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Abstract

Agents often have to construct plans that obey deadlines
or, more generally, resource limits for real-valued re-
sources whose consumption can only be characterized
by probability distributions, such as execution time or
battery power. These planning problems can be mod-
eled with continuous state Markov decision processes
(MDPs) but existing solution methods are either ineffi-
cient or provide no guarantee on the quality of the re-
sulting policy. We therefore present CPH, a novel so-
Iution method that solves the planning problems by first
approximating with any desired accuracy the probability
distributions over the resource consumptions with phase-
type distributions, which use exponential distributions as
building blocks. It then uses value iteration to solve the
resulting MDPs by exploiting properties of exponential
distributions to calculate the necessary convolutions ac-
curately and efficiently while providing strong guaran-
tees on the quality of the resulting policy. Our experi-
mental feasibility study in a Mars rover domain demon-
strates a substantial speedup over Lazy Approximation,
which is currently the leading algorithm for solving con-
tinuous state MDPs with quality guarantees.

1 Introduction

Recent advances in robotics have made aerial, underwater
and terrestrial unmanned autonomous vehicles possible. In
many domains for which such unmanned vehicles are con-
structed, the vehicles have to construct plans that obey dead-
lines or, more generally, resource limits for real-valued re-
sources whose consumption can only be characterized by
probability distributions, such as execution time or battery
power. It is a major challenge for Al research to con-
struct good plans for these domains efficiently [Bresina e al.,
2002]. One cannot model the resulting planning problems
with generalized semi-Markov decision processes [Younes
and Simmons, 2004] since they can model actions that con-
sume real-valued amounts of resources but not resource lim-
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its. One could model them with Markov decision processes
(MDPs) by encoding the available amounts of resources in
the states. The resulting continuous state MDP can then be
solved approximately by discretizing the state space (for ex-
ample, by discretizing the probability distributions) and then
applying standard dynamic programming algorithms, such as
value iteration [Boyan and Littman, 2000]. A major draw-
back of this approach is that discretizing the state space re-
sults in a combinatorial explosion of the number of states
as the discretization becomes more and more fine-grained.
In response, discretization-free approaches have been devel-
oped, some of which do not provide strong guarantees on the
quality of the resulting policy [Lagoudakis and Parr, 2003;
Nikovski and Brand, 2003; Hauskrecht and Kveton, 2003].
Lazy Approximation [Li and Littman, 2005] is currently the
leading discretization-free algorithm for solving continuous
state MDPs with quality guarantees. It solves the planning
problems by approximating the probability distributions over
the resource consumptions with piecewise constant functions.
It then uses value iteration to solve the resulting MDPs by re-
peatedly approximating the value functions with piecewise
constant value functions. Lazy Approximation has two prob-
lems that increase its runtime: First, complex piecewise con-
stant functions are often necessary to approximate probabil-
ity distributions closely. Second, the value functions need
to be reapproximated after every iteration. We thus present
CPH (Continuous state MDPs through PHase-type proba-
bility distributions), a novel solution method that solves the
planning problems by first approximating the probability dis-
tributions over the resource consumptions with phase-type
distributions, which use exponential distributions as building
blocks [Neuts, 1981]. It then uses value iteration to solve
the resulting MDPs by exploiting properties of exponential
distributions to calculate the value functions after every itera-
tion accurately (= without reapproximations) and efficiently.
CPH shares with Lazy Approximation that it provides strong
guarantees on the quality of the resulting policy but runs sub-
stantially faster than Lazy Approximation in our experimental
feasibility study in a Mars rover domain.

