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Abstract

Negotiation scenarios involving nonlinear utility
functions are specially challenging, because tradi-
tional negotiation mechanisms cannot be applied.
Even mechanisms designed and proven useful for
nonlinear utility spaces may fail if the utility space
is highly nonlinear. For example, although both
contract sampling and constraint sampling have
been successfully used in auction based negotia-
tions with constraint-based utility spaces, they tend
to fail in highly nonlinear utility scenarios. In this
paper, we will show that the performance of these
approaches decrease drastically in highly nonlinear
utility scenarios, and propose a mechanism which
balances utility and deal probability for the bidding
and deal identification processes. The experiments
show that the proposed mechanisms yield better re-
sults than the previous approaches in highly nonlin-
ear negotiation scenarios.

1

Complex negotiations scenarios where agents negotiate about
multiple, interdependent issues are specially challenging,
since issue interdependency yields nonlinear utility functions
for the agents, and thus the classic mechanisms for linear ne-
gotiation models are not applicable. In particular, this work
focuses on multilateral mediated negotiation, where several
agents try to reach an agreement over a range of issues using a
bidding based negotiation protocol with the aid of a mediator.
The utility spaces for the agents are generated using weighted
constraints, which results in nonlinear utility functions.

In [Tto et al., 2007], a bidding mechanism is proposed,
which is based on taking random samples of the contract
space and applying simulated annealing to these samples to
identify high utility regions for each agent, sending these re-
gions as bids to a mediator, and then performing a search in
the mediator to find overlaps between the bids of the different
agents. In a similar scenario [Marsa-Maestre et al., 2008],
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samples are taken from the constraints space instead. Ex-
periments show that these approaches achieve high effective-
ness (measured as high optimality rates and low failure rates
for the negotiations) in the evaluation scenario they describe
(Section 2). However, as we will show empirically in Section
5.2, these approaches perform worse as the circumstances of
the scenario turn harder (that is, when the utility functions
are highly nonlinear, like in B2B interactions or distributed
automated control systems). Under these circumstances, the
failure rate increases drastically, raising the need for an alter-
native approach.

Furthermore, as described in [Ito et al., 2007], their
bidding-based negotiation protocol presents some scalability
concerns due to the extensive search for overlaps performed
in the mediator, which finally limits the maximum number of
bids each agent may send depending on the number of agents
in the negotiation. In this paper, we intend to address these
problems in the following ways:

e We propose a mechanism to take into account both the
utility of a bid for an agent and its viability (a measure
of the likelihood of the bid to yield a deal), and integrate
this mechanism in the contracts sampling and constraint
sampling approaches (Section 3). We will show that this
balance between bid utility and deal probability yields a
significant improvement in terms of optimality rate and
failure rate over the previous approaches in highly non-
linear scenarios.

We propose a heuristic search mechanism for the media-
tor which lowers the scalability problem while achieving
acceptable optimality rates (Section 4).

A highly-nonlinear simulated scenario has been devised to
validate our hypothesis and evaluate the effects of our contri-
butions. This scenario is described in Section 5, along with
the discussion of the results obtained. Finally, our proposal
is briefly compared to the most closely-related works in the
state-of-the-art (Section 6). The last section summarizes our
conclusions and sheds light on some future research.
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Figure 1: Example of a utility space with two issues and three
constraints.

2 Contract and Constraint Sampling for
Negotiation in Nonlinear Utility Spaces

2.1 Constraint-based Nonlinear Utility Spaces

Nonlinear agent preferences can be described by using differ-
ent categories of functions [Zhang and Pu, 2004]. In this work
we focus on nonlinear utility spaces generated by means of
weighted constraints [Ito ef al., 2007]. In these cases, agents’
utility functions are described by defining a set of constraints.
Each constraint represents a region with one or more dimen-
sions, and has an associated utility value. The number of di-
mensions of the space is given by the number of issues n un-
der negotiation, and the number of dimensions of each con-
straint must be lesser or equal than n. The utility yielded by
a given potential solution (contract) in the utility space for an
agent is the sum of the utility values of all the constraints that
are satisfied by that contract. Figure 1 shows a very simple
example of an agent’s utility space for two issues and three
constraints: a unary constraint C'1 and two binary constraints
C?2 and C3. The utility values associated to the constraints
are also shown in the figure. In this example, contract x would
yield a utility value for the agent u(z) = 15, since it satisfies
both C'1 and C'2, while contract y would yield a utility value
u(y) = b, because it only satisfies C'1.

