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Abstract

In social choice, a preference function (PF) takes
a set of votes (linear orders over a set of alterna-
tives) as input, and produces one or more rankings
(also linear orders over the alternatives) as output.
Such functions have many applications, for exam-
ple, aggregating the preferences of multiple agents,
or merging rankings (of, say, webpages) into a sin-
gle ranking. The key issue is choosing a PF to
use. One natural and previously studied approach
is to assume that there is an unobserved “correct”
ranking, and the votes are noisy estimates of this.
Then, we can use the PF that always chooses the
maximum likelihood estimate (MLE) of the correct
ranking. In this paper, we define simple ranking
scoring functions (SRSFs) and show that the class
of neutral SRSFs is exactly the class of neutral PFs
that are MLEs for some noise model. We also de-
fine composite ranking scoring functions (CRSFs)
and show a condition under which these coincide
with SRSFs. We study key properties such as con-
sistency and continuity, and consider some exam-
ple PFs. In particular, we study Single Transferable
Vote (STV), a commonly used PF, showing that it
is a CRSF but not an SRSF, thereby clarifying the
extent to which it is an MLE function. This also
gives a new perspective on how ties should be bro-
ken under STV. We leave some open questions.

1 Introduction

In a typical social choice setting, there is some set of alter-
natives, and multiple rankings of these alternatives are pro-
vided. These input rankings are called the votes. Based on
these votes, the goal is either to choose the best alternative, or
to create an aggregate ranking of all the alternatives. In this
paper, we will be interested in the latter goal; if it is desired
to choose the best alternative, then we can simply choose the
top-ranked alternative in the aggregate ranking. Formally, a
preference function (PF)1 takes a set of votes (linear orders

1We use “preference function” rather than “social welfare func-
tion” because the resulting set of strict rankings need not correspond
to a weak ranking (where a set of strict rankings “corresponds” to

over the alternatives) as input, and produces one or more ag-
gregate rankings (also linear orders over the alternatives) as
output. The reason for allowing multiple aggregate rankings
is to account for the possibility of ties.

The key issue is to choose a rule for determining the ag-
gregate ranking, that is, a preference function. So, we may
ask the following (vague) question: What is the optimal pref-
erence function? This has been (and will likely continue to
be) a topic of debate for centuries among social choice theo-
rists. Many different PFs have been proposed, each with its
own desirable properties; some of them have elegant axiom-
atizations. Presumably, which PF is optimal depends on the
setting at hand. For example, in some settings, the voters are
agents that each have their own idiosyncratic preferences over
the alternatives, and the only purpose of voting is to reach a
compromise. In such a setting, no alternative can be said to
be better than another alternative in any absolute sense: an
alternative’s quality is defined relative to the votes. Here, it
makes sense to pay close attention to issues such as the ma-
nipulability of the PF.

In other settings, however, there is more of an absolute
sense in which some alternatives are better than others. For
example, when we wish to aggregate rankings of webpages,
provided by multiple search engines in response to the same
query, it is reasonable to believe that some of these pages are
in fact more relevant than others. The reason that not all of
the search engines agree on the ranking is that the search en-
gines are unable to directly perceive this absolute relevance
of the pages. Here, it makes sense to think of each vote as
a noisy estimate of the correct, absolute ranking. Similarly,
in a cooperative multiagent system, the agents may disagree
about the ranking of a set of alternatives because they dis-
agree about which alternatives are more likely to lead them
to their common goal. Again, we may believe that there is a
correct ranking, in the sense that some alternatives really are
more likely than others to lead the agents to their common
goal; and again, agents’ rankings are noisy estimates of this
correct ranking. Our goal is to find an aggregate ranking that
is as close as possible to the correct ranking, based on these
noisy estimates. This is the type of setting that we will study
in this paper.

a weak ranking if it consists of all the strict rankings that can be
obtained by breaking the ties in the weak ranking). The term “pref-
erence function” has previously been used in this context [19].
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In a 2005 paper, Conitzer and Sandholm considered the
following way of making this precise [5]. There is a correct
ranking r of the alternatives; given r, for every ranking v,
there is a conditional probability P (v|r) that a given voter
will cast vote v. In this paper, we do not consider the possi-
bility that different voters’ votes are drawn according to dif-
ferent conditional distributions. Votes are conditionally inde-
pendent given r. Put another way, the noise that each voter
experiences is i.i.d. The Bayesian network in Figure 1 illus-
trates this setup.

vote 1

"correct" outcome

vote 2 vote n...

Figure 1: A Bayesian network representation.