2 The Planning Problem

We use time as an example of a real-values resource and solve
planning problems that are similar to the ones studied in [Li
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Figure 1: Mars rover domain.

and Littman, 2005]. They are modeled as MDPs with two
sources of uncertainty: action durations and action outcomes.
S denotes the finite set of states of the MDP and A(s) the
finite set of actions that can be executed in state s € S.
Assume that an agent is in state s € S with a deadline be-
ing t > 0 time units away (= with time-to-deadline ?), after
which execution stops. It executes an action a € A(s) of
its choice. The execution of the action cannot be interrupted,
and the action duration ¢’ is distributed according to a given
probability distribution p, ,(¢') that can depend on both the
state s and the action a. If ¢ > ¢, then the time-to-deadline
t —t’ < 0 after the action execution is non-positive, which
means that the deadline is reached and execution stops. Oth-
erwise, with probability P(s’|s,a), the agent obtains reward
R(s,a,s’) > 0 and transitions to state s’ € S with time-to-
deadline ¢ — ¢’ and repeats the process. The time-to-deadline
at the beginning of execution is A > 0. The objective of the
agent is to maximize its expected total reward until execution
stops.

We use a Mars rover domain (Figure 1) that is similar to one
used in [Bresina et al., 2002] as an example of our planning
problems. A rover has to maximize its expected total reward
with time-to-deadline A = 4. The states of the MDP cor-
respond to the locations of the rover: its start location, site
1, site 2, site 3 and its base station. The rover can perform
two actions with deterministic action outcomes outside of its
base station: (1) It can move to the next site and collect a
rock probe from there. It receives rewards 4, 2 and 1 for col-
lecting rock probes from sites 1, 2 and 3, respectively. (2)
It can also move back to its base station to perform a com-
munication task, which drains its energy completely and thus
makes it impossible for the rover to perform additional ac-
tions. It receives reward 6 for performing the communication
task. All action durations are characterized by the exponen-
tial distribution p, o (') = e~* = E(1). We also consider
the case where all action durations are characterized by ei-
ther Weibull or Normal distributions. The Mars rover domain
might appear small with only 5 discrete states. However, if
one discretizes the time-to-deadline into 1/100 time units and
encodes it in the states, then there are already 5 « 400 = 2000
states.

3 General Approach

We can solve our planning problems by encoding the time-
to-deadline in the states, resulting in a continuous state MDP
that can be solved with a version of value iteration [Boyan and
Littman, 2000] as follows: Let V*(s)(t) denote the largest

expected total reward that the agent can obtain until execution
stops if it starts in state s € S with time-to-deadline 0 <
t < A. The agent can maximize its expected total reward by
executing the action

(Y P(s')s,a)

s'es

/0 Pora(#)(R(s,a,5') + V*(s')(t — 1)) dt')

arg max
a€A(s)

in state s € S with time-to-deadline 0 < ¢ < A, which can
be explained as follows: When it executes action a € A(s)
in state s € .S, it incurs action duration ¢’ with probability
Ps,a(t’). If0 < t' < ¢, then it transitions to state s’ € .S with
probability P(s'|s, a) and obtains an expected total future re-
ward of R(s,a,s’) + V*(s")(t —t').

Value iteration calculates the values V" (s)(t) using the fol-
lowing Bellman updates for all states s € S, time-to-
deadlines 0 < ¢t < A, and iterations n > 0

VO(s)(t):=0

0 ift <0

maXgea(s) (D yeg P(s']s,a) otherwise
Jo Poa(t)(R(s,a,8") + V™ (s)(t — 1)) dt).

It then holds that lim, ., V™ (s)(t) = V*(s)(t) for all
states s € S and times-to-deadline 0 < ¢t < A. Unfortu-
nately, value iteration cannot be implemented as stated since
the number of values V"™ (s)(t) is infinite for each iteration
n since the time-to-deadline ¢ is a real-valued variable. We
remedy this situation by viewing the V"(s) as value func-
tions that map times-to-deadline ¢ to the corresponding values
V™(s)(t), similar to [Liu and Koenig, 2005]. In this context,
we make the following contributions: First, we show after
how many iterations n value iteration can stop so that the ap-
proximation error maxse g 0<i<a |V*(s)(t)—V"(s)(t)| isno
larger than a given constant € > 0. Second, we show that each
value function V" (s) can be represented exactly with a vec-
tor of a small number of real values each. Finally, we show
how the Bellman updates can efficiently transform the vec-
tors of the value functions V™ (s) to the vectors of the value
functions V" *1(s). We present these three contributions in
the following as three steps of CPH.

