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Abstract

We investigate the problem of mining closed sets
in multi-relational databases. Previous work in-
troduced different semantics and associated algo-
rithms for mining closed sets in multi-relational
databases. However, insight into the implications
of semantic choices and the relationships among
them was still lacking. Our investigation shows that
the semantic choices are important because they
imply different properties, which in turn affect the
range of algorithms that can mine for such sets. Of
particular interest is the question whether the sem-
inal LCM algorithm by Uno et al. can be upgraded
towards multi-relational problems. LCM is attrac-
tive since its run time is linear in the number of
closed sets and it does not need to store outputs
in order to avoid duplicates. We provide a posi-
tive answer to this question for some of the seman-
tic choices, and report on experiments that evaluate
the scalability and applicability of the upgraded al-
gorithm on benchmark problems.

1 Introduction

The problem of mining frequent itemsets has been a topic of
intensive research (see e.g. [Agrawal et al., 1996; Goethals
and Zaki, 2004; Han et al., 2000]). Since the number of
such sets is huge, it is common and more efficient to re-
strict the search to closed item-sets [Bastide et al., 2000;
Zaki, 2004], where a set is closed if all its supersets have
strictly lower frequency in the database. The collection of fre-
quent closed sets contains the same information as the overall
collection of frequent item-sets, but is much smaller. There
is also a growing interest in mining structured data, such as
graphs, and more generally multi-relational databases, and
the notion of closed sets has also been imported to this
richer setup [De Raedt and Ramon, 2004; Yan and Han,
2003]. However, there is no general agreement on an ap-
propriate semantics for closed multi-relational patterns as
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there exist various possible settings. Some approaches em-
ploy #-subsumption (subgraph homomorphism in the graph
setting) to define the frequency of patterns, e.g. [Dehaspe
and Toivonen, 2000] but others employ object identity sub-
sumption (subgraph isomorphism) [Malerba and Lisi, 2001;
Nijssen and Kok, 2003]. Another variation exist between
mining in a single interpretation (graph), or across multiple
interpretations. Finally, some authors (e.g. [De Raedt and
Ramon, 2004; De Raedt and Dehaspe, 1997]) restrict the im-
plication relation used in defining closures to range-restricted
clauses only. In addition to these differences, the notion of a
closed set can be coupled with a closure operator that takes a
set and calculates its closure and there is more than one way
to define such closures. The literature gives the impression
that these different choices are unimportant and that algorith-
mic issues can be studied independently of the semantics. Our
investigation shows that this impression is false and that se-
mantics do matter.

Our investigation follows a seminal paper by Uno et al.
[2004] who utilized semantic properties in the itemset case
to provide a very effective enumeration algorithm for closed
sets, named LCM (Linear time Closed pattern Miner). In this
paper, we systematically explore the different semantics for
mining closed sets in multi-relational databases, and study
their effect on the applicability of LCM. Our results identify
three types of behaviors that can arise as follows.

First, some definitions specify when a set is closed but
make it hard to specify a closure operator. This is the case
for the definitions used in CloseGraph [Yan and Han, 2003]
and Farmer [Nijssen and Kok, 2003]. As a result this setting
is limited to methods that search by applying refinements (in
BFS or DFS mode) until a closed set is found.

Secondly, stronger definitions can specify a closure op-
erator yielding unique closures. In this case one can enu-
merate closed sets by iteratively extending other closed sets
(their “parent”), so that the search is more focused. This
can be done in the setting of Warmr [De Raedt and Ramon,
2004; Dehaspe and Toivonen, 2000] and Jimi [Maloberti and
Suzuki, 2003], which follow normal first order logic seman-
tics. For this setting, we contribute such an enumeration algo-
rithm generalizing LCM. However, just like the simple algo-
rithms, this algorithm must store previously discovered sets
to avoid duplicates in the output inducing a serious memory
requirement.

Finally, some definitions provide unique closures such that
each closed pattern has a unique “parent” closed pattern. This

I[JCAI-07

804



is the case for the Claudien [De Raedt and Dehaspe, 1997]
setting, whose semantics is specified using substitutions to
variables in a clause. For this case, we provide a full general-
ization of the LCM algorithm of Uno et al. [2004] that does
not need to store previous sets.

