Hierarchical Multi-channel Hidden Semi Markov Models *

Pradeep Natarajan and Ramakant Nevatia
Institute for Robotics and Intelligent Systems,
University of Southern California,

Los Angeles, CA 90089-0273
{pnataraj, nevatia} @usc.edu

Abstract

Many interesting human actions involve multiple
interacting agents and also have typical durations.
Further, there is an inherent hierarchical organiza-
tion of these activities. In order to model these we
introduce a new family of hidden Markov models
(HMMs) that provide compositional state represen-
tations in both space and time and also a recursive
hierarchical structure for inference at higher levels
of abstraction. In particular, we focus on two possi-
ble 2-layer structures - the Hierarchical-Semi Par-
allel Hidden Markov Model (HSPaHMM) and the
Hierarchical Parallel Hidden Semi-Markov Model
(HPaHSMM). The lower layer of HSPaHMM con-
sists of multiple HMMs for each agent while the
top layer consists of a single HSMM. HPaHSMM
on the other hand has multiple HSMMs at the lower
layer and a Markov chain at the top layer. We
present efficient learning and decoding algorithms
for these models and then demonstrate them first on
synthetic time series data and then in an application
for sign language recognition.

1 Introduction

Our goal is to develop methods for inferring activities given
observations from visual and other sensory data. Activities
have a natural hierarchical structure where combinations of
simpler activities form higher level, more complex activities.
In general, multiple agents may be involved who take par-
allel actions but whose temporal (and spatial) relations are
important for inference of higher level activities. We present
a mathematical formalism for recognizing such multi-agent
activities that can take advantage of both their inherent hi-
erarchical organization and typical durations. Such models
can have a wide range of applications such as surveillance,
assistive technologies like sign language recognition and in-
telligent environments.

A key challenge faced by researchers in activity recog-
nition is to bridge the gap between the observations (such

*This research was partially funded by Advanced Research and
Development Activity of the U.S. Government under contract MDA-
904-03-C-1786.

as limb joints) and the high level semantic concepts (such
as gestures) that need to be recognized and to handle the
large variations in the duration and styles of these activi-
ties when performed by different people or even the same
person at different times. Due to uncertainty inherent in
sensory observations, probabilistic reasoning offers a natu-
ral approach. While several probabilistic models have been
proposed over the years in various communities for activity
recognition, hidden Markov models (HMMs) and their ex-
tensions have by far been the most widely used ones. They
offer advantages such as clear Bayesian semantics, efficient
learning and inferencing algorithms, and a natural way to in-
troduce domain knowledge into the model structure. [Bui et
al., 2004] presented an extension of the hierarchical hidden
Markov model (HHMM) for inferring activities at different
levels of abstraction. [Hongeng and Nevatia, 2003] used the
hidden semi-Markov model (HSMM) for modeling activity
durations, while [Duong er al., 2005] presented the switch-
ing hidden semi-Markov model (S-HSMM) to exploit both
the hierarchical structure as well as typical durations for ac-
tivity recognition. [Vogler and Metaxas, 1999] introduced
the parallel hidden Markov model (PaHMM) for recognizing
complex 2-handed gestures in ASL while [Brand et al., 1997]
introduced the coupled hidden Markov model (CHMM) and
applied it to recognize tai chi gestures as well as multi-agent
activities.

We believe that in most real applications we need models
that combine the features of all of these models and intro-
duce a new class of models, namely the hierarchical multi-
channel hidden semi-Markov models. In particular we focus
on two model structures - the hierarchical semi parallel hid-
den Markov model (HSPaHMM) and the hierarchical paral-
lel hidden semi-Markov model (HPaHSMM) and present effi-
cient decoding and learning algorithms for them. We validate
the utility of these models by testing on simulated data as well
as for the real task of continuous sign language recognition.

The rest of the paper is organized as follows - In the
next section we define the parameters of HSPaHMM and
HPaHSMM formally. Then in the sections 3 and 4 we present
efficient decoding and learning algorithms for them. Finally
in section 5 we present the experimental results.
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2 Model Definition and Parameters

We begin by defining a standard HMM model A by the tuple
(Q,0, A, B, ) where, Q is the set of possible states, O is the
set of observation symbols, A is the state transition probabil-
ity matrix (a;; = P(qi+1 = jlg: = i)), B is the observation
probability distribution (b; (k) = P(o; = k|g; = j)) and 7 is
the initial state distribution. It is straightforward to generalize
this model to continuous (like gaussian) output models.

