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Abstract

This paper presents a Conceptual Graph (CG)
framework to the Generation of Referring Expres-
sions (GRE). Employing Conceptual Graphs as the
underlying formalism allows a rigorous, semanti-
cally rich, approach to GRE. A number of advan-
tages over existing work are discussed. The new
framework is also used to revisit existing complex-
ity results in a fully rigorous way, showing that the
expressive power of CGs does not increase the the-
oretical complexity of GRE.

1 Introduction

Generation of Referring Expressions (GRE) is a key task in
Natural Language Generation (Reiter and Dale 2000). Es-
sentially, GRE models the human ability to verbally identify
objects from amongst a set of distractors, as when we say
‘the wooden bookcase’, ‘the cup on the table’, and so on, to
single out the object in question. A GRE program takes as in-
put (1) a knowledge base (KB) of (usually atomic) facts con-
cerning a set of domain objects, and (2) a designated domain
object, called the target. The task is to find some combina-
tion of facts that singles out the target from amongst all the
distractors in the domain. These facts should be true of the
target and, if possible, false of all distractors (in which case
we speak of a distinguishing description). Once expressed
into words, the description should ideally be ‘natural’ (i.e.,
similar to human-generated descriptions), and effective (i.e.,
the target should be easy to identify by a hearer). Many of
the main problems in GRE are summarized in Dale and Reiter
(1995). (See also Dale and Haddock 1991 for GRE involving
relations; Van Deemter 2002 and Horacek 2004 for reference
to sets and for the use of negation and disjunction). Here, we
focus on logical and computational aspects of the problem,
leaving empirical questions about naturalness and effective-
ness, as well as questions about the choice of words, aside.
We do not argue for one particular flavour of GRE, but show
how different flavours can be ‘implemented’ using CGs.

Recently, a graph-based framework was proposed (Krah-
mer et al. 2003), in which GRE was formalised using labelled
di-graphs. A two-place relation R between domain objects x
and y was represented by an arc labelled R between nodes x
and y; a one-place predicate P true of x was represented by an

looping arc (labelled P ) from x to x itself. By encoding both
the description and the KB in this same format (calling the
first of these the description graph and the second the scene
graph), these authors described the GRE problem in graph-
based terms using subgraph isomorphisms. Their approach is
elegant and has the advantage of a visual formalism for which
efficient algorithms are available, but it has a number of draw-
backs. Most of them stem from the fact that their graphs are
not part of an expressively rich overarching semantic frame-
work that allows the KB to tap into existing ontologies, and
to perform automatic inference. It is these shortcomings that
we address, while maintaining all the other advantages of the
approach of Krahmer et al.

Conceptual Graphs are a visual, logic-based knowledge
representation (KR) formalism. They encode ontological (‘T
Box’) knowledge in a structure called support. The support
consists of a number of taxonomies of the main concepts and
relations used to describe the world. The world is described
using a bipartite graph in which the two classes of the parti-
tion are the objects, and the relations respectively. The CG se-
mantics translate information from the support in universally
quantified formulae (e.g., ‘all cups are vessels’); information
from the bipartite graph is translated into the existential clo-
sure of the conjunction of formulae associated to the nodes
(see section 3.2). A key element of CG is the logical notion
of subsumption (as modelled by the notion of a projection),
which will replace the graph-theoretical notion of a subgraph
isomorphism used by Krahmer et al. (2003). CGs have been
used in computational linguistics before (e.g. Nicolov et al.
1995) but, to the best of our knowledge, never to GRE.

2 Conceptual Graphs (CGs)

2.1 Syntax

Here we introduce the conceptual graph (CG) model and ex-
plain how it can be used to formalise the information in a
domain (or ‘scene’) such as Figure 1. In section 3 we show
how the resulting CG-based representations can be used by a
GRE algorithm that refers uniquely to objects in the scene.