Due to space constraints most proofs and some details are
omitted from the paper.

2 Problem Definition and Basic Insights

The problems we consider assume that we have a given
database DB, a language of patterns £ and a notion of
“frequency” measuring how often a pattern occurs in the
database. Our databases and pattern are expressed in logi-
cal notation. We assume some familiarity with basic notions
of logic [Lloyd, 1987] but the following introduces some no-
tation and terminology.

An atom is an expression of the form p(¢1,...,t,) where
p is a relation of arity n and each ¢; is a term, i.e. a constant
or a variable. This paper employs conjunctions a; A - - - A ay,
as data (where terms in the atoms are concrete objects) which
we will refer to as interpretations. Conjunctions also serve as
patterns (where terms can be variables) which are sometimes
referred to as queries. Notice that when all relations are of
arity 0, conjunctions correspond to item-sets. Notice also that
if we only have one binary predicate, we can consider it as
capturing the edge relation of a graph, so graphs and graph
patterns form another special case of relational patterns.

We shall represent conjunctions in list notation, i.e. as
[a1,...,ay]. For a conjunction C' and atom p, by [C, p] we
refer to the conjunction that results from adding p after the
last element of C. For a conjunction C' and index ¢, C[i]
is the prefix of C, ie. [a1,...,a;]. A substitution 6 =
{W1/t1,...,V,/t,} maps variables to terms. The result of
applying a substitution 6 to an expression C' is the expression
C0 where all variables V; have been simultaneously replaced
by their corresponding term ¢; in 6.

2.1 Semantics and Frequent Sets

To relate the data to a query, we employ subsumption. Within
inductive logic programming, two notions are popular:

f-subsumption ([Plotkin, 1970]): C; 6-subsumes Cs if and
only if there exists a substitution such that C16 C Cs.

OI-subsumption ([Malerba and Lisi, 2001]): C; OI-
subsumes C5 if and only if there exists a substitution
0 ={Vi/c1,...,Vi/cn} suchthat C10 C C5 and the ¢;
are different terms not occurring in C.

We will refer to both cases as subsumption, denoted as
C7 =< C5. When we want to identify the substitution witness-
ing the subsumption we say that C; < (' via substitution 6.
Applied to graphs, the former notion corresponds to subgraph
homomorphism; the latter one to subgraph isomorphism.

Two forms of databases will be considered. In the learning
from (multiple) interpretations (LI) setting, the database con-
tains a set of interpretations. In this case the natural notion of
coverage is

covers(C,DB) ={D € DB|C < D}

where each interpretation contributes one element to the
cover set.

In the single interpretation (SI) setting, the database is a
single conjunction and the natural notion of coverage is

coversgr(C, DB) = {0|C < DB via substitution 6}

Notice that here the cover set includes substitutions and
not interpretations. In both definitions < can be either of the
notions of subsumption given above.

We now have four different semantics. The LI-6 setting
learns from interpretations using 6-subsumption. This closely
corresponds to the setting employed by Warmr [Dehaspe and
Toivonen, 2000] and Jimi [Maloberti and Suzuki, 2003]. The
LI-OI employs Ol-subsumption instead and is employed by
CloseGraph [Yan and Han, 2003] and Farmer [Nijssen and
Kok, 2003]. Finally, the SI-6 and SI-OI settings learn from a
single interpretation only. As we shall see, SI-0 closely corre-
sponds to Claudien’s setting [De Raedt and Dehaspe, 1997].

The problem of finding frequent queries is that of finding
all queries C' € L whose frequency freq(C,DB) > t for
some fixed threshold ¢. The natural notion for frequency is
freq(C, DB) = |covers(C, DB)]|. It is easy to see that fre-
quency is anti-monotonic for the LI setting, i.e. adding an
atom to a conjunction can only decrease the frequency. This
important property is used by all frequent set miners.

Remark 1 freq(C,DB) is not anti-monotonic for the
SI setting. To see this, consider the query [g¢(X)]
which subsumes [¢(X),p(X, Z)]. For interpretation
[¢(a),p(a,b),p(a,c)], [¢(X)] has one substitution but
[¢(X),p(X, Z)] has two substitutions.