VL (s)(t) ==

4 CPH: Step 1

CPH first approximates the probability distributions of ac-
tion durations that are not exponential with phase-type dis-
tributions, resulting in chains of exponential distributions
Ae™ ' = E()) with potentially different constants A > 0
[Neuts, 1981]. CPH then uses uniformization (i.e., creates
self-transitions) to make all constants \ identical without
changing the underlying stochastic process. We do not give
details on how to implement these two well-known steps (see
[Neuts, 1981; Younes and Simmons, 2004] for details) but
rather provide an example. Figure 2 shows how an action with
a deterministic action outcome and an action duration that is
characterized by a Normal distribution N(p = 2,0 = 1) is
first approximated with a phase-type distribution with three
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Initial probability distribution

‘ } p=N(2.1)
start P=1

After transformation to phase-type distribution

p=E(1.42)
P=0.03

p=E(1.45)

P=0.03
Figure 2: Transformation of a Normal distribution to a chain
of exponential distributions E(1.45). p and P denote the ac-
tion duration and action outcome probabilities, respectively.

phases and then uniformized to yield the exponential distri-
butions F(1.45). From now on, we can therefore assume
without loss of generality that the action durations ¢’ of all
actions are distributed according to exponential distributions
Ps,a(t’) = p(t') = E(\) with the same constant A > 0. Value
iteration cannot determine the value functions V*(s) with a
finite number of iterations since the uniformized MDPs have
self-transitions. However, Theorem 1 in the appendix shows
that the approximation error is no larger than a given constant
€ > 0 if value iteration stops after at least

€
1 - -
B Roan (A — 1)

iterations, where R4 = MaX,eg qcA(s),s'es B(s,a,s").
Running time of Step 1 of CPH is negligible since analytic
phase-type approximation methods run in time O(1).

5 CPH: Step 2

It follows directly from the considerations in the next section
that there exist times-to-deadline 0 = ¢, < {51 < ... <
tsm.+1 = A such that V™(s)(t) = V*(s)(¢t) for all t €
[tsists,it1), where

n—1
Vi (s)(t) = cs,in — e (Cs,i,z + ..o+ Csint %) (D
for the parameters ¢y, ; forall s € S, 0 < i < m, and
1 < j < n+ 1. We refer to the times-to-deadline ¢, ; as
breakpoints, the [t ;,ts,+1) as intervals, the expressions for
the value functions V;"(s) as gamma functions (which is a
simplification since they are actually linear combinations of
Euler’s incomplete gamma functions), and the expressions
for the value functions V" (s) as piecewise gamma func-
tions. We represent each gamma function V" (s) as a vector

[Cs.its--vsCsintl) = [cs,i’j]?ill and each piecewise gamma
function V™(s) as a vector of vectors [ts;:V"(s)]"5, =

[ts,i:[cs}i,j];’iﬂﬁ*o. Figure 3, for example, shows the value

function V*(start) for our Mars rover domain.

12 9
10 4 Vy(start)(t) = 13 — e71(27.1 — 1.92¢ e
® gl Btart)(t) = 13 — ™7 (27. ci: } 3 4 5 )
3 6t
b s i (start)(t) = 12 — e~4(8.73 + 8t + J‘T’
s
86
~ e t ;.
a Vi (start)(t) = 10 — e77(10 + 6t)
41 /
o
x
w 24 . )
/\-‘u (start)(t) = 6 — Ge™*
o 1
(1] 0.8 1.8 3.2 4
Time-to-deadline
Figure  3: Value  function  V*(start)  con-
sists of four gamma functions: V*(start) =

[0:V (start), 0.8:Vi*(start), 1.8:V5 (start), 3.2:V5 (start)] =
[0:[6, 6], 0.8:[10, 10, 6], 1.8:[12,8.73,8, 6],
3.2:[13,27.1, ~1.92,7,6]].

