
Collaborative Inductive Logic Programming for Path Planning

Jian Huang and Adrian R. Pearce
NICTA Victoria Research Laboratory

Department of Computer Science and Software Engineering
The University of Melbourne, Victoria, Australia

{jhua,adrian}@csse.unimelb.edu.au

Abstract

In distributed systems, learning does not necessar-
ily involve the participation of agents directly in
the inductive process itself. Instead, many systems
frequently employ multiple instances of induction
separately. In this paper, we develop and evalu-
ate a new approach for learning in distributed sys-
tems that tightly integrates processes of induction
between agents, based on inductive logic program-
ming techniques. The paper’s main contribution is
the integration of an epistemic approach to reason-
ing about knowledge with inverse entailment dur-
ing induction. The new approach facilitates a sys-
tematic approach to the sharing of knowledge and
invention of predicates only when required. We
illustrate the approach using the well-known path
planning problem and compare results empirically
to (multiple instances of) single agent-based induc-
tion over varying distributions of data. Given a cho-
sen path planning algorithm, our algorithm enables
agents to combine their local knowledge in an ef-
fective way to avoid central control while signifi-
cantly reducing communication costs.

1 Introduction
The problem of true multi-agent learning has far more com-
plexity than simply having each agent perform localized in-
duction in isolation (see [Stone and Veloso, 2000; Kazakov
and Kudenko, 2001]). Weiß and Dillenbourg clearly identify
this problem “interaction does not just serve the purpose of
data exchange, but typically is in the spirit of a cooperative,
negotiated search for a solution of the learning task” [Weiß
and Dillenbourg, 1999].

The reason that interaction and cooperation during learn-
ing is important, is because the crucial knowledge necessary
in learning a hypothesis is typically distributed over a number
of agents. This gives rise not only to the problem that no indi-
vidual agent can accomplish the learning task alone, but also
the problem of knowing what background knowledge from
each agent is required for constructing the global hypothesis,
given that sharing complete knowledge is often not feasible.
Due to the above two constraints, neither of the two extremes

of the collaboration scheme would work, i.e. learning in iso-
lation or communicating everything. Therefore, the interac-
tion between agents while performing a learning task needs
to be elaborated, such that agents draw together knowledge
when necessary. Further, they should draw only the neces-
sary knowledge together.

In prior work published by the authors [Huang and Pearce,
2006a], the possible synergy between program execution and
induction has been demonstrated for inducing missing predi-
cates in a distributed program setting. Under the multi-agent
interactive learning framework, MAILS, agents are equipped
with background knowledge, expressed as logic programs,
and they reason about what they know, based on their collab-
oratively engagement in learning tasks, through communicat-
ing positive and negative examples (based on the prior suc-
cess and failure of goals from the perspective of each agent).
Recently, the approach has been formalized for a wider range
of problem solving tasks based on the (more generalized)
problem of collaborative inductive logic programming (C-
ILP) [Huang and Pearce, 2006b].

In this paper, we further develop the work by extending and
integrating the epistemic aspects of the approach and better
evaluate the approach for an extended task. We illustrate the
approach using the well-known path planning problem in a
distributed setting, where path information (such as reacha-
bility and cost) is distributed over different agents. Although
each agent perceives only partial information about the en-
vironment, our approach enables them to combine their lo-
cal perceptions in an effective way and collaboratively work
out the path from a source to a destination, which no agent
would be able to do in isolation. We empirically show that
the approach shows promise for avoiding central control and
reducing communication costs involved.

The collaborative inductive logic programming (C-ILP)
technique is based on an inverse resolution approach to learn-
ing [Muggleton and Raedt, 1994]. We follow in the tradi-
tion of prior work on context sensitive models and decision-
theoretic ILP for efficiently constraining the search and find-
ing optimal models [Srinivasan, 2001]. For our knowledge-
based needs of distribution, this involves scoring hypothesis
during induction: which model is the optimal choice for the
current context relative to each agents viewpoint and goals?