Therefore, for the SI setting, we use the notion of relative fre-
quency defined as rel freq(C, DB) = freq(C,DB)/|D|",
where D is the domain (i.e. the set of constants) and v the
number of variables appearing in C'. Relative frequency is in-
tuitively appealing and it is anti-monotonic for the SI setting.

Remark 2 Note that if we have data from the LI set-
ting we can modify it slightly and interpret it in the SI
setting. This is a standard transformation in Inductive
Logic Programming. For example consider a dataset with
two interpretations I; = [p(a),q(a,b),q(a,c)] and I =
[p(d), q(e, f)]. We add an identifier argument to each pred-
icate and collapse the data into one interpretation: DB =
[p(i1,a),q(i1,a,b), q(i1, a,c), p(iz, d), q(iz, e, f)]. Itis easy
to see that freqrr(C,DB) = |coversp(C, DB)| is anti-
monotonic in this case. Therefore in this case we have a
choice of frequency criterion to use.

2.2 Closures

Finding frequent item-sets is a special case of frequent pat-
tern mining in the LI case. When mining frequent item-
sets many patterns are redundant, and therefore one is typi-
cally interested in closed patterns. Indeed, consider the item-
sets [a, d, €], [a,c,d], [b, c] and [b, d]. Then freq([a], DB) =
freq([a,d], DB) = 2. The item a is said to imply d (w.r.t.
the database). Therefore, we define:
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Definition 3 A conjunction C implies an atom p in the
database DB, denoted DB |= C — [C,p), if and only if
covers(C, DB) = covers(|C, p], DB).

The rules of the form C' — [C, p] denote relational associa-
tion rules that hold with 100 per cent confidence. They are to
be understood as implications that are satisfied by all conjunc-
tions in the database. These expressions correspond to the re-
lational association rules, also called query extensions, intro-
duced in Warmr [Dehaspe and Toivonen, 2000]. In case the
database consists of a single interpretation only, it does not
make sense to allow for atoms p that contain variables that do
not appear in C. The reason is that the resulting substitutions
are not comparable, cf. also Remark 1. Therefore, in this case
one imposes the range-restriction requirement [De Raedt and
Ramon, 2004], which states that p only contains variables and
constants appearing in C. The resulting expression can then
be simplified to a (range-restricted) clause C' — p and cor-
responds to the pattern type induced by Claudien [De Raedt
and Dehaspe, 1997].

In the itemset case the closure of a set of items [ is defined
as the set of items whose existence in a tuple is implied by
the existence of I. Continuing our illustration, one can ver-
ify that the closure of [a] w.r.t. the specified tuples is [a, d].
An alternative characterization of closed item-sets states that
the closure of an item-set I corresponds to the intersection of
all tuples in the database subsumed by the item-set I [Zaki,
2004]. Note that intersecting item-sets corresponds to com-
puting the minimally general generalizations of two patterns.
This will also play an important role in our work.

The item-set case motivates the iterative closure proce-
dure (ICP) defined below. Note that this procedure em-
ploys a refinement operator p which computes atoms p to
be added to the conjunction. Notice also that the condition
DB E C" — p can be interpreted according to the four dif-
ferent semantics.

closure(input: pattern C' = qy, . . ., gn;p: ref. operator)

1 C'~C

2 repeat

3 Find an atom p € p(C’)st. DBEC' —p
4 ¢ [, p]

5 until no such atom is found

6 output C’

We first consider a general refinement operator pg that im-
poses no restrictions on p other than that p ¢ C’. Some of our
theorems below using the normal form require the following
syntactic version for the input and output of the refinement
operator. We will assume that C’ uses variables x1, . .., Ty,
for some m and that new variables introduced form a contigu-
ous sequences starting with x,,41. This does not change the
semantics and does not restrict the form of refinements so we
still refer to this case as pg. Until Section 4 we assume that
ICP uses pg. The following notion is natural:

Definition 4 (Closed conjunctions of atoms) A
tion C is closed if closure(C) = C.

The ICP algorithm defines closure in a non-deterministic way
that may depend on the order of atom additions. Depending

conjunc-

on the semantics, the properties of ICP may vary. In partic-
ular, the result may or may not be unique, or the algorithm
may not always terminate, in which case the result would not
be well defined.

