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Abstract

An important problem in computational social
choice concerns whether it is possible to prevent
manipulation of voting rules by making it compu-
tationally intractable. To answer this, a key ques-
tion is how frequently voting rules are manipulable.
We [Xia and Conitzer, 2008] recently defined the
class of generalized scoring rules (GSRs) and char-
acterized the frequency of manipulability for such
rules. We showed, by examples, that most com-
mon rules seem to fall into this class. However, no
natural axiomatic characterization of the class was
given, leaving the possibility that there are natural
rules to which these results do not apply. In this pa-
per, we characterize the class of GSRs based on two
natural properties: it is equal to the class of rules
that are anonymous and finitely locally consistent.
Generalized scoring rules also have other uses in
computational social choice. For these uses, the
order of the GSR (the dimension of its score vec-
tor) is important. Our characterization result im-
plies that the order of a GSR is related to the min-
imum number of locally consistent components of
the rule. We proceed to bound the minimum num-
ber of locally consistent components for some com-
mon rules.

1 Introduction

Computational social choice is a rapidly growing research
area within artificial intelligence and multiagent systems. Of-
ten, agents have different preferences over a set of alterna-
tives, and a common decision must be made. One way to
resolve this problem is to ask each agent to report her prefer-
ences (rank the alternatives), and then apply a voting rule to
the vector of rankings to select the winning alternative.

Sometimes, an agent can make herself better off by re-
porting false preferences. In this case, we say that the vot-
ing rule is manipulable. If a voting rule is not manipulable,
then it is said to be strategy-proof. Unfortunately, no voting
rule that satisfies certain extremely natural properties can be
strategy-proof, due to the celebrated Gibbard-Satterthwaite
Theorem [Gibbard, 1973; Satterthwaite, 1975]. In recent

years, researchers in the computational social choice com-
munity have tried to circumvent this impossibility result by
investigating whether there are desirable voting rules that are
computationally hard to manipulate. The idea is that even
if a successful manipulation exists, it will not occur unless
the agent can discover the manipulation. It has been shown
that, in various circumstances—that is, for various rules,
numbers of manipulators, manipulation goals, etc.—finding
a successful manipulation is NP-hard [Bartholdi et al., 1989;
Bartholdi and Orlin, 1991; Conitzer and Sandholm, 2003;
Elkind and Lipmaa, 2005; Conitzer et al., 2007; Hemas-
paandra and Hemaspaandra, 2007; Faliszewski et al., 2008;
Xia et al., 2009].

Unfortunately, all of these results are worst-case results.
That is, there are some cases where manipulation is hard
(if P�=NP), but manipulation might be easy most of the
time. Some recent research suggests that this is indeed
the case [Procaccia and Rosenschein, 2007b; Conitzer and
Sandholm, 2006; Procaccia and Rosenschein, 2007a; Zuck-
erman et al., 2009; Xia and Conitzer, 2008]. Specifically,
we [Xia and Conitzer, 2008] introduced a new class of vot-
ing rules called generalized scoring rules (GSRs), and studied
the probability that the manipulators are able to influence the
outcome of the election, given a distribution over the nonma-
nipulators’ votes. Under some minor conditions on the rule
and distribution, we showed the following results (generaliz-
ing earlier work for positional scoring rules [Procaccia and
Rosenschein, 2007a]). When the number of manipulators is
relatively small (o(np), where n is the number of voters, and
p < 1

2 ), this probability goes to zero. On the other hand, when
the number of manipulators is relatively large (O(np) and
o(n), where 1

2 < p), the probability that the manipulators can
make any alternative win goes to one (under some conditions
on the distribution and the rule). This only leaves a knife-
edge case where there are Θ(

√
n) manipulators; see [Walsh,

2009] for an empirical study of this case.
Moreover, to argue the relevance of our results, we showed

that a variety of common rules fall into the category of GSRs,
and remarked that we did not know of any commonly studied
rule that is not a GSR. (However, we did not give any formal
result about the generality of this class of rules.) The appar-
ent wide applicability of GSRs makes this class potentially
interesting from the perspective of other problems in compu-
tational social choice. Indeed, some such uses are quite obvi-
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ous. GSRs map every vote to a vector of scores (which are not
necessarily associated with alternatives), and the outcome of
the rule is based strictly on the sum of these vectors. As a re-
sult, the votes of a subset of the electorate can be summarized
completely by the sum of their score vectors. (The problem
of summarizing the votes of a subelectorate was recently in-
troduced and studied [Chevaleyre et al., 2009].) In fact, the
definition of GSRs is even more restrictive: the final outcome
only depends on direct comparisons among the components
of the summed score vector. For example, the outcome may
depend on a comparison between the first component and the
third component of the summed vector; then, it does not mat-
ter (for this comparison) whether these components are 42
and 50, respectively, or 101 and 967, because in both cases
component 1 is smaller. Because of this, the GSR framework
is also useful for preference elicitation, specifically, for deter-
mining whether enough information has been elicited from
the voters to declare the winner. In particular, if it becomes
clear that the remaining (not yet elicited) information about
the voters’ preferences can no longer change any of the com-
parisons in scores, then we can terminate elicitation.

