOPT with the Abso-
lute Error Mechanism, the Relative Error Mechanism, the
Uniformly Weighted Heuristics Mechanism and the Non-
Uniformly Weighted Heuristics Mechanism. We use the DP2
preprocessing framework to generate the h-values. We run
experiments using the same experimental formulation and
setup as [Maheswaran et al., 2004; Yeoh et al., 2008] on
graph coloring problems with 10, 12 and 14 agents/vertices,
density 2 and domain cardinality 3; sensor network schedul-
ing problems with 9 agents/sensors and domain cardinality
9; and meeting scheduling problems with 10 agents/meetings
and domain cardinality 9. We average the experimental re-
sults over 50 DCOP problem instances each. We measure the
runtimes in cycles [Modi et al., 2005] and normalize them

by dividing them by the runtimes of the same DCOP algo-
rithm with no error bounds. We normalize the solution costs
by dividing them by the minimal solution costs. We vary the
relative error bounds from 1.0 to 4.0. We use the relative
error bounds both as the relative error bounds for the Rela-
tive Error Mechanism, the constant weights for the Uniformly
Weighted Heuristics Mechanism and the maximum weights
for the Non-Uniformly Weighted Heuristics Mechanism. We
pre-calculate the minimal solution costs and use them to cal-
culate the absolute error bounds for the Absolute Error Mech-
anism from the relative error bounds.

Tables 1 and 2 tabulate the solution costs and runtimes of
ADOPT and BnB-ADOPT with the different tradeoff mecha-
nisms. We set the runtime limit to be 5 hours for each DCOP
algorithm. Data points for DCOP algorithms that failed to
terminate within this limit are labeled ‘N/A’ in the tables. We
did not tabulate the data for all data points due to space con-
straints.

Figure 7 shows the results on the graph coloring problems
with 10 agents. We do not show the results on the graph
coloring problems with 12 and 14 agents, sensor network
scheduling problems and meeting scheduling problems since
they are similar. Figures 7(a1) and 7(b1) show that the nor-
malized solution cost increases as the relative error bound in-
creases, indicating that the solution quality of ADOPT and
BnB-ADOPT decreases. The solution quality remains signif-

358



ADOPT BnB-ADOPT
Relative Error Bound 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

AE Mechanism 5069 74 37 14 13 13 13 13 13 13 13 431 102 38 14 13 13 13 13 13 13 13

RE Mechanism 5069 96 42 15 14 13 13 13 13 13 13 431 123 49 15 14 13 13 13 13 13 13

UWH Mechanism 5069 255 39 18 14 14 14 13 12 12 12 431 95 38 19 14 14 14 13 12 12 12

NUWH Mechanism 5069 444 70 19 15 15 14 14 14 12 12 431 118 49 20 17 16 14 14 14 12 12

Sensor Network Scheduling – 9 Agents

ADOPT BnB-ADOPT
Relative Error Bound 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

AE Mechanism 8347 525 66 28 18 17 18 17 18 17 17 1180 578 94 39 24 19 18 17 17 17 17

RE Mechanism 8347 1022 350 58 26 20 21 20 18 17 18 1180 644 348 100 41 28 24 24 21 19 19

UWH Mechanism 8347 1482 160 29 25 20 19 19 18 18 18 1180 344 133 41 28 24 23 21 19 18 18

NUWH Mechanism 8347 2573 522 50 26 20 22 20 19 19 18 1180 485 265 68 34 26 27 22 20 20 17

Meeting Scheduling – 10 Agents

ADOPT BnB-ADOPT
Relative Error Bound 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

AE Mechanism 17566 2606 152 31 26 21 18 18 18 18 18 703 665 269 47 21 19 19 19 19 19 19

RE Mechanism 17566 3819 1496 291 51 26 22 19 19 18 18 703 677 578 304 67 44 23 19 19 19 19

UWH Mechanism 17566 8625 2284 87 30 20 18 17 17 17 17 703 523 318 102 38 21 18 18 17 17 17