This can be extended to a hierarchical hidden Markov
model (HHMM) by including a hierarchy of hidden states.
A HHMM can be formally specified by the tuples- A’ =
(Qd, 04, Ag, Bg,mq) where d € 1..H indicates the hierar-
chy index.

In traditional HMMs, the first order Markov assumption
implies that the duration probability of a state decays expo-
nentially. The hidden semi-Markov models (HSMM) were
proposed to alleviate this problem by introducing explicit
state duration models. Thus a HSMM model can be speci-
fied by the tuple- A’ = (Q, O, A, B, D, 7) where, D contains
a set of parameters of the form P(d; = k), i.e. the probability
of state i having a duration k.

In the basic HMM, a single variable represents the state
of the system at any instant. However, many interest-
ing activities have multiple interacting processes and sev-
eral multi-channel HMMs have been proposed to model
these. These extensions basically generalize the HMM state
to be a collection of state variables (S; = S},,S5°). In
their most general form, such extensions can be represented
as- N = (Q%,09, A°, B¢, 7%) where Q¢ and O° are
the possible states and observations at channel c respec-
tively and 7¢ represents the initial probability of channel c¢’s
states. A® contains the transition probabilities over the com-
posite states (P([g}, 1, q541]|[ars - aF])), and BC con-
tains the observation probabilities over the composite states
(P([o}, .., 0%][a}, -, ¢])). In this form, the learning as well
as inferencing algorithms are exponential in C, and also re-
sult in poor performance due to over-fitting and large number
of parameters to learn. The various multi-channel extensions
typically introduce simplifying assumptions that help in fac-
torizing the transition and observation probabilities. Parallel
hidden Markov models (PaHMM) factor the HMM into mul-
tiple independent chains and hence allow factorizing both A¢
and BC. Coupled hidden Markov models (CHMM) factor the
HMM into multiple chains where the current state of a chain
depends on the previous state of all the chains.

The hierarchical multi-channel hidden semi-Markov mod-
els that we propose try to combine all the above characteris-
tics into a single model structure. In the most general form,
they can be described by a set of parameters of the form-
N =(QS, 05, A, BS, DS, 5) where, d € 1..H is the hi-
erarchy index and c is the number of channels at level d, and
the parameters have interpretations similar to before. Each
channel at a higher level can be formed by a combination
of channels at the lower level. Also, the duration models at
each level is optional. Further, the channels at each level in
the hierarchy maybe factorized using any of the methods dis-
cussed above (PaHMM, CHMM etc). It can be seen that \'"”
presents a synthesis of A’, A" and A”’. HSPaHMM has 2 lay-
ers with multiple HMMs at the lower layer and HSMM at the
upper layer and has the following set of parameters-

HSPaHMM c
>\lower (Qlower7 Olowe'm Alowe'm Blowera ﬂ-lower)
HSPaHMM
)\uppe’r (Qupper, Oupper, Auppery Bupper, Dupper, 7Tupper)

HPaHSMM contains multiple HSMMs at the lower layer and
a single Markov chain at the upper layer and hence has the
following set of parameters-

HPaHSMM C
Alower (Qlowem Olowera Alowera Blower: Dlower: 71—lowe?")

)\HPaHSIM]M

upper (Q’ILPPET7 Ouppeh Auppe’r, Bupper, ﬂ'upper)

Figure 1 illustrates the various HMM extensions dis-
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Figure 1: Structure of a)HMM b)HSMM c)PaHMM
d)PaHSMM e)HSPaHMM f)HPaHSMM

cussed. The key difference between HSPaHMM and
HPaHSMM is that HSPaHMM models the duration for the
entire low-level PAHMM with the top-level HSMM state
while HPaHSMM models the duration of each state in each
low-level HSMM. Thus HSPaHMM requires fewer parame-
ters, while HPAaHSMM is a richer structure for modeling real
events.

3 Decoding Algorithm

In this section, we use the following notations - Let C be the
number of channels in lower layer, 7 the number of frames
or observations in each channel, N the number of states in
each channel of the lower layer! and W the number of lower
level HMMs. Then, the top-level HMM will have one state
for every lower level HMM as well as a state for every possi-
ble transition between lower level HMMs. This is because in
applications like sign language recognition where each word
is modeled by a multi-channel HMM/HSMM each transition
between the words in the lexicon is distinct. Each of the W
HMMs can transition to any of the W HMMs giving a total of
W2 transition states. Thus the top-level HMM has a total of
W x (W + 1) states.