Example 5 Consider using #-subsumption and the dataset
[R1(1,2), R1(2,1)]. Then the pattern R;(x1,xz2) implies
[Rl (xl, .’,EQ), R1 (IQ, Ig)] as well as [Rl (xl, .’,EQ), R1 (xg, Ig),
Ri(z3,24)] and so on. So we can add a chain of any size,
the closure is not finite in size, and the procedure may not
terminate.

Therefore, under f-subsumption, it is necessary to restrict the
atoms that can be added to the initial conjunction. Section 3
gives a solution that gets around this problem by abstracting
the properties of the item-set case from a different perspec-
tive. Section 4 gives a different solution for the SI setting.
Before presenting these, we briefly consider the LI-OI set-
ting used in CloseGraph [Yan and Han, 2003] and Farmer
[Nijssen and Kok, 2003]. Here the closure procedure is guar-
anteed to terminate but the results need not be unique:

Example 6 Consider the two conjunctions:

le(1,2,a),e(2,3,0),e(3,4,d),e(4,5,a),e(5,6,¢)]
[e(11,12,a),e(12,13,b),e(12, 14, ¢)]

This database represents two edge-labeled graphs, and we
consider calculating the closure of C' = e(N1, N2, a). Then
ICP may add e(N2, N3, b) to get the closed set [e(N1, N2, a),
e(Na, N3,b)]. On the other hand it can add e(N3, N3, ¢) to
get the closed set [e(N71, N3, a), e(Na, N3, ¢)].

2.3 Normal Form

Most relational frequent pattern mining algorithms employ a
normal-form based on an ordering of patterns to avoid investi-
gating the same pattern more than once. We use the following
order similar to Nijssen and Kok [2003]. We assume that the
predicates and constants are ordered (e.g. alphabetically). In
addition, we employ a special set of variables 21, 29, 23, . . .,
ordered according to their index, and impose that all constants
are smaller than these variables. An order over atoms is then
induced by the order over lists composed by the predicate
name as first element and its list of arguments following that.
An order over conjunctions is induced by the order over lists
where the atoms in the conjunction are listed in order.

Definition 7 (Normal form) The normal form nf(C) of a
conjunction C over variables x1, . .., x, is CO where 0 is (1)
a one to one substitution from x1,...,x, to new variables
21y - -y 2y and (2) CO is minimal in the order of conjunctions
for substitutions of type (1).

Clearly the normal form of every conjunction is unique. The
normal form also satisfies the following useful properties.

Lemma 8 Let C = [q1,qo, - . ., qn] be a conjunction in nor-
mal form. (i) For any i < n, [q1,...,q;] is in normal form.
(ii) For any © < n and any subset of indices 1 < j; < ja <
e < gk <, @1y - .-, qi) is a prefix of the normal form of

[qla"'7q’iaqj1a"'7ij]'
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3 LI-0: the [gg Closure

One way to define closures in the item-set case is by inter-
secting the covered tuples. The equivalent in the LI-0 set-
ting is to apply the well-known lgg operator introduced by
Plotkin [1970]. The lgg of s1, s2 is a conjunction of atoms
s that @-subsumes both s; and s i.e. s < s7, and s < 39,
and in addition for any other conjunction s’ that 8-subsumes
both s1, s it holds that s < s. Plotkin [1970] proved that
the lgg is well defined and provided an efficient algorithm
for calculating the lgg of two conjunctions. Note that we do
not reduce the lgg. For sets of more than two conjunctions we
simply calculate the [gg by iteratively adding one conjunction
at a time. The result of this process is unique up to variable
renaming regardless of the order of adding the conjunctions.
The downside here is that, since the size of the [gg may grow
as the product of the sizes of the input conjunctions, the total
size may grow exponentially in the number of conjunctions.

Definition 9 (Igg closure) Let C' be a conjunction and DB a
database, then closurer,g(C) = lgg(coversp(C, DB)).

We note that a generalization of LCM using the idea of lgg is
reported in [Arimura and Uno, 2005]. Their setting however
is specialized to ordered tree patterns with a matching rela-
tion that corresponds to OI subsumption. Interestingly in this
setting the size of the lgg is always small.