One important open problem posed in [Xia and Conitzer,
2008] is to give a natural axiomatic characterization of the
class of GSRs, based on some criteria that we would like vot-
ing rules to have. Such axiomatizations are important because
they give us deeper insight into the rules, and can often be
used to prove important results about these rules. For GSRs,
having an axiomatic characterization is especially important
in order to know how the frequency-of-manipulability results
in [Xia and Conitzer, 2008], which are negative results for the
agenda of making manipulation computationally hard, might
be circumvented. Axiomatic characterization of voting rules
is a common topic in the social choice literature. For two al-
ternatives, the majority rule has been characterized in [May,
1952]. Young characterized positional scoring rules by con-
sistency, neutrality, and anonymity [Young, 1975]. When
ties are not possible (the voting rule always produces a sin-
gle winner), we say that an anonymous voting rule r is con-
sistent if the following holds: for any profiles (multisets of
votes) P1 and P2 with r(P1) = r(P2) = c, we must have
r(P1 ∪ P2) = c. Young’s paper [Young, 1975] also allows
for ties, so that r is a set-valued function; the more general
definition of consistency is that if r(P1) ∩ r(P2) �= ∅, then
r(P1 ∪ P2) = r(P1) ∩ r(P2). (We note that the union of two
multisets adds the multiplicities.) However, in this paper we
will only consider rules that always produce a single winner.

In this paper, we introduce a new criterion for voting rules:
finite local consistency. A voting rule satisfies finite local
consistency (FLC) if the set of all profiles can be partitioned
into finitely many parts, such that the voting rule is consis-
tent within each part. The minimum number of parts for a
rule is the degree of consistency for the rule. For example, a
consistent rule has degree of consistency 1. We then charac-
terize generalized scoring rules by anonymity and finite local
consistency, and we show that the order of a GSR (that is,
the dimension of the score vector) is related to the degree of
consistency of the rule. It follows that Dodgson’s rule is not a
GSR, because it does not satisfy homogeneity [Brandt, 2009],
and FLC is a stronger property than homogeneity. Finally, we

give lower and upper bounds on the degree of consistency for
some common voting rules.

2 Preliminaries

Basics of voting. Let C = {c1, . . . , cm} be the set of alter-
natives (or candidates). A linear order on C is a transitive,
antisymmetric, and total relation on C. The set of all linear
orders on C is denoted by L(C). An n-voter profile P on C
consists of n linear orders on C. That is, P = (V1, . . . , Vn),
where for every i ≤ n, Vi ∈ L(C). The set of all profiles
on C is denoted by P (C). In the remainder of the paper, m
denotes the number of alternatives and n denotes the number
of voters (agents). A (voting) rule r is a function from the set
of all profiles on C to C, that is, r : P (C) → C. A rule r is
anonymous if the output of the rule is insensitive to the names
of the voters; in this case, we can think of a profile as a multi-
set rather than a vector. An anonymous rule r is homogenous
if for any profile P and any k ∈ N, k > 0, r(P ) = r(kP ),
where kP is the profile composed of k copies of P .

Common rules. Common rules are anonymous and ho-
mogenous, including the following example rules:

Copeland: For any two alternatives ci and cj , we can sim-
ulate a pairwise election between them, by seeing how many
votes prefer ci to cj , and how many prefer cj to ci. Then,
an alternative receives one point for each win in a pairwise
election. Typically, an alternative also receives half a point
for each pairwise tie. The winner is the alternative who has
the highest score.

Bucklin: An alternative c’s Bucklin score is the smallest
number k such that more than half of the votes rank c among
the top k alternatives. The winner is the alternative that has
the smallest Bucklin score. Ties are broken by the number of
votes that rank an alternative among the top k.

Other common voting rules include positional scoring
rules, STV, maximin, and ranked pairs. Due to space con-
straint, we omit their definitions here. All the above rules
need some tiebreaking mechanism. In this paper, we assume
nothing about this mechanism, except that in each voting rule,
ties are broken in a consistent way.