NUWH Mechanism 17566 13804 5665 808 44 22 18 18 17 17 17 703 636 487 177 48 23 18 18 18 18 17

Graph Coloring – 10 Agents

ADOPT BnB-ADOPT
Relative Error Bound 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

AE Mechanism 42256 6499 820 36 21 21 21 21 21 21 21 1007 959 424 51 22 21 21 21 21 21 21

RE Mechanism 42256 7857 3557 1255 201 36 32 21 21 21 21 1007 983 793 476 173 64 40 27 21 21 21

UWH Mechanism 42256 18507 4556 831 84 30 21 20 19 19 19 1007 745 436 206 68 35 24 22 21 21 21

NUWH Mechanism 42256 34009 13226 3222 558 29 28 20 19 19 19 1007 834 692 536 412 315 244 185 150 117 93

Graph Coloring – 12 Agents

ADOPT BnB-ADOPT
Relative Error Bound 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

AE Mechanism N/A 29983 712 53 29 24 24 24 24 24 24 2048 1956 861 85 28 24 24 24 24 24 24

RE Mechanism N/A N/A 16234 2687 102 30 25 24 24 24 24 2048 1994 1678 883 204 41 25 24 24 24 24

UWH Mechanism N/A N/A 8710 956 54 27 23 22 22 22 22 2048 1355 683 254 73 30 24 23 23 23 23

NUWH Mechanism N/A N/A 49484 6712 79 32 22 22 22 21 21 2048 1581 1197 879 618 442 332 230 187 151 124

Graph Coloring – 14 Agents

Table 2: Experimental Results on the Runtimes

icantly better than predicted by the error bounds. For exam-
ple, the normalized solution cost is less than 1.4 (rather than
3.0) when the relative error bound is 3.0.

Figures 7(a2) and 7(b2) show that the normalized run-
time decreases as the relative error bound increases, indicat-
ing that ADOPT and BnB-ADOPT terminate earlier. In fact,
their normalized runtime is almost zero when the relative er-
ror bound reaches about 1.5 for ADOPT and 2.0 for BnB-
ADOPT.

Figure 8 plots the normalized runtime needed to achieve
a given normalized solution cost. It compares ADOPT (top)
and BnB-ADOPT (bottom) with the different tradeoff mech-
anisms on the graph coloring problems with 10 agents (left),
sensor network scheduling problems (center) and meeting
scheduling problems (right). For ADOPT, the Absolute Error
Mechanism and the Relative Error Mechanism perform better
than the other two mechanisms. However, the Relative Error
Mechanism has the advantage over the Absolute Error Mech-
anism that relative error bounds are often more desirable
than absolute error bounds. For BnB-ADOPT, on the other
hand, the Uniformly Weighted Heuristics Mechanism per-
forms better than the other three mechanisms. For example,
on graph coloring problems with 10 agents, the normalized
runtime needed to achieve a normalized solution cost of 1.05
is about 0.25 for the Uniformly Weighted Heuristics Mecha-
nism, about 0.30 for the Absolute Error Mechanism, about

0.35 for the Relative Error Mechanism and about 0.40 for
the Non-Uniformly Weighted Heuristics Mechanism. This
trend is consistent across the three DCOP problem classes.
Thus, the Uniformly Weighted Heuristics Mechanism gener-
ally dominates the other proposed or existing tradeoff mech-
anisms in performance and is thus the preferred choice. This
is a significant result since BnB-ADOPT has been shown to
be faster than ADOPT by an order of magnitude on several
DCOP problems [Yeoh et al., 2008] and our results allow one
to speed it up even further.