3.1 HSPaHMM Decoding

The decoding algorithm for HSPaHMM works by travers-
ing the top-level HSMM and at each time segment finding
the maximum likelihood path through the low-level PAHMM

'We have assumed that all the lower level HMMs have the same
number of states for simplicity of notation. It is straightforward to
extend the algorithms presented to cases where the low-level HMMs
have varying number of states.
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corresponding to the upper HSMM'’s state. Traversing the
top-level HSMM states takes O(W?2(W + 1)27?) time and
each call to the lower PAHMM takes O(CN?T) time giving
a total complexity of O(W?2(W + 1)2N2T3). We can re-
duce this complexity if the duration models for the top-level
HSMM are assumed to be uniform or normal. In this case,
we can define parameters M and X for each state in the top-
level HSMM such that we only need to consider state dura-
tions in the range [M — X, M + X]. The values of M and
Y can be obtained from the lower and upper thresholds in
the case of uniform distributions or from the mean and vari-
ance in normal distributions. In this case since we need to
check only 23 durations at each instant and each low-level
PaHMM has M observations on average, traversing the top-
level HSMM takes O(W?2(W +1)?T'S) and each lower level
PaHMM takes O(C' N2 M) giving a total inference complex-
ity of O(CW?2(W + 1)2N2T MY.). Still, even for small val-
ues of W the inference complexity become prohibitively large
as it varies with W?2(W + 1)2. We can get around this by
storing only the top K states of the upper-HSMM at each in-
stant. Then, since each state can only transfer to O(W) states
(transition states can transfer only to the destination states
while states corresponding to lower-level PAHMMSs can trans-
fer to W transition states), the overall inference complexity
becomes O(CW K N?T MY.). Figure 2 illustrates the decod-
ing algorithm and Algorithm 1 presents the pseudocode.

Transition
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Figure 2: Decoding HSPaHMM

3.2 HPaHSMM Decoding

For decoding HPaHSMMs, we have to traverse the top-level
Markov chain and at each state call the corresponding low-
level PAHSMM. This procedure can be simplified by string-
ing together the low-level PAHSMMs and also the transition
states into one large compound PAHSMM and then traversing
it. Since the W low-level PAHSMMs have N states each and
there are W? transition states in the top level, the compound
PaHSMM has W « (W + N) states. Note that the transition
states can have their own duration and output models. Since
each channel of the compound PaHSMM is a HSMM taking
O(W?2(W + N)2T3) ? time, the entire decoding algorithm

?[Murphy, 2002] points out that HSMM inference complexity
can be reduced to O(W?(W + 1)2T?) by pre-calculating output
probabilities for all states and intervals. However, since in beam
search we only store only a small subset of the states at each time
interval, this procedure actually increases run time in our case.

Algorithm 1 HSPaHMM Decoding

1: Top-level HSMM has W*(W+1) states

2: We use the following indices for states-

- Top-level states 0..W-1 have low-level PAHMMs correspond-
ing to them.

- Top-level state W + w1 W + ws, is the transition state for the
w1 — w transition where w1, w2 € [0..W — 1]
Beam(t)=Top K states at time ¢.

State ¢’s duration € [M (¢) — 2(i), M (i) 4+ 2(i)]

di = probability of max-likelihood path to state i at time ¢.
P*(m|l) = Probability of transitioning to state m from state I.
P°(O¢1..042|m) = Probability of observing O¢1..Oy2 in state

A A

*®

m.
P?(d|m) = Probability of spending duration d in state m.

9: mazPath(m,t1,¢2) = Function to calculate probability of
max-likelihood path through low-level PAHMM of state m from
time ¢1 to ¢2. See [Vogler and Metaxas, 1999] for details.

10: for:=1to T do
11:  forj=1to K do

12: I — jt" state in Beam(q)

13: if | < W then

14: form=(0+1)+«Wto(l+1)«W + W do
15: for n = M(m) — X(m) to M (m) + X(m) do

16: S, — &« Pi(m|l) x P%njm) x
PO(Oi+1.‘Oi+n|m)

17: if 6"}, in top K paths at time 7 + n then

18: add m to Beam(i + n)

19: end if

20: end for

21: end for

22: else

23: m «— Remainder(l/W)

24: for n = M(m) — X(m) to M(m) + X(m) do

25: 87, 8tk PY(n|m) * mazPath(m,i+1,i+n)

26: if 9} ,, in top K paths at time 7 4 n then

27: add m to Beam(i + n)