More formally, we can define the issues under negotiation
as a finite set of variables z = {z;]i = 1,...,n}, and a con-
tract (or a possible solution to the negotiation problem) as a
vector s = {zf|i = 1,...,n} defined by the issues’ values.
Issues take values from the domain of integers [0, X].

Agent utility space is defined as a set of constraints C' =
{ck|k =1, ...,1}. Each constraint is given by a set of intervals
which define the region where a contract must be contained to
satisfy the constraint. In this way a constraint c is defined as
c={If|li =1,..,n}, where I = 27" 2™%] defines the
minimum and maximum values for each issue to satisfy the
constraint. Each constraint c; has an associated utility value
u(ek).

A contract s satisfies a constraint cif and only if 2} € I/Vi.
For notation simplicity, we denote this as s € z(cy), meaning
that s is in the set of contracts that satisfy c;. An agent’s util-
ity for a contract s is defined as u(s) = chEC\SEw(ck) u(ek),

that is, the sum of the utility values of all constraints satisfied
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by s. This kind of utility functions produce nonlinear utility
spaces, with high points where many constraints are satisfied,
and lower regions where few or no constraints are satisfied.

For this work, we will consider as the optimal contract of
a negotiation the contract which satisfies the Nash product
[Nash, 1953], that is, the contract which maximizes the prod-
uct of the utilities of all agents involved in the negotiation.
Though the search for such a contract could be performed
in a complete information scenario using distributed con-
straint optimization techniques [ Yokoo, 2001] or well-known
nonlinear optimization techniques such as evolutionary algo-
rithms, we are assuming a competitive scenario, where agents
are unwilling to fully reveal their preference information. In
these scenarios, these optimization techniques are not appli-
cable, and therefore other approaches are needed, like the
ones described in the following sections.

2.2 Contracts Sampling and Simulated Annealing
in Bidding-based Nonlinear Negotiation

Ito et al. [Ito e al., 2007] presented a bidding-based protocol
to deal with nonlinear utility spaces generated using weighted
constraints. The protocol consists on the following four steps:

1. Sampling: Each agent takes a fixed number of random
samples from the contract space, using a uniform distri-
bution.

2. Adjusting: BEach agent applies simulated annealing to
each sample to try to find a local optimum in its neig-
borhood. This results in a set of high-utility contracts.

3. Bidding: Each agent generates a bid for each high-
utility, adjusted contract. The bids are generated as the
intersection of all constraints which are satisfied by the
contract. Each agent sends its bids to the mediator, along
with the utility associated to each bid.

Deal identification: The mediator employs breadth-first
search with branch cutting to find overlaps between the
bids of the different agents. The regions of the contract
space corresponding to the intersections of at least one
bid of each agent are tagged as potential solutions. The
final solution is the one that maximizes joint utility, de-
fined as the sum of the utilities for the different agents.

2.3 Maximum Weight Independent Set and the
Max-product Algorithm

In [Marsa-Maestre er al., 2008], an alternative perspective for
the bidding process is given, looking at the constraint-based
agent utility space as a weighted undirected graph. Consider
again the simple utility space example shown in Figure 1.
Think about each constraint as a node in the graph, with an
associated weight which is the utility value associated to the
constraint. Now we will connect all nodes whose correspond-
ing constraints are incompatibles, that is, they have no inter-
section. The resulting graph is shown in Figure 2.

