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Abstract
This paper introduces a novel approach to model
warrant computation in a skeptical abstract argu-
mentation framework. We show that such search
space can be defined as a lattice, and illustrate how
the so-called dialectical constraints can play a role
for guiding the efficient computation of warranted
arguments.

1 Introduction and Motivations
Abstract argumentation frameworks have played a major role
as a way of understanding argument-based inference, result-
ing in different argument-based semantics. In order to com-
pute such semantics, efficient argument-based proof proce-
dures are required for determining when a given argument A
is warranted. This involves the analysis of a potentially large
search space of candidate arguments related to A by means of
an attack relationship.

This paper presents a novel approach to model such search
space for warrant computation in a skeptical abstract argu-
mentation framework. We show that the above search space
can be defined as a lattice, and illustrate how some constraints
(called dialectical constraints) can play a role for guiding the
efficient computation of warranted arguments. The rest of
this paper is structured as follows. Section 2 presents the ba-
sic ideas of an abstract argumentation framework with dialec-
tical constraints. Section 3 shows how so-called dialectical
trees can be used to analyze the search space for computing
warrants, representing it as a lattice. In Section 4 we analyze
different criteria which can lead to compute warrant more ef-
ficiently on the basis of this lattice characterization. Finally,
in Sections 5 and 6 we discuss some related work and present
the main conclusions that have been obtained.

2 An Abstract Argumentation Framework
with Dialectical Constraints

In this paper we are concerned with the study of warrant
computation in argumentation systems, with focus on skep-
tical semantics for argumentation. As a basis for our analysis

∗This paper is based on a preliminary workshop paper from the
same authors (“An Abstract Model For Computing Warrant in Skep-
tical Argumentation Frameworks”, Proc. of the 11th NMR 2006
Workshop, Windermere, UK, June 2006).

we will use an abstract argumentation framework (following
Dung’s seminal approach to abstract argumentation [Dung,
1995]) enriched with the notion of dialectical constraint.

Definition 1 [Dung, 1995] An argumentation framework Φ is
a pair 〈Args, R〉, where Args is a finite set of arguments and R is
a binary relation R ⊆ Args × Args. The notation (A,B) ∈ R (or
equivalently ARB) means that A attacks B.

A dialectical constraint imposes a restriction characteriz-
ing when a given argument sequence λ is valid in a frame-
work Φ. An argumentation theory is defined by combining
an argumentation framework with a particular set of dialecti-
cal constraints. Formally:

Definition 2 Let Φ = 〈Args, R〉 be an argumentation framework.
A dialectical constraint C in the context of Φ is any function C :
LinesΦ → {True, False}, where LinesΦ denotes the set of all
possible sequences of arguments [A0,A1,A2, . . . ,Ak] in Φ where
for any pair of arguments Ai, Ai+1 it holds that Ai+1 R Ai.

Definition 3 An argumentation theory T (or just a theory T ) is
a pair (Φ,DC), where Φ is an argumentation framework, and
DC = {C1,C2, . . . ,Ck} is a finite (possibly empty) set of di-
alectical constraints.

Given a theory T = (Φ,DC), the intended role of DC is
to avoid fallacious reasoning [Hamblin, 1970; Rescher, 1977]

by imposing appropriate constraints on argumentation lines
to be considered rationally acceptable. It must be noted that
a full formalization for dialectical constraints is outside the
scope of this work. We do not claim to be able to identify
every one of such constraints either, as they may vary from
one particular argumentation framework to another; that is
the reason why DC is included as a parameter in T .

Argument games provide a useful form to characterize
proof procedures for skeptical semantics in argumentation.1

Such games model defeasible reasoning as a dispute be-
tween two parties (Proponent and Opponent of a claim), who
exchange arguments and counterarguments, generating dia-
logues. A proposition Q is provably justified on the basis
of a set of arguments if its proponent has a winning strategy
for an argument supporting Q, i.e., every counterargument
(defeater) advanced by the Opponent can be ultimately de-
feated by the Proponent. Dialogues in such argument games

1See an in-depth discussion in [Prakken, 2005].
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have been given different names (dialogue lines, argumenta-
tion lines, dispute lines, etc.). The set of all possible dialogues
can also be suitably defined as a tree structure (called dialec-
tical tree or argument tree).2 In the next subsection we extend
such definitions in the context of an argumentation theory.