An important aspect of our approach is that it seeks to in-
tegrate processes of both deductive and inductive inferenc-

IJCAI-07
1327

ing during problem solving. Our research views the synergy
of combining both processes as an effective way of acquir-
ing new knowledge while performing reasoning; such that an
agent performing induction may have a number of deductive
subroutines that can be used at its discretion, and vice versa.

Section 2 defines the problem of collaborative ILP. Section
3 and 4 describe details of our proposed induction technique
involving distributed knowledge sources when applied to the
distributed path planning problem. Section 5 reports on the
empirical results addressing the advantages of our approach.
Section 6 looks at some existing work on path planning in
multi-agent environments and other distributed problem solv-
ing techniques in situations where no centralized control is
possible.

2 The Collaborative ILP Problem
The process of inductive logic programming is often defined
as such: when provided with some background knowledge B
and examples E of a concept, an ILP algorithm constructs a
hypothesis H such that B ∧ H |= E [Muggleton, 1995]. In
multi-agent systems, ILP involves generating hypotheses us-
ing the collective background knowledge. More formally, the
process of collaborative ILP (C-ILP) in multi-agent systems
can be defined as follows.

Definition 1 The collaborative ILP problem is defined by the
set of agents A; the background knowledge Bi, where i ∈ A,
for each agent i; and the set of positive and negative exam-
ples E

+
i and E

−
i for each agent i. Further, B =

⋃
i∈A

Bi

is the set of all background knowledge and E
+ =

⋃
i∈A

E
+
i

and E
− =

⋃
i∈A

E
−
i are the sets of all positive/negative ex-

amples. Then collaborative ILP can be viewed as the process
of collaboratively generating the hypothesis H such that the
following conditions hold:

1. Prior Satisfiability: B ∧ E
− �|= �

2. Posterior Satisfiability: B ∧ H ∧ E
− �|= �

3. Prior Necessity: B �|= E
+

4. Posterior Sufficiency: B ∧ H |= E
+, and

5. ¬∃i ∈ A such that Bi ∧ H |= E
+

The first four conditions are adapted from ILP in a sin-
gle agent setting [Muggleton and Raedt, 1994] and are gen-
eralized to allow hypothesis generation over the agents’ total
background knowledge. The fifth condition asserts that there
is no individual agent who is able to induce the hypothesis
based solely on its own background knowledge.

Due to constraints associated with resource bounded multi-
agent systems, bringing distributed background knowledge
together into one agent to execute a centralized ILP algorithm
is often infeasible in practice. Therefore, inductively gener-
ating the hypothesis in multi-agent systems relies on care-
ful exchange of information between agents during learning,
for which we believe epistemic reasoning plays an important
role.

3 Path Planning using Induction
In this section and the sections following, we demonstrate
an application of the C-ILP approach to the distributed path

planning problem and use the distributed path planning prob-
lem to show empirically the advantages of the approach in
reducing communication costs while allowing agents to col-
laboratively learn through interaction.

As in logic programming domain, capital letters are used
to denote free variables and small letters bound. The term
reachable(a,b) stands for “b is reachable from a”. The
term link(a,b) means “there exists a link from a to b”.
The link term can also include extra arguments containing
information about the link (such as cost) but for illustration
we stick to the two-argument form. We assume each car is
equipped with the following background knowledge:

1. link(A,B) → reachable(A,B)

2. reachable(A,B) ∧ reachable(B,C) →
reachable(A,C)

The first background knowledge simply captures the mean-
ing that if there exists a link from A to B, then it’s reach-
able from A to B. Likewise, the second clause says that if it’s
reachable from A to B and it’s reachable from B to C, then
it’s reachable from A to C. A car also records links that it
has gone through previously in history in its knowledge base,
in the form of link(A,B). In another word, if a car could
perform deductive reasoning, it would infer based on the
background knowledge and the knowledge it has gained his-
torically, given any query in the form reachable(A,B),
whether it is reachable from one location to another.

On the other hand, under an inductive framework, given the
same query reachable(A,B), the car can come up with
hypotheses H , together with its background knowledge B,
to explain this query, i.e. H ∧ B |= reachable(A,B).
Viewed from a slightly different perspective, the inductive
technique can be used to uncover a path from one location to
another since if a path does exist, the inductive process will
at some stage generate a hypothesis containing only link
terms, which effectively corresponds to the actual path from
A to B.