8 Conclusions

In this paper, we introduced three mechanisms that trade
off the solution costs of DCOP algorithms for smaller run-
times, namely the Relative Error Mechanism, the Uniformly
Weighted Heuristics Mechanism and the Non-Uniformly
Weighted Heuristics Mechanism. These tradeoff mechanisms
provide relative error bounds and thus complement the exist-
ing Absolute Error Mechanism, that provides only absolute
error bounds. For ADOPT, the Relative Error Mechanism is
similar in performance to the existing tradeoff mechanism but
has the advantage that relative error bounds are often more
desirable than absolute error bounds. For BnB-ADOPT, the
Uniformly Weighted Heuristics Mechanism generally domi-
nates the other proposed or existing tradeoff mechanisms in
performance and is thus the preferred choice. In general,

359



Graph Coloring - 10 Agents
Solution Quality Loss in ADOPT

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.00 1.50 2.00 2.50 3.00 3.50 4.00
Relative Error Bound

N
o

rm
al

iz
ed

 C
o

st
s

AE Mechanism
RE Mechanism
UWH Mechanism
NUWH Mechanism

(a1)

Graph Coloring - 10 Agents
Computation Speedup in ADOPT

0.00

0.20

0.40

0.60

0.80

1.00

1.00 1.50 2.00 2.50 3.00 3.50 4.00
Relative Error Bound

N
o

rm
al

iz
ed

 R
u

n
ti

m
es AE Mechanism

RE Mechanism
UWH Mechanism
NUWH Mechanism

(a2)

Graph Coloring - 10 Agents
Solution Quality Loss in BnB-ADOPT

1.00

1.10

1.20

1.30

1.40

1.00 1.50 2.00 2.50 3.00 3.50 4.00
Relative Error Bound

N
o

rm
al

iz
ed

 C
o

st
s

AE Mechanism
RE Mechanism
UWH Mechanism
NUWH Mechanism

(b1)

Graph Coloring - 10 Agents
Computation Speedup in BnB-ADOPT

0.00

0.20

0.40

0.60

0.80

1.00

1.00 1.50 2.00 2.50 3.00 3.50 4.00
Relative Error Bound

N
o

rm
al

iz
ed

 R
u

n
ti

m
es AE Mechanism

RE Mechanism
UWH Mechanism
NUWH Mechanism

(b2)

Figure 7: Experimental Results of ADOPT and BnB-ADOPT

Graph Coloring - 10 Agents
Tradeoff Performance in ADOPT

0.00

0.20

0.40

0.60

0.80

1.00

1.00 1.05 1.10 1.15 1.20
Normalized Costs

N
o

rm
al

iz
ed

 R
u

n
ti

m
es

AE Mechanism
RE Mechanism
UWH Mechanism
NUWH Mechanism

(a1)

Sensor Network Scheduling - 9 Agents
Tradeoff Performance in ADOPT

0.00

0.20

0.40

0.60

0.80

1.00

1.00 1.05 1.10 1.15 1.20
Normalized Costs

N
o

rm
al

iz
ed

 R
u

n
ti

m
es AE Mechanism

RE Mechanism
UWH Mechanism
NUWH Mechanism

(a2)

Meeting Scheduling - 10 Agents
Tradeoff Performance in ADOPT

0.00

0.20

0.40

0.60

0.80

1.00

1.00 1.05 1.10 1.15 1.20
Normalized Costs

N
o

rm
al

iz
ed

 R
u

n
ti

m
es AE Mechanism

RE Mechanism
UWH Mechanism
NUWH Mechanism

(a3)

Graph Coloring - 10 Agents
Tradeoff Performance in BnB-ADOPT

0.00

0.20

0.40

0.60

0.80

1.00

1.00 1.05 1.10 1.15 1.20
Normalized Costs

N
o

rm
al

iz
ed

 R
u

n
ti

m
es AE Mechanism

RE Mechanism
UWH Mechanism
NUWH Mechanism

(b1)

Sensor Network Scheduling - 9 Agents
Tradeoff Performance in BnB-ADOPT

0.00

0.20

0.40

0.60

0.80

1.00

1.00 1.05 1.10 1.15 1.20
Normalized Costs

N
o

rm
al

iz
ed

 R
u

n
ti

m
es AE Mechanism

RE Mechanism
UWH Mechanism
NUWH Mechanism

(b2)

Meeting Scheduling - 10 Agents
Tradeoff Performance in BnB-ADOPT

0.00

0.20

0.40

0.60

0.80

1.00

1.00 1.05 1.10 1.15 1.20
Normalized Costs

N
o

rm
al

iz
ed

 R
u

n
ti

m
es AE Mechanism

RE Mechanism
UWH Mechanism
NUWH Mechanism

(b3)

Figure 8: Experimental Results on the Tradeoff Performance

we expect our tradeoff mechanisms to apply to other DCOP
search algorithms as well since all of them perform search
and thus benefit from using h-values to focus their searches.