2.1 Argumentation Line. Bundle set
Definition 4 Let T = (Φ,DC) be an argumentation theory.
An argumentation line λ in T is any finite sequence of argu-
ments [A0, A1, . . . , An] in LinesΦ. A subsequence λ′ =
[A0,A1,A2, . . . ,Ak], k ≤ n, will be called an initial argumen-
tation segment (or just initial segment) in λ of length k, denoted
�λ	k. When k < n we say that λ′ is a proper initial segment in λ.

We will say that λ is rooted in A0, writing | λ | = s to denote
that λ has s arguments. We will also write LinesA to denote the set
of all argumentation lines rooted in A in the theory T .

Example 1 Consider a theory T = (Φ,DC), with DC = ∅,
where the set Args is {A0, A1, A2, A3, A4 }, and assume that
the following relationships hold: A1 defeats A0, A2 defeats A0,
A3 defeats A0, A4 defeats A1. Three different argumentation lines
rooted in A0 can be obtained, namely λ1 = [A0,A1,A4], λ2 =
[A0,A1,A2], and λ3 = [A0,A3]. In particular, �λ1	2 = [A0,A1]
is an initial argumentation segment in λ1.

Example 2 Consider a theory T ′ = (Φ,DC) where the set Args

is {A0, A1 }, and assume that the following relationships hold: A0

defeats A1, and A1 defeats A0. An infinite number of argumen-
tation lines rooted in A0 can be obtained (e.g., λ1 = [A0], λ2 =
[A0,A1], λ3 = [A0,A1,A0], λ4 = [A0,A1,A0,A1], etc.).

Remark 1 Note that from Def. 4, given an argumentation line [A0,
A1, A2, . . . , An] every subsequence [Ai,Ai+1, . . .Ai+k] with 0 ≤
i, i+k ≤ n is also an argumentation line. In particular, every initial
argumentation segment is also an argumentation line.

Intuitively, an argumentation line λ is acceptable iff it sat-
isfies every dialectical constraint of the theory it belongs to.
Formally:

Definition 5 An argumentation line λ is acceptable wrt T =
(Φ,DC) iff Ci(λ) = True, for every Ci in DC.

In what follows, we will assume that the notion of accept-
ability imposed by dialectical constraints is such that if λ is
acceptable wrt a theory T = (Φ,DC), then any subsequence
of λ is also acceptable.

Example 3 Consider the theory T ′ in Ex. 2, and assume that
DC={C1}, with C1 = {repetition of arguments is not allowed }.3

Then λ1 and λ2 are acceptable argumentation lines in T ′, but λ3

and λ4 are not.

Definition 6 Let T be an argumentation theory, and let λ and λ′

be two acceptable argumentation lines in T . We will say that λ′ ex-
tends λ in T iff λ = �λ′	k, for some k < | λ′ | (i.e., λ′ extends λ iff
λ is a proper initial argumentation segment of λ′).

2For in-depth discussion see [Prakken and Vreeswijk, 2002].
3Note that this corresponds to a function C1(λ) = True iff there

is no Ai,Aj in λ such that Ai =Aj , and False otherwise.

We will say that λ is exhaustive if there is no acceptable argumenta-
tion line λ′ in T such that | λ | < | λ′ |, and for some k, λ = �λ′	k
(i.e., there is no λ′ that extends λ in T ). Non-exhaustive argumen-
tation lines will be referred to as partial argumentation lines.

Example 4 Consider the theory T presented in Ex. 1. Then λ1,
λ2 and λ3 are exhaustive argumentation lines whereas �λ1	2 is a
partial argumentation line. In the case of the theory T ′ in Ex. 2,
the argumentation line λ2 extends λ1. Argumentation line λ2 is ex-
haustive, as it cannot be further extended on the basis of T ′ with the
dialectical constraint introduced in Ex. 3.