6 CPH: Step 3

We now explain how CPH uses value iteration. For n = 0,
the value functions V" (s) = 0 satisfy V" (s) = [0:[0]] and
thus are (piecewise) gamma. We show by induction that all
value functions V" *1(s) are piecewise gamma if all value
functions V" (s) are piecewise gamma. We also show how
the Bellman updates can efficiently transform the vectors of
the value functions V" () to the vectors of the value functions
Vntl(s). Value iteration calculates

t
waxe 3 P(s)s.a) [ p(t)(R(s,0.5)
acA(s) e 0

+ V(s )t —t))dt.
We break this calculation down into four stages: First,
Vst —t) := R(s,a,s) + V*(s)(t — t'). Sec-
ond, V*(s')(t) = [ip()V"(s')(t — ¢')dt’. Third,
Vr(s,a)(t) = ZS,GSP(S’|S,a)‘~/"(S’)(t). Finally,
Vit (s)(t) := maxge as) V(s a)(t).!

Vil (s)(t) =

Stage 1: Calculate V' (s')(t — t') := R(s,a,s') +
V™(s')(t — ¢'). Our induction assumption is that all value
functions V"(s’) are piecewise gamma, ie., V"(s') =
[ts/,ii[cs/,i,j]?iﬂ?;%- In Stage 1, CPH calculates V' (s)(t —
t') := R(s,a,s")+V"(s")(t—t"), which is the same as calcu-
lating V" (s')(t) := R(s,a,s') + V"(s')(t) since R(s, a,s')
is constant. Then,
n

V(s = R(s,a,s)+V"(s)

= R(s,a,8) + [tei : [cais]i20 1
= [tsri: [cls’zg]?ill]zzé
where ¢, ; | = R(s,a,s") + ¢y i1 and ¢,

7 = cy 4,5 for all
0<i<mgand2<j<n+1.

J

"We should really use V"' (s, a,s')(t — ') and V" (s, a, s')(t)
instead of V" (s") (t—t') and V" (s")(t), respectively, but this would
make our notation rather cumbersome.
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Stage 2: Calculate V" (s = fo st —t)dt,
which is a convolution ofp and V(s denoted aspx V' (s).

Consider the value functions V' (s') defined in Stage 1. We
now show by induction that

Vo)) |
= (p* VI () = e X (px Vi () (b )
=1
Z N1 (px V() (tar 1)) @)

forall ¢ € [te ;,ts ;41). Equation (2) holds for ¢ = 0 since
V(s (t) = (px Vi (s'))(t) forall t € [ty o,ts1). Assume
now that Equation (2) holds for some 7. It then also holds for
1 4+ 1 as shown in Figure 4. We use the following lemma to

show that ‘Z” (s') is a gamma function and convert it to vector
notation.

Lemma 1. Let p(t) = E(X\). Then, p % [k1,ka, ..., k] =

[kla klv k?» ceey kn]

Proof. By symbolic integration, p x [k]7_; = [k:]?ill

for any constant k. Then, p x [k1,...,k,] = p x
Z:kll(P * [kz -

(Cr ki = Eialicg + [kaliey)

kiv1li_1) +px [kn]f_y = S ki —
(k1 k1, k). O

We now transform Equation (2) to vector notation.

N’n, ! _ ’I’L+2
‘/i (S) - [cs’zj]] 1
7 /
where Coin=Cuin  Coani=CuuntZe
1 Y ) .
Corij1 = Csr i Vj=2.3.. n+1
7
. _ —n
with i = Z BAts,"‘/ (p % Vi’(sl))(ts’,i’)
=1

- Z Mt (p 5 Vo (5')) (bar i 11).