Generalized scoring rules [Xia and Conitzer, 2008]. Let
K = {1, . . . , k}.

Definition 1 For any �a,�b ∈ Rk, we say that �a and �b are
equivalent with respect to K,1 denoted by �a ∼K

�b, if for
any i, j ∈ K, ai ≥ aj ⇔ bi ≥ bj (where ai denotes the ith
component of the vector �a, etc.).

Definition 2 A function g : Rk → C is compatible with K if
for any �a,�b ∈ Rk, �a ∼K

�b ⇒ g(�a) = g(�b).

That is, for any mapping g that is compatible with K, g(�a) is
completely determined by comparisons within K. General-
ized scoring rules are defined as follows.
Definition 3 Let k ∈ N, f : L(C) → Rk (a generalized scor-
ing function), and g : Rk → C where g is compatible with

1In the original definition of generalized scoring rules, �a and �b
are allowed to be equivalent w.r.t. any partition of K. In this paper,
we only consider the special case where the partition consists of a
single element K.
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K (a decision function). f and g determine the (unweighted)
generalized scoring rule GS(f, g) as follows. For any pro-
file of votes V1, . . . , Vn ∈ L(C), GS(f, g)(V1, . . . , Vn) =
g(

∑n
i=1 f(Vi)). We say that GS(f, g) is of order k.

That is, every vote results in a vector of scores according to
f , and g decides the winner based on comparisons between
the total scores. For example, Copeland can be modeled as a
generalized scoring rule in the following way. The total gen-
eralized score vector will consist of the scores in the pairwise
elections. Let
– kCopeland = m(m − 1); the components are indexed by
pairs (i, j) such that i, j ≤ m, i �= j.

– (fCopeland(V ))(i,j) =
{

1 if ci �V cj

0 otherwise
– gCopeland selects the winner based on fCopeland(P ) as
follows. For each pair i �= j, if (fCopeland(P ))(i,j) >
(fCopeland(P ))(j,i), then add 1 point to i’s Copeland score; if
(fCopeland(P ))(j,i) > (fCopeland(P ))(i,j), then add 1 point
to j’s Copeland score; if tied, then add 0.5 to both i’s and j’s
Copeland scores. The winner is the alternative that gets the
highest Copeland score. The other voting rules we studied
can also be modeled as GSRs:

Proposition 1 ([Xia and Conitzer, 2008]) All positional
scoring rules, Copeland, STV, maximin, and ranked pairs are
generalized scoring rules.

As for Bucklin, the results in this paper imply that it is also
a generalized scoring rule.

3 Finite local consistency

In this section, we introduce finite local consistency.

Definition 4 Let S be a set of profiles. r is locally consistent
on S if for any P1, P2 ∈ S with r(P1) = r(P2), we have
P1 ∪ P2 ∈ S and r(P1 ∪ P2) = r(P1) = r(P2).
Definition 5 For any natural number t, a voting rule r is t-
consistent if there exists a partition {S1, . . . , St} of all pro-
files such that for all i ≤ t, r is locally consistent within Si.
A voting rule r is finitely locally consistent if it is t-consistent
for some natural number t.

We note that if a voting rule satisfies FLC, then it must also
satisfy homogeneity, because FLC requires that for any two
profiles in the same component with the same winner, the
union of those two profiles is also in the component (and has
the same winner)—so any integer multiple of a profile must
be in the same component (and have the same winner).2

We emphasize that in this definition, a rule is defined for a
fixed number m of alternatives, but for profiles of arbitrarily
many voters. Later, we will show that some common rules
are finitely locally consistent for every m ∈ N; however, in
those cases, t depends on m, which is allowed, as long as t
is finite. We note that this finiteness condition is important:
for any homogeneous voting rule, there exists a partition that
has infinitely many elements such that the voting rule is lo-
cally consistent on each element of the partition. Here, each

2We thank Felix Brandt and Markus Brill for pointing out the
connection between FLC and homogeneity to us.

element has the form {kP : k ∈ N} for some P that is not
composed of multiple copies of any other profile.