The CG model (Sowa (1984)) is a logic-based KR formal-
ism. Conceptual Graphs make a distinction between onto-
logical (background) knowledge and factual knowledge. The
ontological knowledge is represented in the support, which
is encoded in hierarchies. The factual knowledge is repre-
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sented by a labelled bipartite graph whose nodes are taken
from the support. The two classes of partitions consist of con-
cept nodes and relation nodes. Essentially, a CG is composed
of a support (the concept / relation hierarchies), an ordered bi-
partite graph and a labelling on this graph which allows con-
necting the graph nodes with the support.

We consider here a simplified version of a support S =
(TC , TR, I), where: (TC ,≤) is a finite partially ordered set
of concept types; (TR,≤) is a partially ordered set of relation
types, with a specified arity; I is a set of individual markers.

Formally (Chein and Mugnier (1992)), a (simple) CG is a
triple CG= [S, G, λ]:

• S is a support;

• G = (VC , VR, E) is an ordered bipartite graph ; V =
VC ∪VR is the node set of G, VC is a finite nonempty set
of concept nodes, VR is a finite set of relation nodes; E
is the set of edges {vr, vc} where vr ∈ VR and vc ∈ VC ;

• λ : V → S is a labelling function; if v ∈ VC then
λ(v) = (typev, refv) where typev ∈ TC and refv ∈
I ∪ {∗}; if r ∈ VR then λ(r) ∈ TR.

For simplicity we denote a conceptual graph CG= [S, G, λ]
by G, keeping support and labelling implicit. The order on
λ preserves the (pair-wise extended) order on TC (TR) and
considers I elements mutually incomparable.

Consider the following KB described in Figure 1. The CG

scene graph description is given in Figure 2.
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Figure 1: A scene
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Figure 2: A CG-style scene graph

In Figure 2 the concept type hierarchy TC of the support
is depicted on the left. The factual information provided by
Figure 1 is given by the labelled bipartite graph on the right.
There are two kinds of nodes: rectangle nodes representing

concepts (objects) and oval nodes representing relations be-
tween concepts. The former are called concept nodes and the
second relation nodes. The labels ri and vi outside rectangles
and ovals are only used for discussing the structure of the
graph, they have no meaning. {v0, . . . , v7} are the concept
nodes and {r1, . . . , r7} are the relation nodes. Each edge of
the graph links a relation node to a concept node. The edges
incident to a specific relation node are ordered and this or-
dering is represented by a positive integer label attached to
the edge. For example, the two edges incident to the relation
node r1 are {r1, v0}, labelled 1 and {r1, v1}, labelled 2; we
also say that v0 is neighbor 1 of r1 and v1 is neighbor 2 of r1.

In the graphs of Krahmer et al. (2003), relations with more
than two places are difficult to handle, but CGs can represent
these naturally, because relation instances are reified. Con-
sider that x gives a car y to a person z, and a ring u to v. This
is modelled by using two instances r1 and r2 of giving, each
of which has a labelled arc to its three arguments.

The label of a concept node (inside the rectangle) has two
components: a concept type and either an individual marker
or ∗, the generic marker. The concept node designates an
entity of the type indicated by the first component. If the
second component is ∗, this entity is an arbitrary one; if it
is an individual marker then the entity is a specific one. In
Figure 2 all concepts have generic markers and the nodes v0,
v3 and v7 designate three (different) arbitrary objects of type
cup, v4 designates an arbitrary object of type floor, etc. For a
relation node, the label inside the oval is a relation type from
TR. The arity of this relation type is equal to the number of
vertices incident to the relation node r (denoted by deg(r).
The objects designated by its concept node neighbours are in
the relation designated by the label. In Figure 2 the relation
node r2 asserts that the bowl designated by v1 is on the table
designated by v2.

Overall the conceptual graph in Figure 2 states that there
is a floor on which there are a table, a cup and two bowls; on
the table there is a a bowl and in this bowl there is a cup.