Equipped with an inductive process and some simple back-
ground knowledge as the above, our approach allows a car to
issue a query in the form reachable(A,B) while seeking
a path from A to B. When engaged in answering this query,
the cars being consulted attempt to induce, by performing ILP
technique such as inverse resolution, a series of hypotheses to
explain this query based on their own background knowledge.

Fig.1 illustrates the process of inverse resolution while gen-
erating hypotheses to explain the query reachable(a,g)
given a link history link(c,d), link(c,e),
link(d,e), link(d,f), link(f,g). The back-
ground knowledge used at each step is shown on the left and
the hypotheses generated along the way are shown on the
right branches. The hypothesis Hn = reachable(a,c)∧
link(c,d)∧ link(d,f)∧ link(f,g) in the example
is interpreted as: reachable(a,g) (the query) is true so
long as reachable(a,c) is true given that link(c,d),
link(d,f) and link(f,g) are all known to be true.

Surely, a hypothesis generated by a single agent doesn’t
always correspond to a path since knowledge of an individual
is often incomplete. Just as what happens in the previous
example, based on its local knowledge, the car in the example

IJCAI-07
1328

reachable(a,c), link(c,d), link(d,f), link(f,g)

Hn

¬ link(A,B), reachable(A,B)

���
���
· · ·¬ reachable(A,B), ¬ reachable(B,C), reachable(A,C)

���
���

reachable(a,c), reachable(c,g)

H1

¬ reachable(A,B), ¬ reachable(B,C), reachable(A,C)

���
���

reachable(a,g)

E

Figure 1: Inverse resolution: background knowledge used is shown on the left branches and hypotheses generated on the right.

GENHYPO(Query)

1: HypList← {Query}, HypHistory ← ∅

2: while HypList �= ∅ do
3: Choose hypothesis H from HypList
4: if ∃ T in H such that DIJKSTRA(T , Path) is true then
5: Replace T with Path and store H into HypHistory
6: else
7: Generate all subsequent hypotheses HypAll based on H
8: if HypAll = ∅ then
9: HypHistory ← {H} ∪HypHistory
10: else
11: HypList← HypAll ∪HypList
12: SCOREHYPO(HypHistory)
13: return all H in HypHistory in the order of score.

Figure 2: Algorithm for hypothesis generation utilizing de-
ductive shortest path subroutine and scoring.

is unable to find out a path from a to g. However, returning
a hypothesis such as Hn is more helpful than simply failing
in a multi-agent environment and we will show shortly how
this partial solution can be used during future endeavors to
uncover the full path.

3.1 Hypothesize Paths by Induction
Discovering the partial solution relies on generating the

hypotheses in a controlled fashion. The basic algorithm for
doing so is sketched out in Fig. 2. The algorithm starts by
choosing the first hypothesis H from HypList, initialized
to contain only the Query, and applying inverse resolution
using H and each background knowledge. The resulting hy-
potheses, if there is any, is then stored back to the HypList.
If no further hypothesis is returned by the inverse resolution
process, then take H out of the HypList and store it into
HypHistory. The algorithm keeps picking up the next hy-
pothesis in the HypList until it becomes empty. In this way,
all possible hypotheses that can be generated starting from the
Query itself are explored.

Because every hypothesis, which explains the query, can be
the one that contains the solution, they all need to be gener-
ated. Therefore, the complexity of the algorithm in the worst
case involves expanding starting from Query with each of
the background knowledge and unifying with every possible
known location until all hypotheses become longer than the
total of known path. If l denotes the number of known lo-
cations, k denotes the number of known links and b denotes
the number of background knowledge, then the complexity
of the algorithm in the worst case is O((l × b)k). However,
because many of the generated hypotheses can be discarded
halfway through the search before they become meaningless,
the average case complexity is significantly lower.