The degree of consistency of a voting rule r (for a particular
m) is the smallest number of elements in a locally consistent
partition of profiles. That is, the degree of consistency of r is
t if r is t-consistent, and for any t′ < t, r is not t′-consistent.
(We note that the partition corresponding to this lowest t is
not necessarily unique.) The degree of consistency can be
seen as an approximation to consistency: the lower the de-
gree of consistency of a voting rule, the more “consistent” it
is, and 1-consistency is equivalent to the standard definition
of consistency. We will be interested in the exact degree of
consistency (rather than just whether it is finite or not), be-
cause, as we will show, this degree is related to the order of a
GSR equivalent to the rule, which in turn is important for the
summarization and elicitation problems that we mentioned in
the introduction.

4 Finite local consistency characterizes

generalized scoring rules

We now present our main result. Let P(k) be the number of
total preorders over k elements, that is, the total number of
ways to rank k elements, allowing for ties.

Theorem 1 r is a generalized scoring rule if and only if r
is anonymous and finitely locally consistent. Moreover, for
any t-consistent voting rule r, there exists a GSR of order
( t(t−1)m(m−1)

4 )m! + 1 that is equivalent to r; conversely, for
any GSR GS(f, g) of order k, there exists a P(k)-consistent
voting rule r that is equivalent to GS(f, g).3

Proof of Theorem 1: We prove the “if” part by a geo-
metrical representation of a voting rule that is anonymous
and homogenous, similarly to [Young, 1975]. Let L(C) =
{l1, . . . , lm!} be the set of all linear orders over C. Let r be a
voting rule that satisfies anonymity and FLC. It follows that
r is anonymous and homogenous, so that profiles can be rep-
resented as multisets of votes. Hence, there is a one-to-one
correspondence between the set of all profiles and the set of
all points in Nm!: any profile P =

∑m!
x=1 wxlx, wx ∈ N is as-

sociated with the point �p = (w1, . . . , wm!), that is, �p ∈ Nm!,
and for any j ≤ m!, the jth component of �p is exactly the
number of voters whose preferences are lj in P . Therefore, r
can also be seen as a mapping from Nm! to C, defined as fol-
lows: for any �p ∈ Nm!, r(�p) = r(P ), where P is the profile
that �p corresponds to. In the remainder of the proof, we will
not distinguish between the point �p and the profile P . Also,
because r is homogenous, the domain of r can be extended
to Q≥0

m! (vectors of nonnegative rationales) in the following
way. For any �p ∈ Q≥0

m!, let h ∈ N be such that h�p ∈ Nm!;
then, let r(�p) = r(h�p). (This is well defined because by ho-
mogeneity, the choice of h does not matter.)

Because r is t-consistent, there exists a partition
(S1, . . . , St) of Nm! such that r is locally consistent within
each Si. We note that �p ∈ Si implies h�p ∈ Si for each

3The P(k) bound can be improved if more information about the
structure of the GSR is taken into account. For the sake of simplicity,
we omit discussion of this in this paper.
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h ∈ N, because each Si must be closed under the union
of vectors that produce the same result, and we can take
the union of h vectors �p. Now, for any i ≤ t, we de-
fine SQ

i = {q�p : q ∈ Q≥0, �p ∈ Si}. It follows that
Q≥0

m! =
⋃t

i=1 SQ
i , and for any i1 �= i2, SQ

i1
∩ SQ

i2
= {0}.

For any i ≤ t, any j ≤ m, we define Sj
i = SQ

i ∩ r−1(cj).
That is, Sj

i is the set of points (equivalently, profiles) in SQ
i

whose winner is cj . It follows that for any �p1, �p2 ∈ Sj
i ∩Nm!,

we have �p1 + �p2 ∈ Sj
i ; for any �p ∈ Sj

i , any q ∈ Q≥0, we
must have q�p ∈ Sj

i . For any S ⊆ R≥0
m!, we say that S is

Q-convex if for any λ ∈ Q ∩ [0, 1], any �p1, �p2 ∈ S, we have
λ�p1 +(1−λ)�p2 ∈ S. We say a Q-convex set S is a Q-convex
cone, if for any q ∈ Q≥0, any �p ∈ S, we have q�p ∈ S. We
make the following easy claim (proof omitted).

Claim 1 For any i ≤ t, any j ≤ m, Sj
i is a Q-convex cone.

For any S ⊆ R≥0
m!, we let conv(S) be the convex hull

of S in R≥0
m!. That is, conv(S) = {∑h

i=1 αi�pi : h =
1, 2, . . . ,

∑h
i=1 αi = 1, (∀i ≤ h) αi > 0, αi ∈ R, �pi ∈ S}.

Lemma 1 (proved in [Young, 1975]) S ⊆ Qm! is Q-convex
if and only if S = conv(S) ∩ Qm!.