]n+2]777,s/

Consequently, V7(s) = (LR (P i P

s’,1,7
Stage 3: Calculate Vn(s, a)(t) =
Yoveg P(s'|s,a)V™(s')(t).  Consider the value func-

tions ‘7"( ) defined in Stage 2.  Since they might
mgr

have different breakpomts {ts i}, for different states
s’ € S with P(s'|s,a) > 0, CPH introduces the common

breakpoints {tsq.}ig" Us,es:,,(s,‘S7a)>0{ts/,¢}?ibo

without changing the value functions V" (s'). Afterwards,
W N 1" +21Ms,a 1" _
Vn(s ) - [ts a,i [Cs’ % j];l 1 ]i:O where cs’,i,j - cs’ i3

for the unique ' with [tsqi,ts.4,i+1) C [tsrir,ts i +1)

Then,
Vi(s,a) = Y P(s]s,a)V"(s)

s'esS

= Y P(s')s,0)[taai ¢ [l 11201
s'eS

= [tsa: [Z P(S’I&a)C’s’/,i,j]?if]?iB“

s’eS
= [tsai:l 's'f;,i,j]?if]gd“~

Stage 4: Calculate V™ (s)(t) == maxaea(s) V" (s,a)(t).
Consider the value functions XA/"(S a) defined in Stage 3.
Since they might have different breakpoints {5 4. };" for
different actions a € A(s), CPH introduces common break-
points UaE a) {ts,ai fimg” without changing the value func-

tions V"(s,a). CPH then introduces additional dominance
breakpoints at the intersections of the value functions to en-
sure that, over each interval, one of the value functions dom-

inates the other ones. Let {t/,}:"% be the set of break-

points afterwards. Then, V" *1(s) = [t. :[c ’S”l”]]?ﬂQL o
/1111 _ /111 :
where ¢i’; = ¢, . ; for actions as; € A(s) and the

unique 4" with [t ;7i,t;7i+1) C [ts,au,,i'>ts,a.,,ir+1) and, for
allt € [t ,.1), V*(s,a)(t) < V"(s,a4,)(t). Further-
more, action a,; should be executed according to the value
function V”“( ) if the current state is s and the time-to-
deadlineis ¢ € [t} ;,t} ;1 1)

To summarize, the value functions V" *1(s) are piecewise
gamma, and the vectors of the value functions V™ (s) can be
transformed automatically to the vectors of the value func-
tions V™ *1(s). The lengths of the vectors increase linearly in
the number of iterations and, although the number of break-
points (that are placed automatically during the transforma-
tions) can increase exponentially, in practice it stays small
since one can merge small intervals after each iteration of
value iteration to reduce the number of breakpoints The trans-
formations require only simple vector manipulations and a
numerical method that determines the dominance breakpoints
approximately, for which CPH uses a bisection method. We
now show experimentally that the transformations are both
efficient and accurate.

7 Experiments

We performed an experimental feasibility study in our Mars
rover domain that compares CPH and Lazy Approxima-
tion (LA) [Li and Littman, 2005], currently the leading
algorithm for solving continuous state MDPs with qual-
ity guarantees (Figure 5). We always plot the error
maxo<i<a |V*(start)(t) — V(start)(t)| of the calculated
value function V' (start) on the x-axis and the correspond-
ing runtime (measured in milliseconds) in log scale on the
y-axis.

Experiment 1: We determined how CPH and Lazy Approx-
imation trade off between runtime and error for our Mars

I[JCAI-07
2539



‘7{11(8')(&:/0 PtV (")t 1) dt' = VT (s )(t):/0 p(t = HV"() () dt!

We split the integral into two ranges. For to ;1 <t <t <ty ;1o weknow that V" (s)(t') = Vi1 (s)(t).

bl it

= [ we- Vi@ a +

tor i1 0
It holds that p(t — ') = Ae (=)

p(t =YV () () dt!