2.2 Formal Semantics of CGs

CGs are provided with a logical semantics via the function Φ,
which associates to each CG a FOL formula (Sowa (1984)).
If S is a support, a constant is associated to each individ-
ual marker, a unary predicate to each concept type and a n-
ary predicate to each n-ary relation type. We assume that
the name for each constant or predicate is the same as the
corresponding element of the support. The partial orders
specified in S are translated in a set of formulae Φ(S) by
the following rules: if t1, t2 ∈ TC such that t1 ≤ t2, then
∀x(t2(x) → t1(x)) is added to Φ(S); if t1, t2 ∈ TR, have ar-
ity k and t1 ≤ t2, then ∀x1∀x2 . . .∀xk(t2(x1, x2, . . . , xk) →
t1(x1, x2, . . . , xk)) is added to Φ(S).

If CG= [S, G, λ] is a conceptual graph then a formula
Φ(CG) is constructed as follows. To each concept vertex
v ∈ VC a term av and a formula φ(v) are associated: if
λ(v) = (typev, ∗) then av = xv (a logical variable) and if
λ(v) = (typev, iv), then av = iv (a logical constant); in both
cases, φ(v) = typev(av). To each concept vertex r ∈ VR,
with λ(r) = typer and degG(r) = k, the formula associ-
ated is φ(r) = typer(aN1

G
(r), . . . , aNk

G
(r)). The existential
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closure of the conjunction of all formulas associated to the
vertices of G is Φ(CG). That is, if VC(∗) = {vi1 , . . . , vip

}
is the set of all concept vertices having generic markers, then
Φ(CG)= ∃v1 . . . vp(∧v∈VC∪VR

φ(v)).
If G is the graph in Figure 2, then (using only one quan-

tifier) Φ(G) = ∃xv0
xv1

xv2
xv3

xv4
xv5

xv6
xv7

(cup(xv0
) ∧

bowl(xv1
)∧table(xv2

)∧cup(xv3
)∧floor(xv4

)∧bowl(xv5
)∧

bowl(xv6
) ∧ cup(xv7

) ∧ isin(xv0
, xv1

) ∧ ison(xv1
, xv2

) ∧
ison(xv1

, xv2
) ∧ ison(xv3

, xv4
) ∧ ison(xv2

, xv4
) ∧

ison(xv5
, xv4

) ∧ ison(xv6
, xv4

) ∧ isin(xv7
, xv6

).
If (G, λG) and (H, λH) are two CGs (defined on the same

support S) then G ≥ H (G subsumes H) if there is a pro-
jection from G to H . A projection is a mapping π from the
vertices set of G to the vertices set of H , which maps con-
cept vertices of G into concept vertices of H , relation ver-
tices of G into relation vertices of H , preserves adjacency (if
the concept vertex v in V G

C is the ith neighbour of relation

vertex r ∈ V G
R then π(v) is the ith neighbour of π(r)) and

furthermore λG(x) ≥ λH(π(x)) for each vertex x of G. A
projection is a morphism between the corresponding bipartite
graphs with the property that labels of images are decreased.
Informally G ≥ H means that if H holds then G holds too.
Π(G, H) denotes the set of all projections from G to H .

For the GRE problem the following definitions are needed
to rigorously identify a certain type of a subgraph. If G =
(V G

C , V G
R , E) is an ordered bipartite graph and A ⊆ V G

R ,
then the subgraph spanned by A in G is the graph [A]G =
(NG(A), A, E′) where NG(A) is the neighbour set of A in G,
that is the set of all concept vertices with at least one neigh-
bour in A, and E′ is the set of edges of G connecting vertices
from A to vertices from NG(A). Clearly [A]G ≥ G since the
identity is a trivial projection from [A]G to G.

3 CGs for Generation of Referring

Expressions

3.1 Stating the problem

Let us see how the GRE problem can be stated in terms of CG.
Given a CG G, a concept node v0 in G, a CG H and a concept
node w in H , we define that the pair (w, H) refers to the
pair (v0, G) if there is a projection π from H to G such that
π(w) = v0. Furthermore, (w, H) uniquely refers to (v0, G)
if (w, H) refers to (v0, G) and there is no concept node v in G
different from v0 such that (w, H) refers to (v, G). The GRE

problem may now be stated as follows: given a CG G and a
concept node v0 in G, find a pair (w, H) such that (w, H)
uniquely refers to (v0, G).