References
[Ali et al., 2005] S. Ali, S. Koenig, and M. Tambe. Preprocessing

techniques for accelerating the DCOP algorithm ADOPT. In Pro-
ceedings of AAMAS, pages 1041–1048, 2005.

[Bacchus et al., 2002] F. Bacchus, X. Chen, P. van Beek, and
T. Walsh. Binary vs. non-binary constraints. Artificial Intelli-
gence, 140(1-2):1–37, 2002.

[Bowring et al., 2008] E. Bowring, J. Pearce, C. Portway, M. Jain,
and M. Tambe. On k-optimal distributed constraint optimization
algorithms: New bounds and algorithms. In Proceedings of AA-
MAS, pages 607–614, 2008.

[Burke and Brown, 2006] D. Burke and K. Brown. Efficiently han-
dling complex local problems in distributed constraint optimisa-
tion. In Proceedings of ECAI, pages 701–702, 2006.

[Hart et al., 1968] P. Hart, N. Nilsson, and B. Raphael. A formal ba-
sis for the heuristic determination of minimum cost paths. IEEE
Transactions on Systems Science and Cybernetics, SSC4(2):100–
107, 1968.

[Junges and Bazzan, 2008] R. Junges and A. Bazzan. Evaluating
the performance of DCOP algorithms in a real world, dynamic
problem. In Proceedings of AAMAS, pages 599–606, 2008.

[Maheswaran et al., 2004] R. Maheswaran, M. Tambe, E. Bowring,
J. Pearce, and P. Varakantham. Taking DCOP to the real world:
Efficient complete solutions for distributed event scheduling. In
Proceedings of AAMAS, pages 310–317, 2004.

[Marinescu and Dechter, 2005] R. Marinescu and R. Dechter.
AND/OR branch-and-bound for graphical models. In Proceed-
ings of IJCAI, pages 224–229, 2005.

[Modi et al., 2005] P. Modi, W. Shen, M. Tambe, and M. Yokoo.
ADOPT: Asynchronous distributed constraint optimization with
quality guarantees. Artificial Intelligence, 161(1-2):149–180,
2005.

[Pearce and Tambe, 2007] J. Pearce and M. Tambe. Quality guaran-
tees on k-optimal solutions for distributed constraint optimization
problems. In Proceedings of IJCAI, pages 1446–1451, 2007.

[Pohl, 1970] I. Pohl. First results on the effect of error in heuristic
search. Machine Intelligence, 5:219–236, 1970.

[Pohl, 1973] I. Pohl. The avoidance of (relative) catastrophe,
heuristic competence, genuine dynamic weighting and compu-
tational issues in heuristic problem solving. In Proceedings of
IJCAI, pages 12–17, 1973.

[Yeoh et al., 2008] W. Yeoh, A. Felner, and S. Koenig. BnB-
ADOPT: An asynchronous branch-and-bound DCOP algorithm.
In Proceedings of AAMAS, pages 591–598, 2008.

[Yokoo, 2001] M. Yokoo, editor. Distributed Constraint Satis-
faction: Foundation of Cooperation in Multi-agent Systems.
Springer, 2001.

[Zhang et al., 2005] W. Zhang, G. Wang, Z. Xing, and L. Witten-
berg. Distributed stochastic search and distributed breakout:
Properties, comparison and applications to constraint optimiza-
tion problems in sensor networks. Artificial Intelligence, 161(1-
2):55–87, 2005.

360