We will distinguish the set S = {λ1, λ2, . . . , λk} of all
argumentation lines rooted in the same initial argument and
with the property of not containing lines that are initial sub-
sequences of other lines in the set.

Definition 7 Given a theory T , a set S = {λ1, λ2, . . . , λn} of
argumentation lines rooted in a given argument A, denoted SA, is
a bundle set wrt T iff there is no λi, λj ∈ SA such that λi extends
λj .

Example 5 Consider the theory T = (Φ,DC) from Ex. 1, and
the argumentation lines λ1, λ2, and λ3. Then SA0 = {λ1, λ2, λ3}
is a bundle set of argumentation lines wrt T .

2.2 Dialectical Trees
A bundle set SA is a set of argumentation lines rooted in a
given argument A. Such set can be thought of as a tree struc-
ture, where every line corresponds to a branch in the tree.
Formally:

Definition 8 Let T be a theory, and let A be an argument in T ,
and let SA = {λ1, λ2, . . . , λn} be a bundle set of argumentation
lines rooted in A. Then, the dialectical tree rooted in A based on
SA, denoted TA, is a tree structure defined as follows:
1) The root node of TA is A;
2) Let F={tail(λ), for every λ ∈ SA}, and H={head(λ), for every
λ ∈ F}.4 If H = ∅ then TA has no subtrees. Otherwise, if H =
{B1, . . . ,Bk}, then for every Bi ∈ H , we define getBundle(Bi) =
{λ ∈ F | head(λ) = Bi}. We put TBi as an immediate subtree
of A, where TBi is a dialectical tree based on getBundle(Bi). We
will write TreeA to denote the family of all possible dialectical trees
based on A. We will represent as TreeT the family of all possible
dialectical trees in the theory T .

Example 6 Consider the theory T = (Φ,DC) from Ex. 1. In that
theory it holds that SA0 = {λ1, λ2, λ3} is a bundle set. Fig. 1(a)
shows an associated dialectical tree TA0 .

Clearly, Definition 8 induces an equivalence relation on the
set of all TreeA . Formally:

Definition 9 Let T be a theory, and let TreeA be the set of all
possible dialectical trees rooted in an argument A in T . We will
say that TA is equivalent to T ′

A, denoted TA ≡τ T ′
A iff they are

obtained from the same bundle set SA.

4The functions head(·) and tail(·) have the usual meaning in list
processing, returning the first element in a list and the list formed by
all elements except the first, respectively.
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Figure 1: (a)Exhaustive dialectical tree TA0 for Ex. 6; (b)resulting
tree after applying and-or marking (Def.14);(c)–(d) two other ex-
haustive dialectical trees belonging to the equivalence class TA0

Given an argument A, there is a one-to-one correspon-
dence between a bundle set SA of argumentation lines rooted
in A and the corresponding equivalence class of dialectical
trees that share the same bundle set as their origin (as speci-
fied in Def. 8). Each member of an equivalence class repre-
sents a different way in which a tree could be built. Each par-
ticular computational method used to generate the dialectical
tree from the bundle set will produce a particular member of
the equivalence class.

Definition 10 Let T be an argumentative theory, and let SA be a
bundle set of argumentation lines rooted in an argument A of T . We
define the mapping T : ℘(LinesA) \ {∅} → TreeA as T(SA) =def

TA, where TreeA is the quotient set of TreeA by ≡τ , and TA denotes
the equivalence class of TA.

Proposition 1 For any argument A in an argumentative theory T ,
the mapping T is a bijection.5

As the mapping T is a bijection, we can also define the

inverse mapping S =def T
−1. In what follows, we will use

indistinctly a set notation (a bundle set of argumentation lines
rooted in an argument A) or a tree notation (a dialectical tree
rooted in A), as the former mappings S and T allow us to go
from any of these notations to the other.

Proposition 2 Let T be a theory, and TA a dialectical tree in T .
Then it holds that any subtree T ′

A of TA, rooted in A, is also a
dialectical tree wrt T .