But (analogous to Krahmer et al. 2003), the GRE prob-
lem means that we are interested in referring graphs ‘part of’
the scene graph. By the above definition, if (w, H) uniquely
refers to (v0, G), then there is a projection π from H to G
such that π(w) = v0. If π(H) is the image of H , then π(H)
is a spanned subgraph of G namely, [π(V H

R )]G, containing v0

such that there is no projection π1 from π(H) to G such that
π1(v0) �= v0. Therefore it is possible to formulate GRE using
only the combinatorial structure CG G and the vertex v0.

More precisely, any spanned subgraph G′ = [A]G contain-
ing v0 (that is, if A �= ∅ then v0 ∈ NG(A), and if A = ∅
then G′ = ({v0}, ∅, ∅) ) is called a v0-referring subgraph of

G. A v0-referring subgraph [A]G is called v0-distinguishing
if v0 is a fixed point of each projection π from [A]G to G, that
is π(v0) = v0 ∀π ∈ Π([A]G, G). The GRE problem is now:

Instance: CG= [S, G, λ] a conceptual graph repre-
sentation of the scene; v0 a concept vertex of G.
Output: A ⊆ VR such that [A]G is a v0-
distinguishing subgraph in CG, or the answer that
there is no v0-distinguishing subgraph in cg.

Example. Consider the scene described in Figure2. A = ∅
is not a solution for the GRE instance (CG, {v0}) since G1 =
({v0}, ∅, ∅) can be projected to ({v7}, ∅, ∅) or ({v3}, ∅, ∅).
However, A = {r1, r2} is a valid output since G1 =
[{r1, r2}]G is a v0-distinguishing subgraph (note that the in-
tensional description of the entity (cup) represented by v0

in G1, ΦG1,v0
(x) = ∃xv1

∃xv2
(bowl(xv1

) ∧ table(xv2
) ∧

isin(x, xv1
) ∧ ison(xv1

, xv2
)) has the intuitive meaning the

cup in the bowl on the table, which clearly individualizes this
cup in the set of the three cups in the scene).

Note that if G1 = [A]G is a v0-distinguishing subgraph
in CG then if we denote by A′ the relation node set of the
connected component of G1 containing v0, then [A′]G is a
v0-distinguishing subgraph in CG too. For brevity, we con-
sider only connected v0-distinguishing subgraphs. On the
other hand, intuitively the existence of a v0-distinguishing
subgraph is assured only if the CG description of the scene
has no ambiguities.

Theorem 1 Let (CG, {v0}) be a GRE instance. If [A]G is v0-
distinguishing then [A′]G is v0-distinguishing for each A′ ⊆
V G

R such that A ⊆ A′. (Proof omitted for reasons of space.)
In particular, taking A′ = VR, we obtain:

Corollary 1 There is a v0 distinguishing subgraph in G iff
there is no projection π from G to G such that π(v0) �= v0.

A concept vertex v0 which does not have a v0-
distinguishing subgraph is called an undistinguishable con-
cept vertex in G. We say that a CG provides an well-defined
scene representation if it contains no undistinguishable ver-
tices. Testing if a given GRE instance defines such an am-
biguous description is, by the above corollary, decidable.

3.2 Complexity results

Some of the main complexity results in GRE are presented
in Dale and Reiter (1995). Among other things, these authors
argue that the problem of finding a uniquely referring descrip-
tion that contains the minimum number of properties (hence-
forth, a Shortest Description) is NP-complete, although other
versions of GRE can be solved in polynomial or even linear
time. As we have argued, CG allows a substantial generalisa-
tion of the GRE problem. In what follows, we shall show that
this generalisation does not affect the theoretical complexity
of finding Shortest Descriptions.1

Let v0 ∈ VC be an arbitrary concept vertex. The set of
concept vertices of G different from v0, in which v0 could be
projected, is (by projection definition) contained in the set

Distractors0(v0) = {w|w ∈ VC − {v0}, λ(v0) ≥ λ(w)}.