3.2 Deduction Directed Search
Inductively generating hypotheses in an uninformed way de-
scribed above can make search space intractable very quickly.
For this reason, the basic algorithm is extended so that it
allows a path searching subroutine, such as Dijkstra’s algo-
rithm, to be employed as a heuristic for identifying promis-
ing hypotheses and pruning away search space in a mindful
way. Dijkstra is run on each reachable term contained in
hypothesis H to uncover a path based on historical link in-
formation. For example, if link(c,d), link(d,f) and
link(f,g) are all known, then the path searching subrou-
tine will uncover a path from c to g in hypothesis H =
reachable(a,c)∧ reachable(c,g) and will change
the hypothesis to H = reachable(a,c)∧link(c,d)∧
link(d,f) ∧ link(f,g) without having to go though
the inverse resolution a large number of times to arrive at the
same hypothesis.

By integrating both deductive and inductive processes, our
approach allows an agent performing induction to employ de-
ductive subroutines that can be used at its discretion. For ex-
ample, an agent may have a subroutine for finding the short-
est path while also having a subroutine finding any particular
path. This aspect of the research has its own significance be-
cause deductive inference and inductive inference often take
two independent paths. Our approach has shown that they can
be combined tightly together as an effective way of acquiring
new knowledge while performing reasoning. It also sheds a
light on programming inductive agents at a higher level of
abstraction in which what algorithm an agent actually runs
doesn’t have to be hard coded. Instead, a number of different
deductive subroutines may be employed and these deductive
subroutines can be utilized by agents when required. Based
on what an agent is committed to do at a particular moment,
it selects the suitable subroutine to execute as part of problem
solving while executing the same induction process.

4 Collaborative Path Planning
In the previous section, we have demonstrated how induction
allows an agent to not only find out a path if it exists but
also ‘guess’ a hypothetical path which can be pursued fur-
ther. In this section, we explore the interactive aspects which
enable multiple agents with distributed knowledge to collab-
oratively find out a path. Take the example in Fig. 3 and
assume car A is interested in going from a to l. Posted as
a collaborative ILP problem as defined in section 2, the path
planning problem becomes: “collaboratively find a hypoth-
esis H such that the example E = reachable(a,l) is

IJCAI-07
1329

Figure 3: Example showing path information being dis-
tributed among four agents. One path from a to l is
a-d-g-j-l.

explainable using the total background knowledge B of all
agents”. It can be observed from the figure that one such
hypothesis would be H = link(a,d) ∧ link(d,g) ∧
link(g,j) ∧ link(j,l).

Generally speaking, in a distributed setting, the pursuit of
a global hypothesis involves the following key elements: (i)
the global inductive problem must be decomposed into a se-
ries of localized inductive problems that can be solved by in-
dividual agents; (ii) an individual agent’s inductive process
must enable it to contribute a partial solution to the problem;
and (iii) the agents must carefully maintain their knowledge
and systematically exchange information such that the partial
solutions can be integrated together to form the final solu-
tion. While element (ii) has been described thoroughly in the
previous sections, here we provide a description to what is
involved in (i) and (iii).

Consider the example in Fig. 3 again. The interaction steps
can be summarized as follows:

1 A : E = reachable(a, l)
2 A ASKS C : E = reachable(a, l)
3 C INDUCES: H = reachable(a, g), link(g, j), link(j, l)
4 C REPLIES: H = reachable(a, g)
5 A DEDUCES: K1 = Ka(Kc(reachable(g, l)))

K2 = Ka(∃iKi(reachable(a, g)) →
Ka(reachable(a, l)))

6 A : E = reachable(a, g)
7 A ASKS B : E = reachable(a, g)
8 B INDUCES: H = reachable(a, c), link(c, d), link(d, g)
9 B REPLIES: H = reachable(a, c)
10 A DEDUCES: K3 = Ka(Kb(reachable(c, g)))

K4 = Ka(∃iKi(reachable(a, c)) →
Ka(reachable(a, g)))

11 A : E = reachable(a, c)
12 A INDUCES: H = link(a, c)

Car A starts (step 1) with E = reachable(a,l) which
it wants to construct an H to explain. Assume car A asks
car C first. Car C will perform the induction and obtain a
hypothesis, say H = reachable(a,g) ∧ link(g,j) ∧
link(j,l). It returns reachable(a,g) back to car A.
Car A infers that car C knows reachable(g,l) (by per-
forming reasoning on the definition of reachable) (step
5). Therefore, it knows that as long as someone knows (or
can explain) reachable(a,g), the path can be found.
At this stage (step 6), the overall problem has changed.
Car A is now interested in constructing an H to explain
E = reachable(a,g). Later on, through collabora-
tion with car B, they would be able to induce the path
from a to g. Since car A remembers that car C knows
reachable(g,l), the full path from a to l would thus be

Figure 4: Interaction and information passing among the cars
in Fig. 3 when searching for a path from a to l.