The votes are the observed variables, and the noise that a
voter experiences is represented by the conditional probabil-
ity table of that vote. Under this setup, a natural goal is to
find the maximum likelihood estimate (MLE) of the correct
ranking. If r is drawn uniformly at random, this maximum
likelihood estimate also maximizes the posterior probability.
The function that takes the votes as input and produces the
MLE ranking(s) as output is a preference function; in a sense,
it is the optimal one for the particular noise model at hand.

As pointed out by Conitzer and Sandholm, they were not
the first to consider this type of setup. In fact, the basic
idea dates back over two centuries to Condorcet [6], who
studied one particular noise model. He solved for the MLE
PF for two and three alternatives under this model; the gen-
eral solution was given two centuries later by Young [18],
who showed that the MLE PF for Condorcet’s model co-
incides with a function proposed by Kemeny [10]. This
has frequently been used as an argument in favor of us-
ing Kemeny’s PF; however, different noise models will in
general result in different MLE PFs. Several generaliza-
tions of this basic noise model have been studied [8; 7; 11;
12]. Conitzer and Sandholm considered the opposite direc-
tion: they studied a number of specific well-known PFs and
they showed that for some of them, there exists a noise model
such that this PF becomes the MLE, whereas for others, no
such noise model can be constructed. This shows that the
former PFs are in a sense more natural than the latter. Also,
when a noise model can be constructed, it gives insight into
the PF; moreover, if the noise model is unreasonable in a cer-
tain way, it can be modified, resulting in an improved PF.

In this paper, we continue this line of work. We provide an
exact characterization of the class of (neutral) PFs for which
a noise model can be constructed: we show that this class is
equal to the class of (neutral) simple ranking scoring func-
tions (SRSFs), which, for every vote, assign a score to every
potential aggregate ranking, and the rankings with the highest
total score win. We show that several common PFs are SRSFs

(these proofs resemble the corresponding proofs by Conitzer
and Sandholm that these PFs are MLEs, but the proofs are
significantly simpler in the language of SRSFs). We also con-
sider composite ranking scoring functions (CRSFs), which
coincide with SRSFs except they can break ties according to
another SRSF, and remaining ties according to another SRSF,
etc.2 We show that if there is a bound on the number of votes,
then the two classes (SRSFs and CRSFs) coincide. We study
some basic properties of SRSFs and CRSFs, some of them
closely related to Conitzer and Sandholm’s proof techniques.
Finally, we study one PF, Single Transferable Vote (STV),
also known as Instant Runoff Voting, in detail. STV is used
in many elections around the world; additionally, it illustrates
a number of key points about our results. A noise model
for STV was given by Conitzer and Sandholm. However,
this noise model involves probabilities that are infinitesimally
smaller than other probabilities. We show that such infinitesi-
mally small probabilities are in a sense necessary, by showing
that STV is in fact not an SRSF (when there is no bound on
the number of votes). Still, we do show that STV is a CRSF
(in a way that resembles the noise model with infinitesimally
small probabilities). Hence, STV is in fact an MLE PF if
there is an upper bound on the number of votes. Along the
way, some interesting questions arise about how ties should
be broken under STV. We propose two ways of breaking ties
that we believe are perhaps more sensible than the common
way, although at least one of them leads to computational dif-
ficulties. We leave some open questions.

2 Definitions

In the below, we let A be the set of alternatives, |A| = m,
and L(A) the set of linear orders over (that is, strict rankings
of) these alternatives. A preference function (PF) is a func-
tion f :

⋃
i=0,1,2,... L(A)i → 2L(A) − ∅. That is, f takes as

input a vector (of any length) V of linear orders (votes) over
the alternatives, and as output produces one or more linear or-
ders over (aggregate rankings of) the alternatives. (On many
inputs, only a single ranking is produced, but it is possible
that there are ties.) Input vectors are also called profiles. We
restrict our attention to PFs that are anonymous, that is, they
treat all votes equally; hence, a profile can be thought of as a
multiset of votes. We will study the following PFs:
• Positional scoring functions. A positional scoring function
is defined by a vector (s1, . . . , sm) ∈ Rm, with s1 ≥ s2 ≥
. . . ≥ sm. An alternative receives si points every time it
is ranked ith. Alternatives are ranked by how many points
they receive; if some alternatives end up tied, then they can
be ranked in any order (and all the complete rankings that
can result from this will be produced by the PF). Examples
include plurality (s1 = 1, s2 = s3 = . . . = sm = 0), veto
or anti-plurality (s1 = s2 = . . . = sm−1 = 1, sm = 0), and
Borda (s1 = m− 1, s2 = m− 2, . . . , sm = 0).
• Kemeny. Given a vote v, a possible ranking r, and
two alternatives a, b, let δ(v, r, a, b) = 1 if a �v b