1To the best of our knowledge this is the first formal proof of the
NP- completeness of any GRE problem.
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Clearly, if Distractors0(v0) = ∅ then v0 is implicitly distin-
guished by its label (type + referent), that is ({v0}, ∅, ∅) is a
v0-distinguishing subgraph.

Therefore we are interested in the existence of a
v0-distinguishing subgraph for concept vertices v0 with
Distractors0(v0) �= ∅. In this case, if NG(v0) = ∅, clearly
there is no v0-distinguishing subgraph (the connected com-
ponent containing the vertex v0 of any spanned subgraph of
G is the isolated vertex v0). Hence we assume NG(v0) �= ∅.

A simple case considering all relation vertices r ∈ V G
R

unary. This means that G is a disjoint union of stars centered
in each concept vertex. Intuitively, this means that each object
designated by a concept vertex in the scene represented by
G is characterized by its label (type and reference) and by
some other possible attributes (properties) and each r ∈ V G

R

designates an unary relation. This is the classical framework
of the GRE problem, enhanced with the consideration of basic
object properties (the types) and the existence of a hierarchy
between attributes. Even with these enhancements we will
show that the GRE problem complexity results remain similar.

Indeed, if NG(v0) = {r1, . . . , rp} (p ≥ 1) (the properties
of the concept designated by v0) then for each ri ∈ NG(v0)
let: Xi := {w|w ∈ Distractors0(v0) such that there is no r ∈
NG(w) with λ(ri) ≥ λ(r)}.

In words, Xi is the set of v0-distractors which will be re-
moved if ri would be included as a single relation vertex of
a v0-distinguishing subgraph (since there is no r ∈ NG(w)
such that λ(ri) ≥ λ(r) it follows that there is no projection π
of the subgraph [ri]G to G such that π(v0) = w).

Lemma 1 There is a v0-distinguishing subgraph in G iff:

∪p
i=1Xi = Distractors0(v0).

Proof. If there is a v0-distinguishing subgraph [A]G, then
we can suppose that A ⊆ NG(v0) = {r1, . . . , rp} (because
we can suppose that [A]G is connected). Suppose that there is
w ∈ Distractors0(v0)\∪

p
i=1Xi. By the definition of the sets

Xi it follows that for each ri ∈ A there is r′i ∈ NG(w) such
that λ(ri) ≥ λ(r′i). If we take π(v0) = w and π(ri) = r′i
for each ri ∈ A, then π is a projection of [A]G to G with
π(v0) = w �= v0, contradicting the hypothesis that [A]G is a
v0-distinguishing subgraph.

Conversely, if ∪p
i=1Xi = Distractors0(v0), then taking

A = NG(v0) = {r1, . . . , rp} [A]G is a v0-distinguishing sub-
graph. Indeed, if there is π a projection of [A]G to G such that
π(v0) = w �= v0, then for each ri ∈ A the edge v0ri is pro-
jected in some edge wr′i such that λ(v0) ≥ λ(w) and λ(ri) ≥
λ(r′i). This means that w ∈ Distractors0(v0) \ ∪

p
i=1Xi is a

contradiction.

To summarize, if all relation vertices have degree 1, de-
ciding if a vertex v0 admits a v0-distinguishing subgraph
can be done in polynomial time. However, the above proof
shows that [A]G is a v0-distinguishing subgraph if and only if
A ⊆ NG(v0) and ∪ri∈AXi = Distractors0(v0). Therefore
the problem of finding a v0-distinguishing subgraph with a
minimum number of vertices (e.g., Dale and Reiter 1995) is
reduced to the problem of finding a minimum cover of the set
Distractors0(v0) with elements from X1, . . . , Xp, which is
an NP -hard problem.