CPP(Query, Know)

1: Hyp← GENHYPO(Query) // induce the path by itself
2: if PATHFOUND(Hyp) then
3: Path← RETRIEVEPATH(Know)
4: return Path
5: for ∀i ∈ A do
6: Hyps← Hyps∪ ASK(i, Query)
7: if Hyps = ∅ then
8: return FAIL

9: if PATHFOUND(Hyps) then
10: Path← RETRIEVEPATH(Know)
11: return Path
12: while Hyps �= ∅ do
13: Query← CHOOSEBEST(Hyps) // hypothesis to pursue next
14: Know← GENKNOW(Query) // generate new knowledge
15: Hyps← Hyps− {Query}
16: CPP(Query, Know)
17: return FAIL

Figure 5: Algorithm for collaborative path planning that com-
bines agent interaction, induction and epistemic reasoning.

found eventually. Of course, this requires car A to go back to
its knowledge base and retrieve what has been inferred before
about who knows what. The actual transfer of link informa-
tion will then take place. The interaction among the three cars
in this example is shown in Fig. 4.

Our general algorithm for collaborative path planning is
given in Fig. 5. When engaged in answering a Query, an
agent first attempts to solve it by itself (line 1 to 4). If it suc-
ceeds, it goes back to its knowledge base, retrieves the Path,
returns it and finishes. If it fails to find the path itself, it asks
every other agent in the team (line 5 to 11). If no hypothesis
is received from any other agent, it fails since the path doesn’t
exist. If any hypothesis indicates the path has been found, it
goes back to its knowledge base, retrieves the Path, returns
it and finishes. Otherwise (line 12 to 17), it picks the most
promising hypothesis among all returned by the other agents
and proceeds with it as the new Query, until all those hy-
potheses have been tried in which case it fails since the path
doesn’t exist. During retrieval of the Path, it bases on the
knowledge in its knowledge base to decide whom to request
for the actual link information.

Here, communication saving comes from three aspects: 1)

IJCAI-07
1330

Figure 6: LEFT: shows communication costs (amount of information transferred) associated with the C-ILP approach to
collaborative path planning. MIDDLE: compares communication costs using the C-ILP approach with a centralized approach,
with a graph of 120 links for different numbers of agents. RIGHT: shows communication savings as the information per agent
increases, using 3 agents and graphs of different sizes.

communication of link information doesn’t happen until
a path has been fully worked out by keeping track of who
knows what as epistemic information; 2) if car D knows a
thousand nodes, only the ones that lead to node l will ever
be transferred across; 3) instead of returning all generated
hypotheses back to the initiator, a scoring method can be
adopted to discriminate the hypotheses further. For example,
we have used a variation of the minimum description length
(MDL) metric to favor shorter hypotheses but using more
link terms in our implementation. However, it is noticed
that regardless of what scoring method is being used, just
returning the hypothesis with the highest score to the query
initiator often makes the entire approach incomplete. This is
due to the fact that each agent can make no assumption about
other agents’ knowledge status, while evaluating a hypothesis
and the scores assigned only reflect its own knowledge of the
world. Therefore, it can often be the case that a suboptimal
hypothesis to one agent may well be what the other party is
actually looking for. Generally speaking, the best one can do
is to increase the likelihood of returning a better hypothesis in
earlier attempts by having the agents progressively returning
starting from the hypothesis with the highest score, one at a
time, until either all hypotheses are returned or the other party
is satisfied.