2.3 Acceptable dialectical trees
Definition 11 Let T be a theory. A dialectical tree TA in T is
acceptable iff every argumentation line in the associated bundle set
S(TA) is acceptable. We will distinguish the subset ATreeA (resp.
ATreeT ) of all acceptable dialectical trees in TreeA (resp. TreeT ).

As acceptable dialectical trees are a subclass of dialectical
trees, all the properties previously shown apply also to them.
In the sequel, we will just write “dialectical trees” to refer to
acceptable dialectical trees, unless stated otherwise.

5Proofs not included for space reasons.

Definition 12 A dialectical tree TA will be called exhaustive iff it
is constructed from the set SA of all possible exhaustive argumen-
tation lines rooted in A, otherwise TA will be called partial.

The exhaustive dialectical tree for any argument A can be
proven to be unique.

Proposition 3 Let T be a theory, and let A be an argument in T .
Then there exists a unique exhaustive dialectical tree TA in T (up to
an equivalence wrt ≡τ as given in Def. 9)

Acceptable dialectical trees allow to determine whether the
root node of the tree is to be accepted (ultimately undefeated)
or rejected (ultimately defeated). A marking function pro-
vides a definition of such acceptance criterion. Formally:

Definition 13 Let T be a theory. A marking criterion for T is a
function Mark : TreeT → {D, U}. We will write Mark(Ti) = U
(resp. Mark(Ti) = D) to denote that the root node of Ti is marked
as U-node (resp. D-node).
Several marking criteria can be defined for capturing skep-
tical semantics for argumentation. A particular criterion
(which we will later use in our analysis for strategies for com-
puting warrant) is the and-or marking of a dialectical tree,
which corresponds to Dung’s grounded semantics [Dung,
1995].

Definition 14 Let T be a theory, and let TA be a dialectical tree.
The and-or marking of TA is defined as follows:
1) If TA has no subtrees, then Mark(TA) = U.
2) If TA has subtrees T1, . . . , Tk then a) Mark(TA) = U iff
Mark(Ti) = D, for all i = 1 . . . k. b) Mark(TA) = D iff ∃
Ti such that Mark(Ti) = U, for some i = 1 . . . k.

Proposition 4 Let T be a theory, and let TA be a dialectical tree.
The and-or marking defined in Def. 14 assigns the same mark to all
the members of TA.

Definition 15 Let T be an argumentative theory and Mark a
marking criterion for T . An argument A is a warranted argument
(or just a warrant) in T iff the exhaustive dialectical tree TA is such
that Mark(TA) = U.

Example 7 Consider the exhaustive dialectical tree TA0 in Ex. 6
shown in Fig. 1(a). Fig. 1(b) shows the corresponding marking by
applying Def. 14, showing that A0 –the root of TA0– is an ultimately
defeated argument, i.e., Mark(TA0) = D. Hence A0 is not a
warranted argument. Fig. 1(c)–(d) shows two marked dialectical
trees belonging to the same equivalence class TA0 .

3 Warrant Computation via Dialectical Trees
Our main concern is to model warrant computation in skepti-
cal argumentation frameworks, and in such a case tree struc-
tures lend themselves naturally to implementation. In fact,
some implementations of skeptical argumentation systems
(e.g., DeLP [Garcı́a and Simari, 2004]) rely on tree structures
(such as dialectical trees) which can be computed by perform-
ing backward chaining at two levels. On the one hand, ar-
guments are computed by backward chaining from a query
(goal) using a logic programming approach (e.g., SLD reso-
lution). On the other hand, dialectical trees can be computed
by recursively analyzing defeaters for a given argument, de-
featers for those defeaters, and so on. In particular, in more
complex and general settings (such as admissibility seman-
tics) dialectical proof procedures have been developed [Dung
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et al., 2006] using a similar strategy to compute warranted
belief.