2SRSFs and CRSFs should not be confused with the extremely
general “Generalized Scoring Rules” from Xia and Conitzer [15;
16]. For example, Proposition 5 will show some limitations of
SRSFs and CRSFs.
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and a �r b, and δ(v, r, a, b) = 0 otherwise. Then,
f(V ) = argmaxr∈L(A)

∑
a,b∈A

∑
v∈V δ(v, r, a, b), that is,

we choose the rankings that maximize the total number of
times the ranking agrees with a vote on a pair of alternatives.

• Single Transferable Vote (STV). The alternative with the
lowest plurality score (that is, the one that is ranked first by
the fewest votes) is ranked last, and is removed from all the
votes (so that the plurality scores change). The remainder of
the ranking is determined recursively. (We will have more to
say about how ties are broken later.)

A PF is neutral if treats all alternatives equally. To be pre-
cise, a PF is neutral if for any profile V and any permutation
π on the alternatives, f(π(V )) = π(f(V )). Here, a permuta-
tion is applied to a vector or set of rankings of the alternatives
by applying it to each individual alternative in those rankings.
Naturally, neutrality is a common requirement. Another com-
mon requirement for an anonymous PF is homogeneity: if we
multiply the profile by some natural number n > 0—that is,
replace each vote by n duplicates of it—then the outcome
should not change. All of the above PFs are anonymous, neu-
tral, and homogenous.

We now define noise models and MLE PFs formally.

Definition 1 A noise model ν specifies a probability Pν(v|r)
for every v, r ∈ L(A) (so that for all r, we have∑

v∈L(A) Pν(v|r) = 1).

Definition 2 A noise model ν is neutral if for any v, r, and
permutation π on A, we have Pν(v|r) = Pν(π(v)|π(r)).

Definition 3 A PF f is a maximum likelihood estimator
(MLE) if there exists a noise model ν so that f(V ) =
arg maxr∈L(A)

∏
v∈V Pν(v|r).

We now define simple ranking scoring functions. Effec-
tively, every vote gives a number of points to every possible
aggregate ranking, and the rankings with the most points win.

Definition 4 A PF f is a simple ranking scoring function
(SRSF) if there exists a function s : L(A) × L(A) → R
such that for all V , f(V ) = argmaxr∈L(A)

∑
v∈V s(v, r).

Definition 5 A function s : L(A) × L(A) → R is neu-
tral if for any v, r, and permutation π on A, s(v, r) =
s(π(v), π(r)).

An SRSF can be run by explicitly computing each rank-
ing’s score, but because there are m! rankings this is imprac-
tical for all but the smallest numbers of alternatives. How-
ever, typically, there are more efficient algorithms. For ex-
ample, we will see that positional scoring functions and the
Kemeny function are SRSFs. Positional scoring functions are
of course easy to run; running the Kemeny function is NP-
hard [2] (for an exact complexity analysis, see [9]), but can
“usually” be done quite fast [4; 12; 3].

3 Equivalence of neutral MLEs and SRSFs

We now show the equivalence of MLEs and SRSFs. We only
show this for neutral PFs; in fact, it is not true for PFs that
are not neutral. For example, a PF that always chooses the
same ranking r∗ regardless of the votes is an SRSF, simply

by setting s(v, r∗) = 1 for all v and setting s(v, r) = 0 ev-
erywhere else. However, this PF is not an MLE: given a noise
model ν, if we take another ranking r �= r∗, we must have∑

v∈L(A) Pν(v|r) = 1 =
∑

v∈L(A) Pν(v|r∗), hence there

exists some v such that Pν(v|r) ≥ Pν(v|r∗); it follows that
r∗ is not the (sole) winner if v is the only vote.

Lemma 1 A neutral PF f is an MLE (for some noise model)
if and only if it is an MLE for a neutral noise model.

Proof: The “if” direction is immediate. For the “only if”
direction, given a noise model ν for f , construct a new noise
model ν′ as follows: Pν′(v|r) = (1/m!)

∑
π Pν(π(v)|π(r)).