= e Mt in) \e A Eur i =) = e Mt p(ty iy — 1)

t . tsl it . e tol it .
:/ p(t — Wi (s)(t) dt’ — / p(t —t)WWii(s) (') dt + e Mt iv) / Pltsr agr — )V (') (') dt’
0 0 0

tor i1

t
= [ o=V - et [
0 0

= (p* Vita(s))() —

Pltsripr —t)Visa(s)(t) dt' + e M DV (S ) (tar i)

e M) (pa VI () (b inn) + € X0 DV () (i)

We finally unroll the recursion by using the induction assumption.

= (p*Vipa(s))(t) —

)\ts/lJrl <§ 6At//p*v
/=1
i+1
2 :€>\t/ il p*V

/=1

= (P*V?ﬂ( )

R e R e LAY

Z i +1 (p V:L'(S/))(ts’,i’le)) )

Z Mol (p *VZ<s’)><ts/,z-f+1>>

/=0

Figure 4: Proof by induction of Equation (2).

Experiment 1 Experiment 2

10000 1 ’, CPH with 2 phases
& CPH with 3 phases
CPH with 5 phases

10000 1=
—k— CPH with 1 phase

g

Lazy Approximation

1000

E 'g Lazy Approximation
_g 100 g 100 1%
§ [
& &
10 &‘ 10 e
1 e r— 1

o 0.2 0.4 0.5 0.8 1 o 0.2 04 0.6 0.8 1§

Experiment 3 Planning horizon

10000 7. CPH with 2 phases Number | Emor | Flanning Flanning
< CPH with 3 phases of phases herizon horizen from

| CPH with 5 phases Theorem 1
1000 Lazy Anprnxim_al:_in._n 5 011 - seaael)
3 0.33 21 1823
2l 087 14 254

(1] 0.2 0.4 0.6 (i8] 1
Error

Figure 5: Emplrlcal evaluation of CPH and Lazy Approximation (Experiments 1,2,3) and the tightness of the theoretical

planning horizon calculated from Theorem 1.

rover domain. Since the action durations in the Mars rover
domain are already distributed exponentially and thus phase-
type with one phase, there are no errors introduced by approx-
imating the probability distributions over the action durations
with phase-type distributions. Also, since these distributions
are equal, uniformization will not introduce self-transitions
and value iteration can run for a finite number of iterations.
We therefore varied for CPH the accuracy of the bisection
method that determines the dominance breakpoints and for
Lazy Approximation the accuracy of the piecewise constant
approximations of the probability distributions over the ac-
tion durations and value functions. Our results show that
CPH is faster than Lazy Approximation with the same error,
by three orders of magnitude for small errors. For example,
CPH needed 2ms and Lazy Approximation needed 1000ms to
compute a policy that is less than 1% off optimal, which cor-
responds to an error of 0.13 in the Mars rover domain.

Experiments 2 and 3: We then determined how CPH and Lazy
Approximation trade off between runtime and error when all
action durations in our Mars rover domain are characterized

by either Weibull distributions Weibull(a = 1, 5 = 2) (Ex-
periment 2) or Normal distributions N(u = 2,0 = 1) (Ex-
periment 3), and both methods thus need to approximate the
value functions. We fixed for CPH the accuracy of the bisec-
tion method but varied the the number of phases used to ap-
proximate the probability distributions. Our results show that
CPH is still faster than Lazy Approximation with the same
error, by more than one order of magnitude for small errors.
For example, CPH needed 149ms (with five phases) and Lazy
Approximation needed 4471ms to compute a policy that is
less than 1% off optimal for the Weibull distributions. In ad-
dition, we observed that CPH converged much faster than the
theoretical planning horizon calculated from Theorem 1 sug-
gests.