In our abstract model the process of building an arbitrary
dialectical tree TA0 can be thought of as a computation start-
ing from an initial tree (consisting of a single node) and
evolving into more complex trees by adding new arguments
(nodes) stepwise. Elementary steps in this computation can
be related via a precedence relationship “�” among trees:

Definition 16 Let T be a theory, and let TA, T ′
A be acceptable

dialectical trees rooted in an argument A. We define a relationship

 ⊆ TreeA × TreeA . We will write TA � T ′

A whenever T ′
A can

be obtained from TA by extending some argumentation line λ in TA
by exactly one argument. As usual, we write TA
T ′

A iff TA = T ′
A

or TA�T ′
A. We will also write TA
∗T ′

A iff there exists a (possibly
empty) sequence T1, T2, . . . , Tk s.t. TA = T1
 . . .
Tk = T ′

A.

Every dialectical tree Ti can be seen as a ‘snapshot’ of the
status of a disputation between two parties (proponent and op-
ponent), and the relationship “�” allows to capture all possi-
ble evolutions of a given disputation.6 In particular, note that
for any argumentative theory T , given an argument A the
ordered set (TreeA ,�∗) is a poset, where the least element is
A and the greatest element is the exhaustive dialectical tree
TA. From Def. 16 the notion of exhaustive dialectical tree
can be recast as follows: A dialectical tree Ti is exhaustive iff
there is no Tj �= Ti such that Ti � Tj .

We are now concerned with the following question: can
we enumerate all possible ways of computing the exhaustive
dialectical tree TA rooted in a given initial argument A? The
answer is yes. In fact, as we will see in the next definitions,
we can provide a lattice characterization for the space of all
possible dialectical trees rooted in a given argument A on
the basis of join of dialectical trees (∨) (resulting in a new
tree corresponding to the ‘union” of T1 and T2) and meet of
dialectical trees (∧) (resulting in a new tree corresponding to
the “intersection” of T1 and T2). Formally:

Definition 17 Let T be an argumentative theory, and let T1 and
T2 be dialectical trees rooted in A. We define the meet and join of
T1 and T2, (written T1 ∧ T2 and T1 ∨ T2) as follows:
• λ is an argumentation line in T1 ∧ T2 iff λ = �λ1	k = �λ2	k, for
some k > 0 such that λ1 ∈ T1 and λ2 ∈ T2 and there is no λ′ that
extends λ satisfying this situation.
• λ is an argumentation line in T1 ∨ T2 iff 1) λ ∈ T1 and there is
no λ′ ∈ T2 such that λ′ extends λ, or 2) λ ∈ T2 and there is no
λ′ ∈ T1 such that λ′ extends λ.

For any argumentation theory T the set of all possible ac-
ceptable dialectical trees rooted in an argument A ∈ T can
be conceptualized as a lattice. Formally:

Lemma 1 Let A be an argument in a theory T , and let
(ATreeA,
∗) be the associated poset. Then (ATreeA,∨,∧) is a
lattice.

Given the lattice (ATreeA,∨,∧), we will write T ⊥
A to de-

note the bottom element of the lattice (i.e., the dialectical tree
involving only A as root node) and T �

A to denote the top el-
ement of the lattice (i.e., the exhaustive dialectical tree).

6Note however that Ti 
 Tj does not imply that one party has
advanced some argument in Ti and the other party has replied in Tj .
Thus our framework provides a setup to define unique- and multi-
move protocols as defined by Prakken [Prakken, 2005].

Figure 2: Lattice for all possible dialectical trees rooted in an argu-
ment A0 (Example 8) (top) and search space for computing dialec-
tical trees rooted in A (bottom)

Example 8 Consider the theory T from Ex. 1, and the exhaustive
dialectical tree rooted in A0 shown in Ex. 6. The complete lattice
associated with A0 is shown in Fig. 2.

4 Computing Warrant Efficiently
We have shown that given an argumentative theory T , for any
argument A in T there is a lattice (ATreeA,∨,∧) whose bot-
tom element is a dialectical tree with a single node (the ar-
gument A itself) and whose top element is the exhaustive
dialectical tree TA. In that lattice, whenever Tk = Ti∨Tj it is
the case that Ti�Tk and Tj�Tk.