(Here, π ranges over permutations of A.) This is still a valid
noise model because∑

v∈L(A)

Pν′(v|r) =
∑

v∈L(A)

(1/m!)
∑

π

Pν(π(v)|π(r)) =

(1/m!)
∑

π

∑

v∈L(A)

Pν(π(v)|π(r)) = 1

ν′ is also neutral because

Pν′(π(v)|π(r)) = (1/m!)
∑

π′

Pν(π′(π(v))|π′(π(r))) =

(1/m!)
∑

π′′

Pν(π′′(v)|π′′(r)) = Pν′(v|r)

Also, if r∗ ∈ arg maxr∈L(A)

∏
v∈V Pν(v|r),

then by the neutrality of f , for any π, π(r∗) ∈
arg maxr∈L(A)

∏
v∈V Pν(π(v)|r). Hence,

r∗ ∈ arg max
r∈L(A)

(1/m!)
∑

π

∏

v∈V

Pν(π(v)|π(r)) =

arg max
r∈L(A)

∏

v∈V

(1/m!)
∑

π

Pν(π(v)|π(r)) =

arg max
r∈L(A)

∏

v∈V

Pν′(v|r)

Conversely, it can similarly be shown that if
r∗ /∈ arg maxr∈L(A)

∏
v∈V Pν(v|r), then r∗ /∈

arg maxr∈L(A)

∏
v∈V Pν′(v|r). Hence, ν′ is a valid

noise model for f .

Lemma 2 A neutral PF f is an SRSF if and only if it is an
SRSF for a neutral function s′.

Proof: The “if” direction is immediate. For the “only if”
direction, given a function s, construct a new function s′ as
follows: s′(v, r) =

∑
π s(π(v), π(r)). s′ is neutral because

s′(π(v), π(r)) =
∑

π′

s(π′(π(v)), π′(π(r))) =

∑

π′′

s(π′′(v), π′′(r)) = s′(v, r)

Also, if r∗ ∈ argmaxr∈L(A)

∑
v∈V s(v, r), then

by the neutrality of f , for any π, π(r∗) ∈
arg maxr∈L(A)

∑
v∈V s(π(v), r). Hence,

r∗ ∈ arg max
r∈L(A)

∑

π

∑

v∈V

s(π(v), π(r)) =
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arg max
r∈L(A)

∑

v∈V

∑

π

s(π(v), π(r)) = arg max
r∈L(A)

∑

v∈V

s′(v, r)

Conversely, it can similarly be shown that if
r∗ /∈ argmaxr∈L(A)

∑
v∈V s(v, r), then r∗ /∈

arg maxr∈L(A)

∑
v∈V s′(v, r). Hence, s′ is a valid function

for f .

We can now prove the characterization result:

Theorem 1 A neutral PF f is an MLE if and only if it is an
SRSF.

Proof: If f is an MLE, then by Lemma 1, for some neutral ν,

f(V ) = arg max
r∈L(A)

∏

v∈V

Pν(v|r) =

arg max
r∈L(A)

log(
∏

v∈V

Pν(v|r)) = arg max
r∈L(A)

∑

v∈V

log(Pν(v|r))

Hence it is the SRSF where s(v, r) = log(Pν(v|r)) (here, s
is neutral).

Conversely, if f is an SRSF, then by Lemma 2, for some
neutral s,

f(V ) = arg max
r∈L(A)

∑

v∈V

s(v, r) =

arg max
r∈L(A)

2
P

v∈V
s(v,r) = arg max

r∈L(A)

∏

v∈V

2s(v,r)

Because s is neutral, we have that
∑

v∈L(A) 2s(v,r) is the

same for all r. (This is because for any r1, r2, there ex-
ists a permutation π on A such that π(r1) = r2, so

that we have
∑

v∈L(A) 2s(v,r1) =
∑

v∈L(A) 2s(π(v),r2) by

neutrality, which by changing the order of the summands

is equal to
∑

v∈L(A) 2s(v,r2).) It follows that f(V ) =

arg maxr∈L(A)

∏
v∈V (2s(v,r))/(

∑
v′∈L(A) 2s(v′,r)). Hence

f is the maximum likelihood estimator for the noise model

ν defined by Pν(v|r) = (2s(v,r))/(
∑

v′∈L(A) 2s(v′,r)).

4 Examples of SRSFs

We now show that some common PFs are SRSFs. These
proofs resemble the corresponding proofs by Conitzer and
Sandholm that these functions are MLEs, but they are sim-
pler. (These propositions also follow from [20].)

Proposition 1 Every positional scoring function is an SRSF.