Let d ∈ N, S1, S2 ⊆ Rd, and for any x ∈ R, let δ(x) = 1 if
x > 0, δ(x) = −1 if x < 0, and δ(0) = 0. We say that S1 and
S2 are separated by a finite set of vectors I = {�p1, . . . , �po},
in which �pi ∈ Rl for all i ≤ o, if there exist two sets O1, O2 ⊆
{−1, 0, 1}I such that O1 ∩ O2 = {0}, and for any �p ∈ S1

(�p �= 0), we have δ(�p, I) = (δ(�p·�p1), . . . , δ(�p·�po)) ∈ O1; for
any �p ∈ S2 (�p �= 0), we have (δ(�p·�p1), . . . , δ(�p·�po)) ∈ O2. In
this case we also say that I separates S1 from S2 via O1, O2.

S ⊆ Rd is called an affine space if for any �p1, �p2 ∈ S, any
q1, q2 ∈ R, we have q1�p1 + q2�p2 ∈ S. For any S′ ⊆ Rd,
we let aff(S′) denote the affine extension of S′ as follows:
aff(S′) = {∑h

i=1 αi�pi : h = 1, 2, . . . , (∀i ≤ h) αi ∈
R, �pi ∈ S′}. That is, aff(S′) is the smallest affine space in Rd

that contains S′. We let relint(conv(S)) denote the relative
interior of conv(S), defined as follows. relint(conv(S)) is
the set of all vectors �p ∈ Rd such that there exists ε > 0 such
that B(�p, ε) ∩ aff(S) ⊆ conv(S), where B(�p, ε) is the ball
centered on �p with radius ε.
Lemma 2 Let S ⊆ Rm! be an affine space, and let S1, S2 ⊆
S ∩ Q≥0

m! be two Q-convex cones such that S1 �= S2, S1 ∩
S2 = {0}. There exists a finite set of vectors I ⊆ Rm! that
separates S1 from S2, and |I| ≤ dim(S).
Proof. We prove the claim by induction on dim(S). When
dim(S) = 1, it must be the case that one of S1 and S2 is
{0}, and the other has an element �p′ �= 0. Without loss of
generality, we let S1 = {0}, S2 �= {0}. In this case, we let
I = {�p′}, O1 = {0}, and O2 = {0, 1}.

Suppose Lemma 2 holds for dim(S) ≤ d. Without loss of
generality, we assume dim(aff(S1)) ≥ dim(aff(S2)). When
dim(S) = d + 1, there are two cases.

Case 1: dim(aff(S1)) = dim(aff(S2)) = d + 1. In
this case S = aff(S1) = aff(S2). First we prove that
relint(conv(S1)) ∩ relint(conv(S2)) = ∅. If not, sup-
pose �p ∈ relint(conv(S1)) ∩ relint(conv(S2)). Let �p =

∑h
j=1 αj�pj , where

∑h
j=1 αj = 1, for all j ≤ h, �pj ∈ S1

and αj ≥ 0, and B(�p, ε) ∩ S ⊆ conv(S1), B(�p, ε) ∩ S ⊆
conv(S2). There exist βj ∈ Q≥0 (j ≤ h) such that �p∗ =∑h

j=1 βj�pj �= 0, and the distance between �p∗ and �p is less
than ε (by setting the βj sufficiently close to the αj). We
note that S1 is Q-convex, which means that �p∗ ∈ S1. It fol-
lows that �p∗ ∈ conv(S2), because �p∗ ∈ B(�p, ε) ∩ S. From
Lemma 1 we have that S2 = conv(S2) ∩ Q≥0

m!. Therefore,
�p∗ ∈ conv(S2) ∩ Q≥0

m! = S2. This contradicts the assump-
tion that S1 ∩ S2 = {0}.

Because relint(conv(S1)) ∩ relint(conv(S2)) = ∅, we
apply the separating hyperplane theorem: there exists a hy-
perplane H�p∗ characterized by �p∗ ∈ Rm!, such that for any
�p1 ∈ S1, �p1 · �p∗ ≤ 0; for any �p2 ∈ S2, �p2 · �p∗ ≥ 0; and
at least one of S1 and S2 is not contained in H�p∗ . We let
S′ = S∩H�p∗ , and S′1 = S1∩S′, S′2 = S2∩S′. H�p∗ does not
contain S, so it follows that dim(S′) < dim(S) = d+1. Ap-
plying Lemma 2 on S′, S′1, S