In Fig. 2(top) corresponding to Example 8 we can see
that for dialectical trees T2 and T3, it holds that Mark(T2)
= Mark(T3) = D (assuming that Mark is defined as in
Def. 14). Clearly, it is the case that any tree Ti where T2�Ti

or T3�Ti satisfies that Mark(Ti) = D. In other words,
whichever is the way the tree T2 (or T3) evolves into a new
tree in (ATreeA0 ,∨,∧) it turns out that the associated mark-
ing remains unchanged. We formalize that situation as fol-
lows:

Definition 18 Let T be an argumentation theory, and let TA be
a dialectical tree, such that for every T ′

A evolving from TA (i.e.,

IJCAI-07
283



TA
∗T ′
A) it holds that Mark(TA) = Mark(T ′

A). Then TA is a
settled dialectical tree in T .

Now we have a natural, alternative way of characterizing war-
rant.

Proposition 5 Let T be a theory, and let A be an argument in T .
Then A is a warrant wrt T iff Mark(TA) = U, where TA is a
settled dialectical tree.

Clearly, computing settled dialectical trees is less expen-
sive than computing exhaustive dialectical trees, as fewer
nodes (arguments) are involved in the former case. Follow-
ing Hunter’s approach [Hunter, 2004], in what follows we
will formalize the cost of computing a dialectical tree as a
function cost : Tree

T
→ 	. As explained in [Hunter, 2004],

several issues can be considered when computing such cost.
For simplicity, in our formalization we will assume that cost
is linearly related to the number of nodes in a dialectical tree,
such that cost(T) = C ∗Nodes(T), where C > 0 is a constant
and Nodes(·) stands for the number of nodes in a tree.

The next definition refines the class of settled dialectical
trees by distinguishing those trees involving as few arguments
as possible in order to determine whether the root of the tree
is ultimately a warranted argument according to the marking
procedure. From the many possible minimally settled dialec-
tical trees rooted in a given argument A, a dialectical tree T
is optimally settled if � ∃ T ′ that is less expensive than T.

Definition 19 A dialectical tree T is a minimally settled dialec-
tical tree iff there is no T ′�T such that T ′ is a settled dialec-
tical tree. A dialectical tree T is an optimally settled dialectical
tree iff T is minimally settled, and for any other settled tree T ′,
cost(T) ≤ cost(T ′).

Example 9 Consider the theory T from Ex. 1, and the complete
lattice (ATreeA0 ,∨,∧) shown in Fig. 2 (top). Then T2 and T3 are
minimally settled dialectical trees.

Let SettledA, MinimalA and OptimalA be the sets of
all settled, minimally settled and optimally settled dialecti-
cal trees for an argument A, resp. Clearly, it holds that
OptimalA ⊆ MinimalA ⊆ SettledA ⊆ ATreeA. The sets
SettledA, MinimalA and OptimalA can be identified in any
lattice (ATreeA,∨,∧), as shown in Fig. 2 (bottom). The bor-
derline on top of the lattice denotes all possible minimally
settled dialectical trees T1, . . . , Tk rooted in A. Some of such
trees in that set may be optimal. Any dialectical tree that
evolves from settled dialectical trees T1, . . . , Tk will be also a
settled dialectical tree. In particular, the exhaustive dialectical
tree is also settled.

4.1 Dialectical Constraints (Revisited)
As we have analyzed previously, the lattice associated with
any argument A accounts for the whole search space for de-
tecting if A is warranted. To do so it is not necessary to
compute the exhaustive dialectical tree rooted in A; rather,
it suffices to focus search on settled dialectical trees, as they
involve less nodes and are consequently more efficient. When
determining whether a conclusion is warranted, argument-
based inference engines are supposed to compute a sequence
of dialectical trees T1, T2, . . . , Tk such that Tk is a settled

dialectical tree. For skeptical argumentation semantics, infer-
ence engines like DeLP [Garcı́a and Simari, 2004] use depth-
first search to generate dialectical trees for queries and de-
termine if a given literal is warranted. Such search can be
improved by applying α − β pruning, so that not every node
(argument) is computed. In other words, depth-first search
naturally favors the computation of settled dialectical trees.