To find the highest utility bid in such a graph can be seen
as finding the set of unconnected nodes which maximizes the
sum of the nodes’ weights. Since only incompatible nodes
are connected, the corresponding constraints will have non-
null intersection. In the example, this would be achieved by



taking the set {C1, C2}. The problem of finding a maximum
weight set of unconnected nodes is a well-known problem
called maximum weight independent set (MWIS). Though
MWIS problems are NP-hard, in [Bayati et al., 2008], a mes-
sage passing algorithm is used to estimate MWIS. The al-
gorithm is a reformulation of the classical max-product algo-
rithm called “min-sum”, and works as follows. Initially, every
nodes ¢ send their weights w; to their neighbors N (i) as mes-
sages. At each iteration, each node 7 updates the message to
send to each neighbor j by substracting from its weight w; the
sum of the messages received from all other neighbors except
7. If the result is negative, a zero value is sent as message.
Upon receiving the messages, a node is included in the esti-
mation of the MW IS if and only if its weight is greater than
the sum of al messages received from its neighbors. Message
passing continues until MW IS converges or the maximum
number of iterations is exceeded. This is formally shown in
Algorithm 1.

Input:
1 =1, ...,n: nodes (constraints) in the weighted graph
w;|i = 1, ..., n: weight (utility) of each node (constraint)
N(i): set of neighbors of each node (incompatible
constraints)
timae: Maximum number of iterations
Output: MW IS estimation of the MWIS
t=0;m_; =wVj € N()
while ¢ < t,,,. do
t =t+ 1; foreach i do

‘ m?—)j = max{0,w; — Zk;ﬁj,keN(i) m}iiz}
end
MWIS* = {ilwi > Yoy Mi i)
ift >1and MWIS* = MWIS'~! then

| return MW IS?

end
Algorithm 1: Min-sum algorithm for MWIS estimation

Since the algorithm is deterministic, only one bid can be
generated for a given set of constraints. To solve this, in
[Marsa-Maestre et al., 2008], the algorithm is applied to a
subset of constraints C' = {c,|k = 1,...,nen. < l;¢), €
C'}. The constraints ¢}, are randomly chosen from the con-
straint set C. In this way, a different constraint subset C” is
passed to the algorithm at each run, which will result in dif-
ferent, non-deterministic bids.

3 Bidding Mechanisms for Highly-nonlinear
Utility Spaces

The use of weighted constraints generates a “bumpy” utility
space, with many peaks and valleys. However, the degree of
“bumpiness” is highly dependent on the way the constraint
set is generated, and specially on the average width of the
constraints. In [Ito et al., 2007], constraints are generated
by choosing the width of each constraint in each issue ran-
domly within the [3,7] interval. Since the domain is chosen
to be [0,9], this generates rather “wide” constraints. Figure
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Figure 2: Weighted undirected graph resulting from the utility
space in Figure 1.

3 shows an utility space obtained using “narrow” constraints,
choosing their widths from the [1,5] interval. Though both
utility spaces are nonlinear, the space generated using narrow
constraints is more complex, with narrower peaks and val-
leys. As the number of issues under consideration increases,
the differences between having wide or narrow constraints be-
come more relevant. Though the approaches proposed in [Ito
etal.,2007] and [Marsa-Maestre et al., 2008] work in scenar-
ios defined using wide constraints, we will see that their per-
formance (in terms of optimality and failure rate) decreases
drastically in highly nonlinear scenarios defined using narrow
constraints, and therefore an alternative approach is needed to
deal with these highly nonlinear utility spaces.

Figure 3: Example of a highly nonlinear utility space gener-
ated by using “narrow” constraints.

3.1 Constraint/Bid Quality Factor

The main difference between utility spaces generated using
wide or narrow constraints is the width of the peaks. Highly-
nonlinear scenarios will yield narrower peaks. Since the
mechanisms outlined above lead agents to choose those peaks
(or high-utility regions) as bids, the result is that narrower
bids will be sent to the mediator. The width of the bids (or
more generally, the volume of the bids, computed as the car-
dinality of the set of contracts which match the bid), will di-
rectly impact the probability that the bid overlaps a bid of
another agent, and thus its viability, that is, the probability of
the bid resulting in a deal. Intuitively, an agent with no knowl-



edge of the other agents’ preferences should try to adequately
balance the utility of their bids (to maximize its own profit)
and the volume of those bids (to maximize the probability of a
successful negotiation). To formally represent this, we define
the quality factor of a constraint or a bid as Q. = u& - v},
where u. and v, are, respectively, the utility and volume of
the bid or constraint ¢, and o € [0,1] is a parameter which
models the risk attitude of the agent. A risk averse agent
(o < 0.5) will tend to qualify as better bids those that are
wider, and thus are more likely to result in a deal. A risk
willing or selfish agent (o > 0.5) will, in contrast, give more
importance to bid utility.