Proof: Given a positional scoring function, let t : L(A) ×
A → R be defined as follows: t(v, a) is the number of
points that a gets for vote v. Then, let s(v, r) =

∑m

i=1(m −
i)t(v, r(i)), where r(i) is the alternative ranked ith in r. Let
us consider the SRSF defined by this function s; it selects

arg max
r∈L(A)

∑

v∈V

s(v, r) = arg max
r∈L(A)

∑

v∈V

m∑

i=1

(m−i)t(v, r(i))

= arg max
r∈L(A)

m∑

i=1

(m− i)
∑

v∈V

t(v, r(i))

Here,
∑

v∈V t(v, r(i)) is the total score that alternative r(i)
receives under the positional scoring function. Because m− i
is decreasing in i, to maximize

∑m

i=1(m−i)
∑

v∈V t(v, r(i)),
we rank the alternative with the highest total score first, the
one with the next-highest total score second, etc. If some of
the alternatives are tied, they can be ranked in any order.

Not only positional scoring functions are SRSFs, however.

Proposition 2 The Kemeny PF is an SRSF.

Proof: This is almost immediate: we defined the Kemeny
PF by f(V ) = argmaxr∈L(A)

∑
a,b∈A

∑
v∈V δ(v, r, a, b),

so we simply let s(v, r) =
∑

a,b∈A δ(v, r, a, b).

5 Composite ranking scoring functions

An composite ranking scoring function (CRSF) starts by run-
ning an SRSF, then (potentially) breaks ties according to an-
other SRSF, and (potentially) any remaining ties according to
yet another SRSF, etc. Formally:

Definition 6 A CRSF f of depth d consists of a CRSF f ′ of
depth d−1 and a function sd : L(A)×L(A)→ R. It chooses
f(V ) = arg maxr∈f ′(V )

∑
v∈V sd(v, r). A CRSF of depth 0

returns the set of all rankings L(A).

So, a CRSF of (finite) depth d is defined by a sequence
f1, . . . , fd of SRSFs (where f2 is used to break ties in the f1

score, etc.). We can think of the scores at each depth as being
infinitesimally smaller than the ones at the previous depths.
We can multiply the scores at depth l by εl for some small ε
and then add all the scores together to obtain an SRSF; how-
ever, this SRSF will in general be different from the CRSF.
Nevertheless, if ε is small relative to the number of votes,
then the two will coincide. This is the intuition behind the
following result, whose proof we omit to save space.

Proposition 3 For any CRSF, for any natural number N ,
there exists an SRSF that agrees with the CRSF as long as
there are at most N votes.

Thus, for all practical purposes, we can simulate a CRSF
with an SRSF. (Of course, every SRSF is also a CRSF.)

6 Properties of SRSFs/CRSFs

In this section, we study some important properties of SRSFs
and CRSFs. Specifically, we study consistency and continu-
ity. There are several related works that study similar prop-
erties and derive related results, but there are significant dif-
ferences in the setup. Smith [14] and Young [17] study these
properties in social choice rules, which select one or more
alternatives as the winner(s); we will discuss their results in
more detail in Section 8. However, consistency in the con-
text of preference functions (studied previously by Young and
Levenglick [19]) is significantly different from consistency in
the context of social choice rules. Other related work includes
Myerson [13], who extends the Smith and Young result to
settings where voters do not necessarily submit a ranking of
the alternatives, and Zwicker [20], who studies a general no-
tion of scoring rules and shows these rules are equivalent to
mean proximity rules, which compute the mean location of
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the votes according to some embedding in space, and then
choose the closest outcome(s).

An anonymous PF f is consistent if for any pair of pro-
files V1 and V2, if f(V1) ∩ f(V2) �= ∅, then f(V1 ∪ V2) =
f(V1) ∩ f(V2). That is, if the rankings that f produces given
V1 overlap with those that f produces given V2, then when V1

and V2 are taken together, f must produce the rankings that
were produced in both cases, and no others.

Proposition 4 Any CRSF is consistent.