′
2 (using the induction assump-

tion), there exists a set of vectors I ′ that separates S′1 from
S′2 via O′1, O

′
2, |I ′| ≤ d. Let I = {�p∗} ∪ I ′ and O1 = {�a ∈

{−1, 0, 1}I : �a|{�p∗} = −1 ∨ (�a|{�p∗} = 0 ∧ �a|I′ ∈ O′1)}
(here, for J ⊆ I , let �a|J be the components of �a correspond-
ing to the vectors in J). This works because for any �p ∈ S1,
either �p is in the open halfspace {�p′ : �p′ · �p∗ < 0}, or �p is in
S1 ∩ H�p∗ . Similarly, let O2 = {�a ∈ {−1, 0, 1}I : �a|{p∗} =
1 ∨ (�a|{p∗} = 0 ∧�a|I′ ∈ O′2)}. It follows that I separates S1

from S2 via O1, O2, and |I| = |I ′| + 1 ≤ d + 1.
Case 2: dim(aff(S2)) < d + 1. If aff(S1) = aff(S2),

then let S′ = aff(S1), |S′| < d + 1. Applying Lemma 2
on S′, S1, S2 (by the induction assumption), we can conclude
that there exists I ′ ⊆ Q≥0

m! that separates S1 from S2, and
|I ′| ≤ d < d + 1. If aff(S1) �= aff(S2), then there ex-
ists a hyperplane H�p∗ (orthogonal to �p∗) such that 0 ∈ H�p∗ ,
S2 ⊆ H�p∗ , and S1 � H�p∗ (because the intersection of all
hyperplanes that contains S2 is S2). Let S′ = aff(S2), and
S′1 = S1 ∩ S′. S′ is an affine space whose dimension is
dim(aff(S2)) < d + 1. For any �p1, �p2 ∈ S′1, any λ ∈ Q≥0,
we have that λ�p1 +(1−λ)�p2 ∈ S1 (because S1 is Q-convex),
and λ�p1 + (1 − λ)�p2 ∈ S′ (because S′ is an affine space);
hence, λ�p1 + (1− λ)�p2 ∈ S′1. Hence S′1 is a Q-convex cone.

By applying Lemma 2 on S′, S′1, S2 (using the induction
assumption), there exists I ′ ⊂ Q≥0

m! (|I ′| ≤ d) that sepa-
rates S′1 from S2 via O′1, O

′
2. We let I = I ′ ∪ {�p∗}; O1 =

{�a ∈ {−1, 0, 1}I : �a|{�p∗} �= 0 ∨ (�a|{�p∗} = 0 ∧ �a|I′ ∈ O′1)}.
This works because for any �p ∈ S1, either �p · �p∗ �= 0 (mean-
ing that �p is not in S′), or �p · �p∗ = 0, and δ(�p, I ′) ∈ O′1
(meaning that �p is in S1 ∩ S′). Similarly we define O2 =
{�a ∈ {−1, 0, 1}I : �a|{�p∗} = 0 ∧ a|I′ ∈ O′2}. It follows that
I separates S1 from S2, and |I| = |I ′| + 1 ≤ d + 1. This
completes the proof of Lemma 2. �

For any i1, i2 ≤ t, j1, j2 ≤ m, where either i1 �= i2 or
j1 �= j2, Sj1

i1
∩ Sj2

i2
= {0}. (We recall that Sj

i is the set
of points in SQ

i whose winner is cj .) From Lemma 2, there
exists a finite set Ii1j1,i2j2 of vectors that separates Sj1

i1
from

Sj2
i2

via O1
i1j1,i2j2

, O2
i1j1,i2j2

, where |Ii1j1,i2j2 | ≤ m!. Now
we can define a corresponding generalized scoring rule, as
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follows.
• k = |⋃(i1,j1) �=(i2,j2)

Ii1j1,i2j2 | + 1, and the components
are indexed by vectors in some Ii1j1,i2j2 , and a 0 compo-
nent (which is always 0). Because |Ii1j1,i2j2 | ≤ m!, we have
k ≤ ( t(t−1)m(m−1)

4 )m! + 1.
• For any (i1, j1) �= (i2, j2), any �p = (p1, . . . , pm!) ∈
Ii1j1,i2j2 , any b ≤ m!, the �p component of the generalized
score vector given vote (ranking) lb is f(lb) = pb. We
note that for any profile �p = (w1, . . . , wm!), any �p∗ =
(p∗1, . . . , p

∗
m!) ∈ Ii1j1,i2j2 , the �p∗ component of f(�p) is∑m!