Our hypothesis is that by taking into account this quality
factor in the bidding mechanisms, with adequate values for
the parameter o, will result in a better balance between utility
and “width” in agent bids, and thus negotiations will yield
higher optimality rates and lower failure rates.

3.2 Using the Quality Factor within the Simulated
Annealing Algorithm

To make the simulated annealing bidding approach to take ad-
vantage of the quality factor Q is fairly straightforward. We
just need to make the simulated annealing optimizer to search
for contracts which maximize the quality factor Q instead of
the agent utility. Since the quality factor Q is a feature of a
region, not a contract, the adjusted contracts must be mapped
to the high utility regions where they are contained before
they are accepted or rejected by the simulated annealing en-
gine. This can be easily done by checking all constraints in
the agent preference model and computing the intersection of
the constraints which are satisfied by the candidate contract.
The volume of this intersection can then be used to compute
the quality factor Q of the region.

3.3 Q-based Tournament Selection for the MWIS
approach

The quality factor Q cannot be directly introduced into the
max-product or min-sum algorithm, because the algorithm is
based in a weighted graph where weights are additive, and the
quality factor is not additive (that is, the quality factor of the
intersection of a set of constraints is not the sum of the qual-
ity factor of the constraints). Thus, a different approach is
needed to introduce this factor in the algorithm. We propose
to use a tournament selection [Miller and Goldberg, 1995]
based on the constraint quality factor () when generating the
subset of constraints C’ to be passed to the max-product algo-
rithm. This tournament selection works as follows. For each
bid to generate, a number n; of candidate constraint subsets
are randomly generated. From these subsets, the one which
maximizes the product of the quality factors Q of its con-
straints is chosen as the subset C’ to be used for the max-
product algorithm. In this way, since high-@Q) constraints are
more likely to be selected, we expect the average Q for the
resulting bids to be higher.
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4 A Probabilistic Mechanism for
Deal-Identification

Scalability is identified as one of the main drawbacks in a
bidding based negotiation protocol [Ito et al., 2007]. Once
agents have placed their bids, the mediator performs an ex-
haustive search for overlaps between the bids using a breadth-
first algorithm with branch cutting. In a worst case scenario,
this means searching through a total of n;* bid combina-
tions, where n; is the number of bids per agent, and n, is
the number of negotiating agents. In the experiments, the au-
thors limit the number of combinations to 6,400, 000. This
means that, for 4 negotiating agents, the maximum number
of bids per agent is "{/6400000 = 50. This limit becomes
harder as the number of agents increases. For example, for 10
agents, the limit is 4 bids per agent, which drastically reduces
the probability of reaching a deal. This is specially true for
highly-nonlinear utility spaces, where the bids are narrower.

To address this scalability limitation, we propose to per-
form a probabilistic search in the mediator instead of an ex-
haustive search. This means that the mediator will try a cer-
tain number ny,. of randomly chosen bid combinations, where
Npe < ng". In this way, n;. acts as a performance parameter
in the mediator, which limits the computational cost of the
deal identification phase. Of course, restricting the search for
solutions to a limited number of combinations may cause the
mediator to miss good deals. Taking this into account, the
random selection of combinations is biased to maximize the
probability of finding a good deal. Again, the parameter used
to bias the random selection is (), so that higher-() bids have
more probability of being selected for bid combinations at the
mediator.

5 Experimental Evaluation

The hypothesis of this work is that the proposed mechanisms
provide an improvement to the optimality of the negotiation
process over the previous works described in Section 2. To
evaluate this, we have performed a set of experiments to com-
pare the results of the basic approaches with the results ob-
tained introducing the quality factor Q in the bidding and deal
identification mechanisms.