Proof: Let f be a CRSF of depth k, defined by a sequence
of SRSFs f1, . . . , fk with score functions s1, . . . , sk. For any
i ≤ k, let Fi be the CRSF of depth i defined by the sequence
f1, . . . , fi. Let V1, V2 be profiles such that f(V1)∩f(V2) �= ∅;
this also implies that Fi(V1) ∩ Fi(V2) �= ∅ for all i ≤ k. We
use induction on i to prove that for any i ≤ k, Fi(V1 ∪ V2) =
Fi(V1) ∩ Fi(V2). When i = 1, F1(V1) = f1(V1) is the
set of rankings r that maximize s1(V1, l); F1(V2) = f1(V2)
is the set of rankings r that maximize s1(V2, l). Therefore,
F1(V1) ∩ F1(V2) (which we know is nonempty) is the set
of rankings r that maximize s1(V1 ∪ V2, r). Now, suppose
that for some i ≤ k, Fi(V1 ∪ V2) = Fi(V1) ∩ Fi(V2).
Fi+1(V1) (Fi+1(V2)) is the set of rankings r ∈ Fi(V1) (r ∈
Fi(V2)) that maximize si+1(V1, r) (si+1(V2, r)). Hence,
Fi+1(V1)∩Fi+1(V2) (which we know is nonempty) is the set
of rankings r ∈ Fi(V1)∩Fi(V2) that maximize si+1(V1, r)+
si+1(V2, r) = si+1(V1 ∪ V2, r). By the induction assump-
tion, we have that Fi(V1) ∩ Fi(V2) = Fi(V1 ∪ V2), and we
know that the set of rankings r ∈ Fi(V1 ∪ V2) that maximize
si+1(V1 ∪ V2, r) is equal to Fi+1(V1 ∪ V2). It follows that
Fi+1(V1) ∩ Fi+1(V2) = Fi+1(V1 ∪ V2), completing the in-
duction step. For i = k, Fk = f , completing the proof.

The proofs by Conitzer and Sandholm [5] that several PFs
are not MLEs effectively come down to showing examples
where these PFs are not consistent. By the above result, this
implies they are not CRSFs (and hence not SRSFs, and hence
not MLEs). Formally (we will not define these PFs here):

Proposition 5 The Bucklin, Copeland, maximin, and ranked
pairs PFs are not CRSFs.

Proof: These PFs are not consistent: counterexamples can be
found in the proofs of Conitzer and Sandholm [5].

Let L(A) = {l1, . . . , lm!}. For any anonymous PF f , any
profile V can be rewritten as a linear combination of the linear

orders in L(A). Let V =
∑m!

i=1 tili, where for any i ≤ m!,
ti is a non-negative integer. If f is also homogenous, then
the domain of f can be extended to the set of all fractional

profiles V =
∑m!

i=1 tili where each ti is a nonnegative ra-
tional number, as follows. We choose NV > 0, NV ∈ N
such that for every i ≤ m!, tiNV is a integer. Then, we let
f(V ) = f(NV V ) (well-defined because of homogeneity).

A fractional profile V can be viewed as a point in the m!-
dimensional space (Q≥0)m! where the coefficient ti is the
component of the ith dimension. Thus, in a slight abuse of
notation, we can apply f to vectors of m! nonnegative ratio-
nal numbers, under the interpretation that f(t1, . . . , tm!) =

f(
∑m!

i=1 tili). The extension of f to (Q≥0)m! allows us

to define continuity. An anonymous PF f is continuous if
for any sequence of points p1, p2, . . . ∈ (Q≥0)m! with 1.
limi→∞ pi = p, and 2. for all i ∈ N, r ∈ f(pi), we have
r ∈ f(p). That is, if f produces some ranking r on every
point along a sequence that converges to a limit point, then f
should also produce r at the limit point.3

Proposition 6 Any SRSF is continuous.

Proof: Let s(p, r) denote the total score of ranking r given
profile p. For any sequence of points p1, p2, . . . ∈ (Q≥0)m!

with limi→∞ pi = p, we have that for all r ∈ L(A),
limi→∞ s(pi, r) = s(p, r). If r ∈ f(pi) for all i, then
for any r′ ∈ L(A), s(pi, r) ≥ s(pi, r

′), hence we have
s(p, r) = limi→∞ s(pi, r) ≥ limi→∞ s(pi, r

′) = s(p, r′).
It follows that r ∈ f(p).

In contrast, CRSFs are not necessarily continuous, as
shown by the following example. Let f1 be the SRSF defined
by the score function s1, which is defined by s1(v, r) = 1
if v = r and s1(v, r) = 0 if v �= r. Let f2 be the
Borda function. Let f be the CRSF defined by the sequence
f1, f2. Let m = 3 with alternatives A, B, and C, and let
p = {A � B � C, B � C � A, C � B � A}. We have
f(p) = {B � C � A}, but for any ε > 0, f(p + ε(A �
B � C)) = f1(p + ε(A � B � C)) = {A � B � C}.
Therefore, if we let pi = p + 1

i
(A � B � C), it follows

that limi→∞ pi = p and for any i, A � B � C ∈ f(pi), but
A � B � C /∈ f(p).