We now prove that the decision problem associated with
minimum cover can be polynomially reduced to the problem
of finding a concise distinguishing subgraph. Let us consider
the following two decision problems:

Minimum Cover
Instance: O = {o1, . . . , on} a finite nonempty set;

S = (S1, . . . , Sp) a finite family of subsets of O;
q a positive integer.

Question: Are there Si1 , . . . , Sit ∈ S such that

∪t
j=1Sij

= O and t ≤ q ?

Shortest Description
Instance: SCG= (G, S) a conceptual graph such that

dG(r) = 1, for each relation node r ∈ VR;
a vertex v0 ∈ VC ;
s a positive integer.

Question: Is there a v0-distinguishing subgraph [A]G
such that |A| ≤ s ?

Theorem 2 Shortest Description is NP-complete.

Proof. We have shown that checking if a guessed A ⊆ VR

such that [A]G is v0-distinguishing can be done in polyno-
mial time (we need to test if v0 ∈ NG(A) and ∪ri∈AXi =
Distractors0(v0); all sets involved can be computed in poly-
nomial time). Hence Shortest Description belongs to NP.

We outline a polynomial reduction of Minimum Cover
to Shortest Description. Let O = {o1, . . . , on}, S =
(S1, . . . , Sp) and q an instance of Minimum Cover. Let us
consider the bipartite graph G with VC = {o0, o1, . . . , on}.
The label of each concept vertex is (�, ∗). The relation ver-
tices set of G is initialized as VC = {rij |i ∈ {0, . . . , n}, j ∈
{0, . . . , p} }, where each vertex rij is a neighbor of the ver-
tex oi ( all edges oirij are added to G). The type of the vertex
rij is ai. The final CG G is obtained by deleting some relation
vertices using the following rule: for each i and j, if oi ∈ Sj

then rij is deleted from G (together with the edge oirij ).
Clearly the graph G is constructed from the instance of the
Minimum Cover problem in polynomial time. The desired
instance of the Shortest Description problem is obtained by
taking as input this graph, vertex o0 and s = q. An illustra-
tion of this construction for the instance O = {o1, o2, o3},
S = (S1 = {o1, o2}, S2 = {o1, o3}, S3 = {o2, o3}) and
q = 1, of Minimum Cover is given in Figure 3:

T:*

T:*

T:*

T:*

o1

o2

o3

o0

a1
r01

a1

r03

a2
r02

a2

a3

a3
r13

r22

r31

Figure 3: Minimum Cover Illustration
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It is easy to see that there is no o0-distinguishing subgraph
with at most s = 1 relation vertices and also there is no cover
of O with at most q = 1 members of S. If in the instance of
the Minimum Cover problem we have q = 2 then the answer
is yes since (S1, S2), (S1, S3) or (S2, S3) are all covering of
O with 2 members of S. The corresponding instance of the
Shortest Description problem (the same graph and s = 2)
also returns “yes”; since [r01, r02]G, [r01, r03]G or [r02, r03]G
are all o0-distinguishing subgraphs with 2 relation vertices.

Returning to the proof, we must show that in the con-
structed conceptual graph there is an o0-distinguishing sub-
graph with at most s relation vertices if and only if there is a
covering of O with at most q = s members from S. But this
is an easy consequence of the observation that the above con-
struction is such that the sets Xi (destroying the distractors
by the relation vertices r0i) are exactly the sets Si ∈ S.