5 Experiments and Analysis
Some preliminary experimental results were shown in
[Huang and Pearce, 2006b] focusing on pairwise commu-
nication costs during interaction between two agents. More
thorough experiments have been performed and the results
reported in this paper analyze the effect in communication
costs with different numbers of agents, A, and with varying
graph sizes, G. In our experiments A varies from 2 to 6 and
G varies from 60 to 120. The experiments involve distribut-
ing the total G links randomly over the A agents. We ran 100
trials for every different value of A and G using the C-ILP
approach and compared this against a centralized approach in
terms of the total communication cost involved (measured as
the number of “terms” transferred). The centralized approach
involves having every agent (one at a time) transferring across
distributed path information to the query initiator before exe-
cuting a path finding algorithm.

Results are summarized and plotted in Fig. 3. The one on

the left shows the increasing of communication costs associ-
ated with the proposed C-ILP approach as the total number
of agents in the system arises. The middle graph compares
communication costs using the C-ILP approach against the
centralized approach, with a graph of 120 links and varying
number of agents. We noticed that communication savings
with the C-ILP approach are significant when the total num-
ber of agents is small. As the number of agents increases
(along with the entropy of the system) the benefit decreases
and finally the cost using C-ILP exceeds that of the central-
ized approach. A similar situation occurs when using graphs
of other sizes. We believe this can be explained in terms of
the participation of agents during the solution of the C-ILP
problem. As the number of agents increases, the link infor-
mation is more evenly distributed over agents and each agent
solves a smaller partial sub-problem. As a result, each agent
has less knowledge which makes it harder to come up with
useful hypotheses. Consequently, communication costs can
override the benefit gained from induction. We explore this
aspect and illustrate in the graph on the right the relationship
between communication costs and partial knowledge repre-
sented as “links per agent”, L. It is found that the C-ILP ap-
proach outperforms the centralized approach uniformly with
different numbers of agents and graph sizes when each agent
has, roughly speaking, 30 links or more.

More sophisticated epistemic reasoning also promise to ex-
tend the basic techniques presented above to make it more
cost effective. As previously commented, better scoring tech-
niques than we have used here are possible, facilitating the ex-
change of additional epistemic information which would lead
to additional savings in communication. For example, agents
may benefit from gathering and considering hypotheses from
more than one agent before pursuing further; they may dis-
criminate information from one source against another; they
may know who is more likely to know the answer to a partic-
ular query; they may even know based on some prior knowl-
edge whom to avoid asking some particular queries. In gen-
eral, we believe performing reasoning at epistemic level will
play a key role in tackling these problems [van der Hoek,
2001]. Nevertheless, our model accommodates the treatment
of reasoning at epistemic level using the K operator and the
knowledge base.

IJCAI-07
1331

6 Related Work
Exploratory work by Davies [Davies, 1993] has also inves-
tigated learning new concepts among multiple agents using
decision tree techniques. However, our work develops multi-
agent induction based on a more formal treatment and in-
tegration of knowledge [Fagin et al., 1997]. This includes
integrating capabilities and utilizing induction [Muggleton,
1995] towards the aims of true multi-agent learning, as iden-
tified by [Kazakov and Kudenko, 2001], using inductive logic
programming (ILP).

Our work shares some similarities with abductive logic
programming (ALP) [Denecker and Kakas, 2002] given that
it integrates deduction and induction to constrain explana-
tions. Consequently, the kind of induction we tackle can also
be viewed as abduction, or explanatory induction as defined
in [Lachiche, 2000], as opposed to the (harder to compute)
descriptive induction.

Since ILP, in the limit, can be intractable unless the search
is effectively constrained, traditional implementations of ILP
frequently rely on the incorporation of domain knowledge to
constrain the search: based on contextual information, in the
spirit of [Srinivasan, 2001].

In relation to the hypothesis scoring technique used in this
paper, since it chooses the minimum size hypothesis it is
essentially a minimum description length (MDL) approach,
also known as minimum message length (MML) in some
literature. It is well known that the MDL heuristic, in gen-
eral, does not necessarily guarantee solutions due to the lim-
itation of independence of evidence assumption inherent in
minimum hypothesis formulation (for details, see [Li and Vi-
tanyi, 1989]). However, the key to our approach does not
rely specifically on MDL and can utilize any (possibly even
complete) technique for scoring hypothesis, given the specific
constraints of individual applications.