As we have noted before, there is generally a possibility
of ties for PFs, and sometimes a PF is not defined for these
cases (for example, we have not defined how they should be
broken for STV). We can use the continuity property to gain
some insight into how ties should be broken. For any S ⊆
(Q≥0)m!, let C(S) be the closure of S, that is, C(S) is the
smallest set such that for any infinite sequence p1, p2, . . . in
S, if limi→∞ pi = p, then p ∈ C(S). Let fS be a PF that
satisfies anonymity and homogeneity, defined over S. That

is, fS : S → 2L(A)−∅. The minimal continuous extension of
fS is the PF fC(S) : C(S)→ 2L(A)−∅ such that for any p ∈
C(S) and any r ∈ L(A), r ∈ fC(S)(p) if and only if there
exists a sequence p1, p2, . . . in S such that limi→∞ pi = p
and for any i, r ∈ fS(pi). The following lemma will be
useful in our study of STV.

Lemma 3 Suppose we have two SRSFs f, fS that have the
same score function s, but f is defined over (Q≥0)m!, and fS

over a set S ⊆ (Q≥0)m! such that C(S) = (Q≥0)m!. If for
any r ∈ L(A), there exists a profile pr such that f(pr) = {r},
then f is the minimal continuous extension of fS .

Proof: By Proposition 6, f is continuous. On the other hand,
for any p ∈ (Q≥0)m! with r ∈ f(p), for any i ∈ N, f(p +
1
i
pr) = {r}. Because C(S) = (Q≥0)m!, for every i ∈ N,

there exists a point pi ∈ S sufficiently close to p + 1
i
pr such

that f(pi) = {r}, because s is continuous and at p + 1
i
pr, for

any r′ ∈ L(A) with r �= r′, s(p+ 1
i
pr, r)−s(p+ 1

i
pr, r

′) > 0.

3Our definition of continuity is equivalent to the correspondence
being upper hemicontinuous, or closed (the two are equivalent in
this context).
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So, p1, p2, . . . is a sequence in S with for any i, r ∈ fS(pi);
therefore, any continuous extension must have r ∈ f(p).

7 Single Transferable Vote (STV)

In this section, we study the Single Transferable Vote (STV)
PF in detail, for two reasons. First, it is a commonly used
PF, so it is of interest in its own right. Second, it gives a
good illustration of a number of subtle technical phenomena,
and a precise understanding of these phenomena is likely to
be helpful in the analysis of other PFs. We recall that under
STV, in each round, the alternative that is ranked first (among
the remaining alternatives) the fewest times is removed from
all the votes and ranked the lowest among the remaining alter-
natives, that is, just above the previously removed alternative.
We note that when an alternative is removed, all the votes that
ranked it first transfer to the next remaining alternative in that
vote. The number of votes ranking an alternative first is that
alternative’s plurality score in that round. One key issue is de-
termining how ties in a round should be broken, that is, what
to do if multiple alternatives have the lowest plurality score
in a round. We will at first ignore this and show that STV is
a CRSF. (This proof resembles the Conitzer-Sandholm noise
model but is much clearer in the language of scoring func-
tions.)

Theorem 2 When restricting attention to profiles without
ties, STV is a CRSF.

Proof: For l ∈ L(A), let l(i) be the ith-ranked alternative
in l. Let s1(v, r) = 0 if r(m) = v(1), and s1(v, r) = 1
otherwise. That is, a ranking receives a point for a vote if
and only if the ranking does not rank the alternative ranked
first in the vote last. Consider the alternative a with the low-
est plurality score; the rankings that win under s1 are exactly
the rankings that rank a last. Now, let s2(v, r) = 0 if either
r(m−1) = v(1), or r(m) = v(1) and r(m−1) = v(2); and
s2(r, v) = 1 otherwise. That is, a ranking receives a point
for a vote unless the ranking ranks the first alternative in the
vote second-to-last, or the ranking ranks the first alternative
in the vote last and the second alternative in the vote second-
to-last. If we look at rankings that survived s2—the rankings
that ranked the alternative a with the lowest plurality score
last—a ranking that ranks b ( �= a) second-to-last will fail to
receive a point for every vote that ranks b first, and for every
vote that ranks a first and b second. That is, it fails to receive
a point for every vote that ranks b first in the second itera-
tion of STV. Hence, the rankings that survive s2 are the ones
that rank the alternative that receives the fewest votes in the
second iteration of STV second-to-last. More generally, let
sk(v, r) = 0 if, letting b = r(m − k + 1), for every a such
that v−1(a) < v−1(b), r−1(a) > r−1(b) = m − k + 1; and
sk(v, r) = 0 otherwise. That is, a ranking receives a point
for a vote unless the alternative b ranked kth-to last by r is
preceded in v only by alternatives ranked after b in r. Given
that r has not yet been eliminated and is hence consistent with
STV so far, the latter condition holds if and only if b receives
v’s vote in the kth iteration of STV.