x=1 wxp∗x = �p · �p∗.
• For any �a ∈ Q≥0

k with �a �= 0, g(�a) = cj if and only if
there exists i ≤ t such that for any i′ ≤ t, j′ ≤ m, there
exists o ∈ O1

ij,i′j′ such that for any �p∗ ∈ Iij,i′j′ , the follow-
ing three conditions hold: (1) �a|�p∗ is strictly larger than 0 (the
value of the 0 component), if and only if o|�p∗ = 1; (2) �a|�p∗

is equal to 0, if and only if o|�p∗ = 0; and (3) �a|�p∗ is strictly
smaller than 0, if and only if o|�p∗ = −1. That is, g(�a) = cj

if and only if there exists i ≤ t such that for any i′, j′, we
always have �a �∈ Sj′

i′ by using the set of separation vectors
Iij,i′j′ . (That g is well defined will follow from the following
argument.)

Next, we prove that GS(f, g) = r. For any profile
�p ∈ Q≥0

m!, suppose �p ∈ Sj
i . For any (i, j) �= (i′, j′),

since �p ∈ Sj
i , by using the separation vectors Iij,i′j′ and

O1
ij,i′j′ , O2

ij,i′j′ , �p should be classified as “not in Sj′
i′ ”. That

is, there exists o ∈ O1
ij,i′j′ such that for any �p∗ ∈ Iij,i′j′ ,

o|�p∗ = δ(�p · �p∗); and for any o′ ∈ O2
ij,i′j′ , there exists

�p∗ ∈ Iij,i′j′ such that o′|�p∗ �= δ(�p · �p∗). It follows that
GS(f, g)(�p) = cj .

The “only if” part is straightforward. For any total preorder
O over {1, . . . , k}, we let SO = {�p ∈ Q≥0

m! : f(�p) ∼ O}.
{SO} is a finitely locally consistent partition for the rule, of
size P(k). �

We are not aware of any closed-form formula for P(k),
though there exist recursive formulas. We now give a simple
upper bound on P(k). Any total preorder V can be repre-
sented by a strict order (ci1 � ci2 � . . . � cim

) and a string
�s = (s1, . . . , sm−1) ∈ {0, 1}m−1, as follows: if sl = 0 then
cil

�V cil+1 , and if sl = 1 then cil
≈V cil+1 . This implies

P(k) ≤ k!2k−1.

5 The degree of consistency of common rules

In this section, we prove upper and lower bounds for the de-
gree of consistency of some common voting rules (which
Theorem 1 relates to the order of a GSR representation of
that rule). Positional scoring rules have degree of consistency
1, but other rules do not. To prove a lower bound L on the
degree of consistency of a voting rule, we construct a set of L
profiles P1, . . . , PL that all have the same winner, but, for any
i �= j, the winner for P1 ∪ P2 is another alternative (hence,
none of these profiles can belong to the same element of a
partition). To prove an upper bound U , for any alternative cj ,
we partition the set of all profiles whose winner is cj into U

parts, denoted by Sj
1, . . . , S

j
U , and prove that the rule is lo-

cally consistent within each part. Then, we let the partition of
all profiles be {S1, . . . , SU}, where Si =

⋃m
j=1 Sj

i . It is easy
to see that the rule must be locally consistent within each Si.
Due to space constraint, we only include the proof for Buck-
lin (which is the shortest).
Theorem 2 The degree of consistency of Bucklin is at least
�m

2 �, and at most �m
2 � + 1.

Proof. First we prove the lower bound. For any k ≤ �m
2 �,

define Pk = (V1, . . . , V8(m−2)) as follows.
• For 1 ≤ j ≤ 4(m − 2) + 1, let c1 be in the kth position

of Vj , and let c2 be in the (k + 1)th position of Vj .
• For 4(m − 2) + 2 ≤ j ≤ 8(m − 2), let c1 be in the mth

position of Vj , and let c2 be in the kth position of Vj .
• Let c3, . . . , cm be ranked in a cyclic way in

V1, . . . , V8(m−2)—for example, c3 � c4 � . . . � cm in V1;
cm � c3 � c4 � . . . � cm−1 in V2; and so on.