7 Conclusion
In this paper, we have looked at the problem of path planning
in multi-agent environments by combining partial knowledge
of the individuals and have demonstrated a distributed induc-
tive approach as an effective technique for problem solving.
Experiments have showed the promise of our inductive ap-
proach not only for overcoming the problem of knowledge
being distributed but also for saving communication costs
while allowing the agents to combine localized knowledge
and collaboratively find solutions. We have also demon-
strated how deductive algorithms could be embedded as an
heuristic within the process of induction to achieve an in-
formed way of performing induction. We claim although the
problem we looked at in this paper is specific, the approach
that involves the integration of deduction and induction pro-
cesses while solving problems involving collaboration is use-
ful in general.

References
[Davies, 1993] Winton Davies. ANIMALS A Distributed

Heterogeneous Multi-Agent Machine Learning System.
PhD thesis, University of Aberdeen, 1993.

[Denecker and Kakas, 2002] Marc Denecker and Antonis C.
Kakas. Abduction in logic programming. In Computa-
tional Logic: Logic Programming and Beyond, Essays in
Honour of Robert A. Kowalski, Part I, pages 402–436.
Springer-Verlag, London, UK, 2002.

[Fagin et al., 1997] Ronald Fagin, Yoram Moses, Joseph Y.
Halpern, and Moshe Y. Vardi. Knowledge-based pro-
grams. Distributed Computing, 10(4):199–225, 1997.

[Huang and Pearce, 2006a] Jian Huang and Adrian R.
Pearce. Distributed interactive learning in multi-agent sys-
tems. In Proceedings of the Twenty-First National Con-
ference on Artificial Intelligence, pages 666–671. AAAI
Press, 2006.

[Huang and Pearce, 2006b] Jian Huang and Adrian R.
Pearce. Toward inductive logic programming for collab-
orative problem solving. In Proceedings of the IEEE/WIC
International Conference on Intelligent Agent Technology.
IEEE Press, 2006.

[Kazakov and Kudenko, 2001] Dimitar Kazakov and Daniel
Kudenko. Machine learning and inductive logic program-
ming for multi-agent systems. In M. Luck, V. Marik, and
O. Stepankova, editors, Multi-Agent Systems and Applica-
tions, volume 2086, pages 246–270. Springer, 2001.

[Lachiche, 2000] Nicolas Lachiche. Abduction and induc-
tion from a non-monotonic reasoning perspective. In Pe-
ter A. Flach and Antonis C. Kakas, editors, Abduction and
Induction, Applied Logic Series, pages 107–116. Kluwer
Academic Publishers, 2000.

[Li and Vitanyi, 1989] M. Li and P. M. B. Vitanyi. Induc-
tive reasoning and kolmogorov complexity. In Structure
in Complexity Theory Conference, pages 165–185, 1989.

[Muggleton and Raedt, 1994] Stephen Muggleton and
Luc De Raedt. Inductive logic programming: Theory and
methods. Journal of Logic Programming, 19/20:629–679,
1994.

[Muggleton, 1995] Stephen Muggleton. Inverse entailment
and progol. New Generation Computing, Special issue on
Inductive Logic Programming, 13:245–286, 1995.

[Srinivasan, 2001] Ashwin Srinivasan. Extracting context-
sensitive models in inductive logic programming. Machine
Learning, 44(3):301–324, 2001.

[Stone and Veloso, 2000] Peter Stone and Manuela Veloso.
Multiagent systems: A survey from a machine learning
perspective. Autonomous Robots, 8(3):345–383, 2000.

[van der Hoek, 2001] Wiebe van der Hoek. Logical foun-
dations of agent-based computing. In Mutli-agents Sys-
tems and Applications, pages 50–73. Springer-Verlag New
York, Inc., 2001.

[Weiß and Dillenbourg, 1999] Gerhard Weiß and Pierre Dil-
lenbourg. What is ’multi’ in multiagent learning? In Pierre
Dillenbourg, editor, Collaborative learning. Cognitive and
computational approaches, pages 64–80. Pergamon Press,
1999.

IJCAI-07
1332

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