28: end if

29: end for

30: end if

31:  end for

32: end for

33: return ¢ of maximum probability state in Beam(T)

takes O(CW?2(W + N)2T3). If the duration models are nor-
mal or uniform we only need to consider state durations in the
range [m — o, m+ o] where the values of m and ¢ are defined
for each state of every PAHSMM. The time complexity then
becomes O(CW?2(W + N)?>Tmo). Further by storing only
the top k states in the compound PaHSMM at each instant,
we can reduce the complexity to O(CkW (W + N)Tmo).
Figure 3 illustrates the decoding algorithm and Algorithm 2
presents the pseudocode for HPaHSMM.

4 Embedded Viterbi Learning

In many applications like sign language recognition and event
recognition the training samples typically contain a sequence
of words/events which are not segmented. In such cases, we
string together the individual word/event HMMs and then re-
estimate the parameters of the combined HMM using the tra-
ditional Baum-Welch algorithm. Thus the individual events
are segmented automatically during the re-estimation pro-
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Figure 3: Decoding HPaHSMM

cess. In constrained HMM structures like the the left-right
HMM (where each state can transition only to itself or to one
state higher), the re-estimation procedure can be simplified
by calculating the Viterbi path through the HMM at each it-
eration and re-estimating the parameters by a histogram anal-
ysis of the state occupancies. Since in our applications we
are primarily interested in left-right HMMs, we adopted a
Viterbi-like embedded training algorithm for HSPaHMM and
HPaHSMM. Algorithm 3 presents the pseudocode for the
learning algorithm where at each iteration we call the corre-
sponding decoding algorithm and then re-estimate the param-
eters using a simple histogram analysis of state occupancies.

S Experiments

To evaluate learning and decoding in HSPaHMM and
HPaHSMM we conducted two experiments: one with syn-
thetic data, other with real data for a sign language (ASL)
recognition task. In both cases, we compare our results with
PaHMM without any duration models and beam search on the
states. All run time results are on a 2GHz Pentium 4 Windows
platform with 2GB RAM, running Java programs.

5.1 Benchmarks on Synthetic Data

In this experiment, we used a discrete event simulator to gen-
erate synthetic observation sequences. Each event can have
C=2 channels/agents, and each channel can be in one of N=5
states at any time. State transitions were restricted to be left-
to-right so that each state i can transition only to state (i+1).
The states had 3-dimensional Gaussian observation models
with the means uniformly distributed in [0,1] and the co-
variances were set to /4. Further, each state had gaussian
duration models with means in the range [10,15] and vari-
ances set to DPARAM=10. We then built a top-level event
transition graph with uniform inter-event transition probabil-
ities. Continuous observation sequences were then generated
by random walks through the event transition graph and the
corresponding low-level event models. Random noise was
added in between the event sequences as well as at the be-
ginning and end of the observation sequence. Figure 4 illus-
trates this procedure for a 2 event top-level transition graph.
As can be seen, this setup corresponds to the HPaHSMM
model structure. Observation sequences were generated us-
ing the setup described above using a 5-event top-level tran-
sition graph such that each sequence had 2-5 individual events
and each event occurred at least 30 times in the entire set of

Algorithm 2 HPaHSMM Decoding

1: Beam(c,t)=Top k states at time ¢ in channel c.

2: State 4’s duration € [m(i) — o (), m(z) + o(4)]

3: minTh = min(m(i) — o(7)); mazTh = max(m(i) + o(7))

4: §;" = Probability of max-likelihood path to state 7 in channel ¢
at time ¢.

5: P!(m]l) = Probability of transitioning to state m from state
in channel c.

6: P°(O¢1..0¢2]c, 1) = Probability of observing Oy1..O¢2 in state
l in channel c.

7: P%(d|c,1) = Probability of spending duration d in state [ in
channel c.

8: Beam(c,1) set using initialization probabilities of states V c.