3.3 A simple GRE algorithm

In the general case, each object in the scene represented by
G is characterized by its label (type and reference), by some
other possible attributes (properties) and also by its relations
with other objects, expressed via relation nodes of arity ≥ 2.
In this case, if v0 an arbitrary concept node, it is possible
to have vertices in Distractors0(v0) which cannot be dis-
tinguished from v0 using individual relation neighbors but
which could be removed by collective relation neighbors. Let
us consider the scene described in Figure 4 :
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man:joe

know

is near
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Figure 4: Scene Illustration

Note that relation labels are assumed to be incompara-
ble. Clearly, NG(v0) = {r1, r2} and Distractors0(v0) =
{v2, v4}. The vertex v4 can be removed by r1 (v4 has no re-
lation neighbor with a label at least know) and by r2 (despite
of the existence of a relation neighbor r5 labelled is near, v4

is the second neighbor of r5; v0 is the first neighbor of r2).
The vertex v2 cannot be removed by r1 ([r1]G ≥ [r3]G)) and
by r2([r2]G ≥ [r4]G), but {r1, r2} destroys v2 ( there is no
projection of [{r1, r2}]G mapping v0 to v2 and in the same
time mapping v1 to a common neighbor of r3 and r4).

This example suggests an algorithm for constructing a v0-
distinguishing subgraph in general. For an arbitrary concept
vertex v0, let us denote N0(v0) = ∅, N1(v0) := NG(v0) and
for i ≥ 2, N i(v0) = NG(NG(N i−1(v0))). Clearly, since
G is finite, there is k ≥ 1 such that N i(v0) = Nk(v0) for
each i ≥ k. This parameter is called the eccentricity of v0

and is denoted ecc(v0). We can inductively construct distrac-
tors of higher order for a vertex v0, as follows: If we con-
sider Distractors0(v0) = {w|w ∈ VC − {v0}, λ(v0) ≥ λ(w)},
then for each i = 1, ecc(v0), Distractorsi(v0) = {w|w ∈
Distractorsi−1(v0), [N

i(v0)]G ≥ [N i(w)]G}.

Theorem 3 Let (CG, {v0}) be a GRE instance, and let i0 be
the first i ∈ {0, . . . , ecc(v0)} such that Distractorsi(v0) =
∅. If i0 exists then [N i(v0)]G is a v0-distinguishing subgraph,
otherwise v0 is an undistinguishable vertex.

Proof. The theorem clearly holds due to the definition of
the Distractors sets.

This theorem basically defines a breadth-first search algo-
rithm for finding a v0 distinguishing subgraph.

4 Generalisations and extensions

Apart from the benefits shown throughout the paper, using
CGs for representing GRE means that a number of interesting
and useful extensions can be developed. This section sketches
two kinds of extensions: the addition of inferential rules (to
increase reasoning power), and the addition of negation and
full quantification (to increase expressive power).

4.1 Adding inferential Rules

An important further generalisation of the GRE problem can
be obtained by bringing inferential rules to bear, as an integral
part of CG (Baget and Mugnier 2002). If S is the support
of the CG representing the scene, a rule defined on S is any
CG, H , over the support S, and having specified a bipartition
(Hyp, Conc) of its set of relation nodes V H

R . The subgraph
of H spanned by Hyp, [Hyp]H is called the hypothesis of
the rule H , and the subgraph spanned by Conc, [Conc]H ,
is the conclusion of the rule H . Applying a rule H to a CG

G means to find a projection π from [Hyp]H to G, to add a
disjoint copy of [Conc]H to G, and finally to identify in this

graph each concept node v ∈ V
[Conc]H
C ∩V

[Hyp]H
C to π(v), its

image by π. The new CG obtained, G′, is called an immediate
derivation of G by the application of rule H following π.
Let R a set of rules defined on S and G a CG over S. Then
G, R derives a CG G′ if there exists a sequence of immediate
derivations leading to G′ by applications of rules in R.

Let us consider again the scene represented in Figure 4. If
we want to express that the conceptual relation near is sym-
metric, then we add the rule H described in Figure 5:

person:*

person:*

is near

is near

1

2

1
2

2

s

s

1

Figure 5: Rule Illustration

Here the Hyp set contains only the “gray” relation node
s1 and the set Conc is the singleton set {s2}. Without this
rule, the vertex in Figure 4 v4 ∈ Distractors0(v0) can be
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removed by by adding r2 to a v0-referring subgraph (despite
of the existence of a relation neighbor r5 labelled is near, v4

is the second neighbor of r5 while v0 is the first neighbor of
r2). Considering the rule H , which intuitively asserts that ”if
a person a isnear a person b then b isnear a, too”, v4 can
not be removed by adding r2 to a v0-referring subgraph.