We now employ Formal Concept Analysis (FCA) [Ganter
and Wille, 1998] to show that the lgg closure produces a Ga-
lois connection. We consider the formal context (2°5, £)
where L is the set of possible conjunctions, with the par-
tial orders C on 2PB, and < on £. We define ¢(C) =
coversy(C,DB) and ¢(S) = lgg(S) where C € L and
S CDB.

Theorem 10 The mappings (¢, C) and (v, =) form a Galois
connection. More specifically, (1) S C 8" = ¢(S") < ¢(S);
(2) 5 C p(6(5)): (3)C < C' = 9(C") € $(C); and (4
C = o(¢(C)).

Theorem 11 The compositions A= Y-pand A = ¢ -
are closure operators. That is, they satisfy monotonicity
(C < C" = A(C) = A(C"), extensivity (C = A(C)), and
idempotency (A(A(C)) = A(C)).

Using this result, closed conjunctions can be formalized as
those coinciding with their closure, that is, A(C') = C. The
result also establishes that for any set of interpretations S of
the database, there is a unique conjunction (up to subsump-
tion equivalence) that is the most specific conjunction satis-
fied in S. Moreover, the number of closed queries is finite, as
is the number of interpretations in our database D B.

We now develop an algorithm RelLCM1 that upgrades the
first algorithm in Uno et al. [2004] to the LI-6 case. We need a
notion of closure extension that allows us to go directly from
one closed conjunction to another.

Definition 12 (Closure extension) A conjunction C” is an
extension of a conjunction C' if C’ = closurerqa([C, p]) for

p € pa(C).

RELLCM 1 (input: closed pattern C')

if C is not frequent then return
if C' is already in closed pattern table then return
store C'in closed pattern table
output C
for all refinements p € pe(C)
if coversp([C,p]) =0
or coversp([C,p]) = coversp(C)
then skip refinement
else Calculate C' = nf(closurerca([C, p]))
RELLCM1(C")

— OO0 WA W

—_—

return

RelLCM1 stores all previously discovered closed sets in a
table and in this way avoids calling the procedure twice on
the same set. It uses depth first search. Each closed conjunc-
tion is refined in all possible ways and closed. The algorithm
checks whether the resulting closed set was already discov-
ered, and if not it is output and further refined to identify
more closed conjunctions. The algorithm is started by call-
ing RELLCM 1 (closure(()). Clearly every conjunction out-
put by the algorithm is closed. The following theorem guar-
antees completeness, that is, that every closed conjunction is
output by the algorithm.

Theorem 13 If C # () is a closed conjunction in normal
form, then there is a closed conjunction C' and a literal
p € pc(C”) such that C = nf (closurerga([C7, p])).

Clearly, in any run of the algorithm the number of calls to
RelLCM1 is exactly the number of closed sets. While the
number of calls is linear we do discover some patterns more
than once. The maximum number of patterns discovered is
bounded by the branching factor of the refinement operator
times the number of closed sets.

4 SI: Range Restricted Closures

We now consider the SI setting (both under 6- and OI sub-
sumption). As argued in Section 2.2 we need to impose
range-restriction when defining the closures. Thus the ICP
algorithm employs the operator prr(C') that can only gener-
ate atoms containing terms already occurring in C'.

Definition 14 (Range restricted closure) closuregrp(C) =
closure(C, prr).

The next lemma shows that closureg g (C) is well behaved:

Lemma 15 For any conjunction C and atoms p, q, if DB =
C — pthen DB = [C,q] — p.

To get a complete generalization of LCM we need to ensure
that each conjunction has a unique parent. Then the algo-
rithm does not need to store the enumerated conjunctions in
order to avoid duplicates as in RelLCM 1. Therefore, we need
a more refined notion of closure extension. The following
generalizes the corresponding ideas from [Uno er al., 2004].

Definition 16 (Core prefix) Let C' be a conjunction in nor-
mal form. The core prefix core(C') of C is the least prefix pr
of nf (C') such that covers(pr, DB) = covers(nf(C'), DB).

Notice that since we are working in the SI setting, if the cov-
ers are the same then pr and C' must have the same variables.
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Definition 17 (Prefix preserving closure extension) Let

C = [q1,...,qn) be a closed conjunction in normal form. A
conjunction C” is a ppc-extension of C'if:

P1: ¢’ = nf(closurerg([C,p])) with p € pa(C), ie. C’
is obtained by adding the atom p to C, taking the closure of
[C, p] and normalizing.