9: fort=2toT do

10:  for j = minTh to maxTh do

11: forl=1toC do

12: form=1to W« (W + N) do

13: forn =1to kdo

14: p — nt" state in Beam(l,i — 1)

15: 5flj = 0P, % Pt(mlp) * PU(j + 1|l,m) *
PO(OZOH_]H,m)

16: if Jif; in top k paths at time 7 + j then

17: add m to Beam(l,4 + 7)

18: end if

19: end for

20: end for

21: end for

22: end for

23: end for

24: return Ele ¢ of maximum probability state in Beam(c,T)

sequences producing in total 50-60 sequences. We then ran-
domly chose a set of training sequences such that each word
occurred at least 10 times in the training set and used the rest
as test sequence. Thus the training set contained 10-20 se-
quences and the test set contained 40-50 sequences. The data
generators were then discarded and then the following models
were trained - 1)HPaHSMM with randomly initialized output
models, left-right low-level PAHSMMs and low-level dura-
tion models (parameters m, o - see section 3.2) set accurately
using the corresponding simulator parameters. The beam-
size k was set manually. 2) HSPaHMM with randomly ini-
tialized output models, left-right low-level PAHMMs and top-
level duration models whose means (M) were set by summing
over the means of the corresponding low-level PAHSMM:s in
the simulator and set the parameters K and X (see section
3.1) manually. 3) PAHMM with the output models initialized
randomly and decoding performed by a Viterbi Beam Search.
Each model was trained by re-estimating the output models
using Embedded Viterbi learning described in Section 4 un-
til the slope of the log-likelihood curve fell below 0.01 or
when 100 training iterations were completed. We then ran
the learned models on the test sequences and obtained accu-
racy measures using the metric (N — D — S — I)/N where
N=number of events in test set, D=no. of deletion errors,
S=no. of substitution errors, I=no. of insertion errors.

Since the accuracy as well as complexity of the decod-
ing algorithms depend on manually set parameters (K, for
HSPaHMM and k for HPaHSMM) we first investigated their
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Algorithm 3 Embedded Viterbi Learning

1: numTrain = number of training samples
2: P!(j|i) = Probability of transitioning from state i to state j in

channel c.

3: P2(0s]j) = Probability of observing symbol o; in state j in
channel c.

4: PZ(d|i) = Probability of spending a duration d in state i in chan-
nel c.

5: for ¢ = 1 to numT'rain do
6:  jointHMM <« String together HMMs of words/events form-
ing training sequence i.

7: repeat
8: maxPath « State sequence of maximum probability path
through jointHMM obtained using decoding algorithm.
9: n; < No. of times channel c is in state i in maxPath.
10: ng ; < No. of times channel c transitions from state i to
state j in maxPath.
11: n:’oj «— No. of times o; is observed in state i channel ¢
in maxPath.
12: nf’d < No. of times state i in channel ¢ spends duration
d in maxPath.
13: Re-estimate parameters using the following equations
14 PI(jli) —ng,/n
150 Pe(oilg) — b g
16: PA(d|i) — nS*/n¢
17:  until convergence

18:  Split HMMs and update corresponding word/event HMMs.
19: end for

effects. To do this, we varied the parameters and ran 50 iter-
ations of the train-test setup described above for HSPaHMM
and HPaHSMM for each parameter value. Figures 5-6 show
these variations.

As can be seen, while increasing Y in HSPaHMM pro-
duces a significant drop in frame rate, it does not affect the
accuracy. On the other hand, increasing the beam size(K) pro-
duces a significant increase in accuracy at the cost of slower
speed. For HPaHSMM, increasing the beam size does not
improve accuracy. Based on these observations we ran a set
of 50 tests comparing HSPaHMM (with ¥ = 1, K = 11),
HPaHSMM (with £ = 10) and PAHMM. Table 1 summarizes
the average accuracies and speeds. Thus, HSPaHMM pro-

[ Model [ Accuracy | Speed |
HPaHSMM | 83.1%(N=124, D=17, S=1, 1=3) 12.0
HSPaHMM || 63.7%(N=124, D=3, S=36, I=6) 40.2
PaHMM 4.8%(N=124, D=38, S=53,1=27) | 39.1

Table 1: Model Accuracy(%) and Speed(fps)

duces a huge jump in performance when compared to plain
PaHMM without affecting the speed. While HSPaHMM’s
accuracy is still lower than HPaHSMM, it is 3 times faster
and thus serves as a good mean between HPaHSMM and
PaHMM.

5.2 Application to Continuous Sign Language
Recognition

Sign language recognition, besides being useful in itself, pro-
vides a good domain to test hierarchical multi-agent activi-

Top-level Event
Transition Graph

Event2-1
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Event1 Event2
Event1-2
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Figure 4: Structure of Event Simulator
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Figure 5: Variation of HSPaHMM Speed(frames/sec or fps)
and Accuracy(%) with a)Sigma, Beam Size=11 b)Beam Size,
Sigma=1

ties; Both hands go through a complex sequence of states si-
multaneously, each sign has distinct durations, and there is hi-
erarchical structure at the phoneme, word and sentence level.