In each Pk, c1 is ranked among the top k positions 4(m −
2) + 1 > 4(m − 2) times; c2 is ranked among the top k
positions 4(m−2)−1 < 4(m−2) times. For any 3 ≤ i ≤ m,
ci is ranked among the top k positions 8(k−1) times. Because
k ≤ m

2 , 8(k − 1) ≤ 4(m − 2). Hence, Bucklin(Pk) = c1.
Now, for any k1 < k2 ≤ �m

2 �, in Pk1 ∪ Pk2 , c1 is ranked
among the top k2 − 1 positions 4(m − 2) + 1 < 8(m − 2)
times; c1 is ranked among the top k2 positions 8(m−2)+2 >
8(m − 2) times; and c2 is ranked among the top k2 positions
12(m−2)−1 > 8(m−2)+2 times. Hence, in Pk1 ∪Pk2 , c2

performs better than c1, and therefore, Bucklin(Pk1∪Pk2) �=
c1. It follows that the degree of consistency of Bucklin is at
least �m

2 �.
Next, we prove the upper bound. Without loss of general-

ity, we focus on the alternative cm. Let P be a profile such
that Bucklin(P ) = cm. For any k, let Sm

k be the set of pro-
files P such that Bucklin(P ) = cm, and the Bucklin score
of cm in P is k. For any P, P ′ ∈ Sm

k , any i ≤ m, ci is ranked
among the top k − 1 positions at most |P |2 (resp., |P

′|
2 ) times

in P (resp., P ′). Therefore, ci is ranked among the top k − 1
positions at most |P |+|P

′|
2 times in P ∪ P ′. By similar rea-

soning, cm is ranked among the top k positions strictly more
than |P |+|P ′|

2 times in P ∪ P ′. It is possible that some other
ci is also ranked among the top k positions strictly more than
|P |+|P ′|

2 times in P ∪ P ′; however, ci must be ranked among
the top k at most as many times as cm in both P and P ′,
and hence also in P ∪ P ′. If cm is ranked among the top k
more often than ci in P ∪P ′, then cm wins; if they are ranked
among the top k equally often, then cm still wins, by consis-
tent tiebreaking. It follows that Bucklin is locally consistent
within each Sm

k . Moreover, we note that Sm
k is empty for

k > �m
2 � + 1. So, we only need the Sm

k with k ≤ �m
2 � + 1.

By similar analysis for the other alternatives, it follows that
the degree of consistency of Bucklin is at most �m

2 � + 1. �
Theorem 3 The degree of consistency of STV is (m − 1)!.
Theorem 4 The degree of consistency of maximin is at least
(m − 3)m−1, and at most (m − 1)m−1.

Because limm→∞
(m−3)m−1

(m−1)m−1 = 1
e2 , the bounds on the de-

gree of consistency of maximin are asymptotically tight up to
a multiplicative constant.
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Theorem 5 The degree of consistency of Copeland is at least
(2−m′(2m′

m′
)
)m, where m′ = �m−1

2 �, and at most 3
m(m−1)

2 .

Theorem 6 The degree of consistency of ranked pairs is at
least (m − 2)!, and at most (m(m − 1))!2m2−m−1.

6 Conclusion

The frequency of manipulability of a rule is an impor-
tant problem in computational social choice. Recently, this
frequency has been characterized—except for a knife-edge
case—for the class of generalized scoring rules [Xia and
Conitzer, 2008]. While it was previously observed (based
on examples) that this class seems very general, no formal
argument for this generality has been given. In this paper we
gave such an argument, by characterizing generalized scoring
rules as the class of rules that satisfy finite local consistency
(in addition to anonymity), a very natural weakening of the
standard notion of consistency. This definition also leads to a
quantitative degree of consistency of a rule, which turns out to
be closely related to the order (dimension of the score vector)
of a generalized scoring rule. Our axiomatic characterization
also shows that Dodgson’s rule is not a generalized scoring
rule, because it does not satisfy homogeneity [Brandt, 2009].
We provided lower and upper bounds on the degree of consis-
tency for some common voting rules, summarized in Table 1.
These bounds imply corresponding bounds on the order of
a generalized scoring rule representation of these rules, per
Theorem 1.

Rule Lower Bound Upper Bound

Pos. scoring 1 1

Bucklin �m
2
� �m

2
� + 1

STV (m-1)! (m-1)!

Maximin (m − 3)m−1 (m − 1)m−1

Copeland (2
−� m−1

2 �“2� m−1
2 �

� m−1
2 �

”
)m 3

m(m−1)
2

Ranked pairs (m − 2)! (m(m− 1))!2m2−m−1

Table 1: Lower and upper bounds on the degree of consistency of
some common voting rules.

One direction for future research is to tighten the above
bounds, and derive bounds for other rules. A related ques-
tion is whether the bounds from Theorem 1 can be improved.
Another direction is to study alternative uses of generalized
scoring rules—we briefly mentioned the possibility of using
them for elicitation and summarization purposes—as well as
the properties that they possess.
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