5.1 Experimental Settings

Several experiments have been conducted to validate our hy-
pothesis. In each experiment, we ran 100 negotiations be-
tween agents with randomly generated utility functions. Each
negotiation was run for each of the different approaches an-
alyzed. For each set of utility functions we applied a non-
linear optimizer to the product of all agents’ utility functions
to find the optimal contract using the Nash criterion and its
associated joint utility value. As opposed to the optimization
performed in the mediator during the negotiation, this opti-
mal contract is computed using complete information about
the agents preferences, so that it can be used to assess the
optimality of the different approaches.
We ran experiments with the following parameters:

e Number of agents n, = {4,...,14}. Number of issues n =
{4....,20}. Domain for issue values [0, 9].



=

o
©
T

o
®
T

Optimality Rate
o o o o o
w > 3 o ~
T T T

hed
Y}
T

\
\
'

o

\
L

o

55 35

)

4.5
Correlation Length

Figure 4: Optimality rate results for 6 agents and 6 issues
with different constraint widths.

e [ uniformly distributed random generated constraints per
agent: 5 unary constraints, 5 binary contraints, 5 trinary
constraints, etc.

Utility for each m-ary constraint drawn from a uniform
distribution in the domain [0, 100 x m).

Different average widths for constraints, ranging from 2
to 7.

Settings for simulated annealing:
To = 30. Number of iterations: 30.

Maximum number of bids generated per agent ny
200 x n.

Parameters for @ calculation: o = 0.5.

initial temperature

Parameters for tournament selection

min (20,1/2), ny = 10.

Joint utility for a failed negotiation: 0.

Ne

Experiments were coded in Java and run on a 2x3.2Ghz
Qad-Core Intel Xeon processor with 4Gb memory under Mac
0S X 10.5.4.

5.2 Experimental Results

Figure 4 shows the results of 100 runs of the experiments for
6 agents and 6 issues. The vertical axis represents the median
optimality rates of the experiments, while the horizontal axis
represents the degree of non-linearity of the utility spaces of
the agents, measured using a correlation length, which has
been widely used to asses fitness landscape complexity in
evolutionary computation [Weinberger, 1990]. Correlation
length is defined as the minimum distance between samples
in the utility space which makes the correlation between sam-
ples drop below a given threshold. For the purpose of this
work, we have chosen a threshold of 0.7. Four sets of val-
ues have been represented: Q-based approaches are depicted
using solid lines, while basic approaches are depicted using
dashed lines. In each case, simulated annealing approaches
have been represented using triangle vertices, while MWIS
approaches have been represented using square vertices.

We can see that both basic contract sampling and basic con-
straint sampling yield high optimality rates for high correla-
tion lengths, but the median optimality rate decreases dras-
tically (in fact, it drops to zero) as the correlation length
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Table 1: Scalability with the number of agents and issues

n
ng | Approach 6 10 14 20
6 MWIS 0.9915 | 0.7521 0 0
MWIS-Q | 0.9757 | 0.9280 | 0.8964 | 0.8491
10 MWIS 0.6732 0 0 0
MWIS-Q | 0.9491 | 0.9329 | 0.9124 | 0.8331
14 MWIS 0 0 0 0
MWIS-Q | 0.9450 | 0.9420 | 0.8966 | 0.8313
Table 2: Performance comparison
Approaches Time Ratio
median conf. interval
Ty; SA-Q/SA 5.767 5.668, 5.866
Tp; MWIS-Q / MWIS 2.007 1.942,2.071
| T4; Q-mediator / mediator | 1.8060 [ [0.597,3.016] |
Tr; SA-Q/SA 4.947 4.675,5.219
Tr; MWIS-Q / MWIS 1.748 1.514,1.982
Tr; MWIS-Q / SA-Q 0.1688 | [0.1665,0.1710]

decreases (that is, for highly nonlinear utility spaces). The
Q-based approaches yield slightly lower optimality rates for
wider constraints, which is reasonable, since the Q is used to
make a trade-off between utility and deal probability. How-
ever, as the agents’ preference model turns highly nonlinear,
introducing the quality factor Q in the bidding and deal iden-
tification mechanisms significantly outperforms the previous
approaches, yielding acceptable optimality rates even with
the lowest correlation lengths. From these results we can con-
clude that the quality factor () can be used to improve failure
rate in highly-nonlinear utility spaces, and both simulated an-
nealing and tournament constraint selection with MWIS are
suitable ways to select which constraints to use for bid gener-
ation.