We experimented with a set of 50 test sentences from a
larger dataset used in [Vogler and Metaxas, 1999](provided
by Dr.Vogler); the sequences were collected using a
MotionStar™ system at 60 frames per second. Vocabu-
lary is limited to 10-words; each sentence is 2-5 words long
for a total of 126 signs. The input contains the (x, y, z) loca-
tion of the hands at each time instant; from these we calculate
the instantaneous velocities which are used as the observation
vector for each time instant.

We model each word as 2-channel PaHMM (for
HSPaHMM) or PaHSMM (for HPaHSMM) based on the
Movement-Hold(MH) model [Liddell and Johnson, 1989]
which breaks down each sign into a sequence of “moves”
and “holds”. During a “move” some aspect of the hand is
changed while during a hold” all aspects are held constant.
The MH model also identifies several aspects of hand con-
figuration like location (chest, chin, etc), distance from body,
hand shape, kind of movement (straight, curved, round) etc.
With these definitions, we can encode the signs for various
words in terms of constituent phonemes. For example, in
the word “T”, a right-handed signer would start some dis-
tance from his chest with all but his index finger closed and
end at the chest. This can be encoded in the MH model
as (H(pOCH)M (strToward)H(CH)), where pOCH indi-
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Figure 6: Variation of HPaHSMM Speed(fps) and Accu-
racy(%) with Beam Size

cates that the hand is within a few inches in front of the chest
at the start, strToward indicates that hand moves straight per-
pendicular to the body and CH indicates that the hand ends
at the chest. Similar transcriptions can be obtained for more
complex 2 handed signs by considering both hands as well as
hand shape.

We model the observation probabilities in the hold states
as a normal distribution with y = 0 while the move states are
modeled as a signum function. Further, we set the inflection
point of the signum to be the same as the Gaussian’s variance.
The intuition behind this choice is that during the hold states
the configuration of the hand remains constant with some ran-
dom noise, while we have a "move” whenever the hand’s po-
sition changes above the noise threshold during an instant.

We specified the duration models for the move states based
on the distance between the starting configuration and the
ending configuration and the frame rate. In order to do this we
separated the possible hand locations into 3 clusters - those
around the abdomen(AB), those around the chest(C'H) and
those around the face/forehead(F H ). We approximately ini-
tialized the hold state and intra-cluster transition times by
looking at a few samples and set the inter-cluster transition
time to be twice the intra-cluster transition time. We mod-
eled the duration as normal distribution centered around these
means and variance = 2.5 so that the 74 in the decoding al-
gorithm is reasonably small. For the upper level HSMM in
HSPaHMM, we set the means(M) by adding the means of
the individual states and set ¥ = 2.5. Thus, we approxi-
mately set a total of 4 parameters for the entire set up. Ta-
ble 2 shows the word accuracy rates. These results indicate

[ Model [ Accuracy | Speed |
HPaHSMM || 78.6%(N=126, D=6, S=17, I=4) 2.1
HSPaHMM || 67.46%(N=126,D=11, S=22,1=8) | 6.4
PaHMM 18.25%(N=126, D=7, S=23,1=73) | 7.3

Table 2: Word Accuracy Rates(%) and Speed(fps)

that including duration models significantly improves the re-
sults. HSPaHMM provides a good high-speed alternative to
HPaHSMM. Further, HSPaHMM produces better results than
PaHMM because the top-level HSMM restricts the number
of word transitions and hence reduces the number of inser-
tion errors. These results were obtained without requiring
any additional training data using very simple features. For

comparison, existing algorithms for continuous sign language
recognition [Vogler and Metaxas, 1999] [Starner et al., 1998]
require training sets with 1500-2000 signs for a test set of ~
400 signs. [Bowden et al., 2004] reports good results on iso-
lated word recognition with a 49 word lexicon that uses just
one training sequence per word, but the words in both the test
and train sequences are pre-segmented; this is a much easier
task than continuous sign language recognition demonstrated
here.

6 Conclusion

We have presented a new class of HMMs that provides a
hierarchical multi-channel structure with explicit duration
models; we focused on two instances - HSPaHMM and
HPaHSMM and presented efficient decoding and learning al-
gorithms for them. We rigorously analyzed their performance
on synthetic multi-channel time series data and also presented
a real application. The methods are not specific for a task do-
main and should apply to a wide variety of multi-agent activ-
ity recognition.
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