We have therefore an interesting extension of the ba-
sic GRE problem, which can be formally stated as follows.
Let S, G and R a scene representation, and v0 a concept
node in G. A derived v0-distinguishing subgraph is any v0-
distinguishing subgraph of some derived CG G′ from G and
R. The extended GRE problem asks to find such a derived
v0-distinguishing subgraph or the conclusion that it does not
exists for a specified S, G and R scene representation.

4.2 Increasing expressive power

Like all other GRE algorithms that we are aware of, the CGs
discussed so far are essentially limited to the expression of
atomic facts. In the CG framework, however, various exten-
sions are naturally forthcoming.

Negation. Explicit negation can be added to the KB, which
is an interesting way to allow GRE to produce descriptions
involving the absence of a property (cf. van Deemter and
Krahmer (in press) for alternative approaches).

Let A, F ⊆ VR such that A∩F = ∅. The pair ([A]G, [F ]G)
is called a v0-distinguishing pair of subgraphs if v0 ∈ NG(A)
(that is, [A]G is a v0-referring subgraph), v0 �∈ NG(F ) and
each projection π from [A]G to G such that π(v0) �= v0 can
be extended to a projection π′ from [A ∪ F ]G to G (that is,
π′|[A]G = π|[A]G ) such that we have π′(v0) ∈ NG(π′(F )).

The set F ⊂ VR (of forbidden relation nodes) is used to kill
each concept node from the set ConfusableA(v0), where
ConfusableA(v0) = {w|w ∈ VC − {v0}, ∃π ∈
Π([A]G, G) such that π(v0) = w}.

In the example in Figure 4 ({r1}, {r5}) is a v0-
distinguishing pair of subgraphs, with the intuitive meaning
the man knowing a person and which is not near Joe. Simi-
larly, for the scene represented in figure (2), ({r5}, {r7}) is a
v5-distinguishing pair of subgraphs, with the intuitive mean-
ing: the bowl on the floor, not containing a cup.

Clearly, if [A]G is a v0-distinguishing subgraph, then
([A]G, [F ]G) is a v0-distinguishing pair of subgraphs, for
each F ⊆ VR such that A ∩ F = ∅. The basic GRE problem
can be extended by replacing the output requirement with:

Output: A,F ⊆ VR such that ([A]G, [F ]G) is a v0-distingushing
pair of subgraphs in SG, or the answer that there is no
v0-distinguishing pair of subgraphs in SG.

Full quantification. Suppose our CG-based KB expressed
the (non-atomic) proposition that every table has exactly one
cup on it; this plus the fact that there is only one wooden ta-
ble (for example) would be sufficient to justify a description
like ‘the cup on the wooden table’, even if the KB does not
say which table this is. Extensions of this kind would enable
GRE programs to model human communication far more ex-
tensively than has so far been possible.

5 Conclusions

Using CG to formalise GRE means that we can benefit from:

• The existence of a support. CGs make possible the sys-
tematic use of a set of “ontological commitments” for
the knowledge base. A support, of course, can be shared
between many KBs.

• A properly-defined formal semantics, reflecting the pre-
cise meaning of the graphs and their support, and in-
cluding a general treatment of n-place relations. Further
extensions of the expressive power of the formalism are
possible, as we have seen (section 4).

• Projection as an inferential mechanism. Projection re-
places the purely graph-theoretical notion of a subgraph
isomorphism by a proper logical concept (since projec-
tion is sound and complete with respect to subsumption).
Optimized algorithms for CG projection have been stud-
ied in Croitoru and Compatangelo (2004). This inferen-
tial mechanism can be further enhanced by the addition
of ‘axiomatic’ rules (section 4).
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