P2: The atom p satisfies p > ¢, for all ¢ € core(C). Note
that because C' is in normal form this only requires to check
that p is larger than the last atom ¢ in core(C').

P3: The normal form operation defining C’ does not change
any of the variables in C' and p. That is, the normal form may
reorder atoms but may not rename atoms in [C, p].

P4: Let C[j] = q1, - - ., q; be the prefix of C' up to ¢;, where
g; is the largest atom in C' s.t. ¢; < p. Then, [C[j],p] is a
prefix of C’. This means that the core prefix is preserved and
that no new atom can appear between p and g;.

The following statements show that closures and cores are
well-behaved, and that ppc-extensions define unique parents.

Lemma 18 Consider any conjunction C' in normal form,
any subset C' C C \ core(C), and any atom p ¢
closuregr(C). (I) closuregr(C) C closuregrr([C,p]).
(2) closurerr([C,p]) = closuregrgr([core(C),p]) =
closuregg([core(C), C’, p]).

It is worth noting that part (2) of the lemma above is vio-
lated by the Igg closure: in some cases coverspy([C,p]) #
coversy([core(C), p]) and the closures are different.

Theorem 19 (1) Let C be a closed conjunction and C' a ppc-
extension of C obtained as in condition (P1) in Definition 17.
Then core(C") = [Clj], p| where C|[j] is given by condition
(P4) in Definition 17 . (2) Let C' be a closed conjunction in
normal form. Let T = core(C") = [L,p] (that is, L is a con-
Jjunction and p is the last atom in T). Let C; = closuregg(L)
and let C = nf (C4). Then C' is a ppc-extension of C and C
is the only conjunction for which this holds.

There is one further caveat to consider: the set of closed
patterns can be infinite since adding a variable changes the
semantics of the conjunction. Therefore one should employ
a “depth bound” on the patterns searched for. The algorithm
below is started by calling RELLCM?2(closure(0)).

RELLCM2(input: closed pattern C' = q1, ..., qp)

1 if C violates depth bound then return
2 if C is not frequent then return
3 outputC
4 for all refinements [C, p] with p € pg(C)
5 and s.t. p is greater than all atoms in core(C)
6 if coverssr([C,p]) =0
7 then skip refinement
8 else Calculate C’ = nf(closuregr([C, p]))
9 Let C[j] = [q1,- - -, q;], where
10 [g; is largest atom in C' with ¢; < p]
11 if [C[j], p] is a prefix of C’
12 then RELLCM2(C")
13 return

As in the previous section the number of calls to RelLCM2
is exactly the number of closed sets. Notice that the ppc-
extension restriction reduces the branching factor as well. Fi-

min RelLCM2 RelLCM2-0O1

freq. # closed # freq CF% # closed # freq CF%
0.9 142 (490 s) 743 (391's) 80.8 96 (5s) 483 (302's) 80.1
0.7 248 (493 5) 1297 (499 s) 80.8 159 (8 s) 747 (392 s) 78.7
0.5 561 (658 s) 3247 (723 5) 82.7 358 (18s) 1761 (605 s) 79.6
0.3 1206 (992 s) 9743 (1023 s) 87.6 756 (29 s) 3647 (726 s) 792
0.1 2243 (1008 s) - - 1601 (57 s) 7456 (827 s) 78.5
0.0 3443 (1025 s) 2808 (97 s) 19224 (922 s5) 85.3

Table 1: Effect of decreasing the minimum frequency thresh-
old for NCTRER (with up to 4 variables in patterns and a
maximum depth bound of 7).

nally we note that the results of this section hold for both the
SI-OI and SI-6 settings.

5 Experimental Evaluation

We now present an empirical evaluation of the RelLCM2 al-
gorithm on two datasets.! All experiments were run in a PC
Pentium IV EM64T 3.2MHz under Linux 10.0.