Regarding scalability, Table 1 shows the optimality rates
obtained for one of the studied approaches (MWIS) for a fixed
maximum constraint width (5) when the number of agents
and issues increases, comparing the results obtained using
the basic approach with those obtained introducing the qual-
ity factor. We can see that introducing the quality factor Q
in the mechanisms significantly improves scalability with the
number of agents and issues.

Finally, Table 2 shows the medians and their 95% confi-
dence intervals for the ratio between the times of our pro-
posed approaches and their corresponding basic approaches.
Separate results are shown for the bidding time (73), the deal
identification time (77y), and the total negotiation time (I77).
We can see that for both contracts and constraints sampling
the use of the quality factor Q introduces a certain overhead
over the bidding and deal identification times, and that this
overhead is specially significant in the case of simulated an-
nealing bidding, due to the high number of times that the
utility function must be evaluated. The comparison has been
made for a high correlation distance (5), since for highly non-
linear utility spaces the basic approaches fail to find a solu-
tion.



6 Discussion and Related Work

In [Ito et al, 2007], the authors propose a single-shot,
auction-based protocol which samples the contracts space and
uses simulated annealing to identify high utility regions in
the agent’s utility spaces to be sent as bids to a mediator.
In [Marsa-Maestre et al., 2008], instead of performing a di-
rect sampling of the contract space, different techniques are
used over the constraint space to generate bids. We use these
works as a starting point to provide effective bidding and deal
identification mechanisms for highly-nonlinear utility spaces,
where the “narrowness” of the agents’ high-utility regions
makes the failure rate of their approaches drastically higher.
Our approach is based on using a quality factor (), which bal-
ances bid utility and bid volume to take into account the likeli-
hood of the bid resulting in a deal. This is a somewhat similar
approach to the notion of viability seen in [Lopez-Carmona
and Velasco, 2006] for fuzzy-constraint based negotiation or
the similarity criteria used in [Faratin et al., 2000] for linear
utility spaces. Graph theory is also used in the context of ne-
gotiation in [Robu et al., 2005], where utility graphs are used
to model issue inter-dependencies for binary-valued issues.
We take advantage of graph theory in a different way, to per-
form a utility optimization in a constraint-based framework.
There are other techniques for addressing non-linearity in ne-
gotiation. Instead of an auction based protocol, an alternating
offers protocol is used in [Lai et al., 2008] for unmediated
bilateral negotiation. Other technique is to approximate the
utility functions by means of linear regression techniques or
average weighting methods, as proposed in [Hindriks e al.,
2006]. However, as authors acknowledge, these approaches
are not useful for highly-nonlinear spaces.

7 Conclusions and Future work

The performance of existing auction-based approaches for
negotiation in nonlinear scenarios dramatically decreases
when confronted with highly nonlinear scenarios where the
negotiating agents’ high utility regions are very “narrow” and
so it is very unlikely that high utility bids overlap. This paper
presents a mechanisms to balance bid “width” and bid utility,
and integrate this mechanism into two previous approaches.
The experiments show that the proposed mechanisms signif-
icantly improve the previous approaches in highly nonlinear
utility spaces in terms of failure rate and optimality. However,
there is still plenty of research to be done in this area. The
impact of the parameter «, which model the risk attitude of
the agents, in the optimality rate should be analyzed, both to
establish collective optimal strategies and to determine the in-
centive compatibility of the approach when agents involved in
a negotiation may have different attitudes. Another challenge
is the extension of the proposed approaches to handle other
utility models not based on constraints, like quasi-concave
functions. Finally, we are working on iterative negotiation
protocols, where agents may change their attitudes or relax
their bids as the protocol iterates.
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