In fact, we can break ties in STV simply according to the
scoring functions used in the proof of Theorem 2. We will call

the resulting PF CRSF-STV. CRSF-STV is a CRSF and hence
consistent. By Theorem 1 and Proposition 3, this means that
CRSF-STV is an MLE when there is an upper bound on the
number of votes. Does there exist a tiebreaking rule for STV
such that it is an SRSF, that is, so that it is an MLE without a
bound on the number of votes? We will show that the answer
is negative. To do so, we consider one particular tiebreaking
rule. Under this rule, when multiple alternatives are tied to
be eliminated, we have a choice of which one is eliminated.
A ranking is among the winning rankings if and only if there
is some sequence of such choices that results in this ranking.
We call the resulting PF parallel-universes tiebreaking STV
(PUT-STV). (Every choice can be thought of as leading to
a separate parallel universe in which STV is executed.) We
omit the remaining proofs due to space constraint.

Lemma 4 PUT-STV is the minimal continuous extension of
STV defined on non-tied profiles.

Lemma 5 PUT-STV is not consistent.

Corollary 1 PUT-STV is not a CRSF (hence, not an SRSF).

This allows us to prove a property of STV in general:

Theorem 3 STV is not an SRSF, even when restricting atten-
tion to non-tied profiles.

We also obtain:

Proposition 7 There is no tie-breaking mechanism for STV
that makes it both continuous and consistent.

Incidentally, PUT-STV is computationally intractable (in a
sense). We do not know if the same is true for CRSF-STV.

Theorem 4 It is NP-complete to determine whether, given a
profile p and an alternative a, one of the winning rankings
under PUT-STV ranks a first.

As it turns out, neither PUT-STV nor CRSF-STV corre-
sponds to how ties are commonly broken under STV: rather,
usually, if there is a tie, all of these alternatives are simul-
taneously eliminated. Mathematically, this leads to bizarre
discontinuities; we omit the details due to space constraint.

8 Characterizing SRSFs/CRSFs axiomatically

Examining social choice rules (SCRs), that is, functions that
output one or more alternatives as the winner(s) (rather than
one or more rankings), Young found the following axiomatic
characterization of positional scoring functions [17]. (A simi-
lar characterization was given by Smith [14].) He showed that
all SCRs satisfying consistency, continuity, and neutrality—
SCR analogues of the properties we considered—must be
positional scoring functions, and all positional scoring func-
tions satisfy these properties. Further, dropping continuity, he
found that any consistent and neutral SCR must be equivalent
to a composite positional scoring function. These results lead
to two natural analogous conjectures about PFs.

Conjecture 1 Any PF that is consistent, continuous, and
neutral is an SRSF (and therefore, an MLE).

Conjecture 2 Any PF that is consistent and neutral is a
CRSF (therefore, an MLE if the number of votes is bounded).
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Our study of STV corroborates these conjectures. By
Proposition 7, there is no tie-breaking mechanism for STV
that makes it both continuous and consistent; and indeed, we
showed that STV is not an SRSF, but it is a CRSF. It does
not appear that these conjectures can be easily proven using
Smith and Young’s techniques.

9 Conclusions

The maximum likelihood approach provides a natural way for
choosing a PF in settings where it makes sense to think there
is a “correct” ranking. In this paper, we gave a characteriza-
tion of the neutral MLE PFs, showing they coincide with the
neutral SRSFs. We also considered CRSFs as a slight gener-
alization and showed that for bounded numbers of votes they
coincide with SRSFs. We considered key properties such as
continuity and consistency, and gave examples of SRSFs and
CRSFs. We studied STV in detail, showing that it is a CRSF
but not an SRSF, and discussed the implications for breaking
ties under STV. Finally, we left open questions concerning the
complexity of CRSF tiebreaking for STV and whether consis-
tency can be used to characterize the class of SRSFs/CRSFs.

We believe that these results will greatly facilitate the use
of the maximum likelihood approach in (computational) so-
cial choice. Similar results can be obtained for social choice
settings other than PFs—for example, for social choice rules
that only choose the winning alternative(s), or for settings in
which the inputs are not linear orders (but rather, for exam-
ple, labelings of the alternatives as “approved” or “not ap-
proved”, or partial orders, etc.). As another example that
demonstrates the general applicability of the framework, a
maximum-likelihood voting approach was recently used in a
computational biology application, specifically, NMR protein
structure determination [1]. That work focuses on the prob-
lem of assigning resonances and NOEs (nuclear overhauser
effect) to corresponding nuclei; it does so by having multiple
structures in an ensemble “vote” over the assignments.
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