The first dataset is the NCTR Estrogen Receptor Binding
Database (NCTRER), containing 232 molecules, including
bond structures.” Since each molecule is a separate structure
this is natural for the LI setting so the data can be viewed as
DB = {dy,...,d,}. However as discussed in Remark 2 we
can embed it as data for the SI setting suitable for RelLCM?2.
When doing this we can use |coversy(C, DB)| as our no-
tion of frequency but still use the proper coverss;(C,U;d;)
for implication and closure calculation.

We first investigate the effect of increasing the frequency
threshold for the NCTRER dataset where patterns may con-
tain at most 4 variables and depth bound of 7. Table 1 sum-
marizes the results for RelLCM2 and RelCLM2 under ob-
ject identity (RelLCM2-OI). The table reports the number of
patterns in each case and the associated run time in paren-
theses. The table also gives results for enumerating all fre-
quent queries (this was done using a level-wise style algo-
rithm). The first observation is that the OI restriction alone
substantially decreases the number of frequent and closed
sets. This partly explains the speed of systems using this re-
striction reported in the literature. To see the effect of us-
ing closures we calculate the compression factor as CF% =
(1- @:}‘;ﬁd} % 100. One can see that in both semantic settings
closures further decrease the number of patterns and runtime.

We next investigate the effect of increasing the number
of variables for the NCTRER dataset for a fixed threshold
of 0.3 and a maximum depth bound of 7. Results are
summarized in Table 2. One can see that RelLCM2-OI
scales much better than RelLCM2 when increasing the
number of variables and that the use of closures signifi-
cantly reduces the number of patterns and runtime. We
also observe that the CF% increases when more vari-
ables are considered. As an example, one of the closed
structures enumerated which captures active molecules is:
[dsstox_ids(z), active(x), atom(x,y, ‘C*), atom(z, z,‘O*),
bond(x, z,y, single), bond(x, w, y, double)]

'A direct comparison with a previous system c-armr [De Raedt
and Ramon, 2004] was not possible since it forces the use of syntac-
tic constraints which RelLCM2 forbids so the outputs are different.

“http://www.epa.gov/ncct/dsstox/sdf_nctrer.html
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RelLCM2 RelLCM2-0O1

Vars # closed # freq CF% # closed # freq CF%
1 3(0.004 s) 5(0.004 5) 40.0 3(0.004 s) 5(0.004 s) 40.0
2 51(0.2s) 109 (0.3 5) 532 51(0.2s) 109 (0.4 s) 532
3 303 (3s) 1197 8's) 74.6 216 (3s) 711 (10s) 69.6
4 1206 (992 s) 9743 (1023 5) 87.6 756 (29 s) 3647 (726 5) 79.2
5 - - - 2100 (724 s) - -
6 3707 (11703 s)

Table 2: Effect of increasing the number of variables for the
NCTRER dataset (with frequency threshold 0.3 and maxi-
mum depth bound of 7).

RelLCM2
Vars # closed # freq CF%
1 7(0.024s) 7(0.024s) 0.0
2 28(8.65) 35 (15.16s) 20.0
3 117 (4610.3s) 158 (7597.45) 259

Table 3: Effect of increasing the number of variables on Cora
with a relative frequency threshold of 0.1.

The second data set is drawn from Cora, a database of com-
puter science research papers [McCallum ef al., 1999]. The
resulting collection contains 2706 objects and 12439 links.
Here we investigate the number of generated closures when
increasing the number of variables. Since this is the true SI
setting we use relative frequency. The results for RelLCM2
with threshold 0.01 are reported in Table 3 (the numbers for
the OI setting are the same for this small number of vari-
ables). We see that in this domain closures are effective both
in terms of compression and runtime but the effect is less
pronounced than in NCTRER. Among the patterns discov-
ered by RelLCM2, there are closed relational sets such as:
[neural_netw(z), prob-methods(y), link_to(p, x,y)], say-
ing that a good proportion of researchers publish papers in
both areas.

6 Conclusions

The paper investigated different semantic settings for closed
clauses in multi-relational datasets. We have demonstrated
that variant definitions from the literature have significant im-
plications for properties of closed sets, and algorithms for dis-
covering them. The paper developed relational variants of
the LCM algorithm that are a promising alternative for min-
ing closed conjunctions in datasets. The experiments demon-
strated that closed sets significantly compress the number of
frequent sets and that the new algorithms scale well and can
be used to mine large patterns.
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