8 Conclusions

Planning with real-valued and limited resources can be mod-
eled with continuous state MDPs. Despite recent advances
in solving continuous state MDPs, state-of-the art solution
methods are still either inefficient [Li and Littman, 2005]
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or cannot provide guarantees on the quality of the resulting
policy [Lagoudakis and Parr, 2003]. In this paper, we pre-
sented a solution method, called CPH, that avoids both of
these shortcomings. The aim of this paper was to establish
a sound theoretical framework for CPH and provide a first
experimental feasibility study to demonstrate its potential. It
is future work to study the theoretical properties of CPH in
more depth (for example, analyze its complexity or extend
its error analysis), evaluate CPH and its three approximations
more thoroughly (for example, in larger domains, additional
domains and against additional solution methods) and extend
CPH (for example, to handle more than one resource, handle
replenishable resources or, similarly to Lazy Approximation,
approximate its value functions to be able to reduce its num-
ber of breakpoints).
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Appendix

The following theorem is a shortened version that does not
take into account the errors introduced by approximating the
probability distributions over the action durations with phase-
type distributions and the dominance breakpoints with a nu-
merical method. It takes only into account the error intro-
duced by approximating the value functions due to running
value iteration for only a finite number of iterations.

Theorem 1. Let ¢ > 0 be any positive con-
stant and n > logexﬁgl 7 Then,

maz (e —1)"

maxseso<t<a |V*(s)(t) — V"*(s)(t)| < € Wwhere

mazx = MAXseS ac A(s),s’€S R(Sa a, s ).

Proof Let o := AA > 0 and b; == Y7, 21 forall i > 0.
It holds that by = e®* and by = bg — 1 = e® — 1. We now
provide a bound on the probability p;(t) that the sum of the
action durations of a sequence of ¢ > 1 actions is no more

than 0 <t < A.

A ’ ’ a At/ I ’
) < p@) = [C@rprop@al = [T IS
0 D e —— 0 2!
1 2 ad 1 [ of
= Sl -2 = g2
¢ j=o J° e \j=0 " =0
_ 1 & of - b;
e J=t Jt e
The values 21 — ikl — _ 2 decrease strictly
i Srtbipa 7“1?”1 +1

monotonically in ¢ because the values
ot _ at 1
- 7! E‘X’ ﬁ o 4 a? + a3 +
: j=i41 1 i1 (i+2)(i+1) (i+3)(i+2)(i+1) s
increase strictly monotonically in ¢. Consequently,
e” -1 _ bl b2 bg

= > —>...>0.
e bo by bo

4! bH»l

1>

Thus

bi_1 by b1 b2 b1\ 2
b < bic1 < —bi—1 < — bi—o < | — bi—
e T ke T T bobiig (bo> 2

(YT
bo 1.

We now use these results to bound |V*(s)(t) — V™(s)(¢)|
forall s € Sand 0 < ¢ < A. Assume that the agent starts
in state s € S with time-to-deadline 0 < ¢t < A. Value
iteration with n iterations determines the highest expected to-
tal reward V" (s)(t) under the restriction that execution stops

when the deadline is reached or n actions have been executed.
The largest expected total reward V*(s)(t) does not have the

second restriction and can thus be larger than V" (s)(¢). In
particular, only V*(s)(t) takes into account that the agent
can execute the (n + 1)st action with probability p,,41 (%),
the (n + 2)nd action with probability p,,12(t), and so on, re-
ceiving a reward of at most R,,,, for each action execution.
Additionally, V™ (s)(t) is locally greedy, i.e., the reward for

its first p actions exceeds the reward for the first n actions of
*(s)(t). Thus,

Vi) () =V (s)(#) £ D Rumacpilt)

i=n+1

R7naz i Rmuz > <b1>i71
L R Sl (O I
er i Sh er i Sih bo

L Rmasb §5 (0} Bnashy g)”i g)i
ex bo ex bo “ bo

=0
_ Rmaaby (bl )" 1
ex bo 1-— % '
‘We now bound this expression by e.

Rmazbr (D1\" 1
— | = < €
ex bo 1t =

b

0 <

IN

€
n

Y

log AA 1 A o
EC)\A L Rnlam(e/\A - 1)

O

I[JCAI-07
2541




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