Example 10 Consider the marked dialectical trees in Fig. 1(right)
belonging to the same equivalence class TA0 (Ex. 7). Then depth-
first computation using α−β pruning will perform better on the tree
in Fig. 1(d) than on the tree in Fig. 1(c), as in the first case, only two
nodes need to be explored to obtain the final marking of the tree (A0

and A3), whereas in the second case four nodes (A0, A1, A3 and
A4) need to be traversed.

The natural question that arises next is how to compute
minimally settled trees. Given a theory T = (Φ,DC), it
turns out that the set of dialectical constraints DC can help
to provide a way of approximating such minimally settled
trees, based on the fact that in depth-first search the order
in which branches are generated is important: should shorter
branches be computed before longer ones, then the resulting
search space can be proven to be smaller on an average search
tree [Chesñevar et al., 2005]. Usually heuristics are required
to anticipate which branches are likely to be shorter than the
average. Constraints in DC can help provide such kind of
heuristics. In this setting, heuristics for efficient computation
of dialectical trees can be understood as functions which im-
prove the associated dialectical proof procedure by tending to
approximate optimally settled trees.

Example 11 In DeLP the set DC includes as a constraint that
arguments advanced by the proponent (resp. opponent) should not
be contradictory in any argumentation line. The following heuris-
tics [Chesñevar et al., 2005] can be shown to favor the computation
of shorter argumentation lines when applying depth-first search in
the context of DeLP: if the current argument A0 is a leaf node in
a dialectical tree T, and has different candidate defeaters A1, A2,
. . . , Ak, then the Ai which shares as many literals as possible with
A0 should be chosen when performing the depth-first computation
of TA0 . Thus, while depth-first computation of dialectical trees fa-
vors naturally the construction of minimally settled dialectical trees,
by applying this heuristics an approximation to optimally settled di-
alectical trees is obtained.

4.2 Relevance in Dialectical Trees
In [Prakken, 2001] the notion of relevance was introduced
in the context of argument games and the characterization of
protocols for liberal disputes. According to [Prakken, 2001],
a move is relevant in a dispute D iff it changes the disputa-
tional status of D’s initial move.7 In our context, dialectical
trees correspond to such disputes. In the setting presented
in [Prakken, 2001], moves are performed by both parties in-
volved in a dispute (Proponent and Opponent).

Interestingly, there is a clear relation between minimally
settled dialectical trees and this notion of relevance, as the
notion of extending an argumentation line by one argument
(as introduced in Def. 16) can be recast as performing a move.

7The notion of relevance as well as some interesting properties
were further studied and refined [Prakken, 2005].
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Definition 20 Let T = (Φ,DC) be an argumentation theory, and
let TA1 , T ′

A1 be acceptable dialectical trees. We will say that there is
a move M from TA to T ′

A, denoted as Move(TA, T ′
A), iff TA �T ′

A.
It must be remarked that a proper conceptualization of move
in argumentation demands more parameters, such as identify-
ing the argumentation line in which a argument is introduced,
who is the player (Proponent or Opponent) making the move,
etc. Such an approach has been formalized by [Prakken,
2001; 2005]. Our approach in this case is intentionally over-
simplified, as it just aims to relate the notion of relevance
and the notion of minimally settled dialectical trees. In fact,
note that Def. 20 allows us to formalize the computation of
an acceptable dialectical tree Tk rooted in A0 as a sequence
of moves Move(T0, T1), Move(T1, T2), . . . , Move(Tk−1, Tk),
where T0 is a dialectical tree with a single node T ⊥

A0
. In fact,

Prakken’s notion of relevant move can be stated in our set-
ting as follows: a move M = Move(TA, T ′

A) is relevant iff
Mark(TA) �= Mark(T ′

A).
The following proposition shows that minimally settled

trees are only those obtained by performing a sequence of
relevant moves ending in a settled dialectical tree.

Proposition 6 Let T be an argumentation theory, and let TA be a
dialectical tree. Then TA is minimally settled iff there is a sequence
of moves M1, M2, . . . , Mk such that every move Mi is relevant, and
Mk results in a settled dialectical tree.

5 Related Work
Dialectical constraints have motivated research in argumenta-
tion theory in different directions. In our proposal dialectical
constraints are left as a particular parameter to be included
in the argumentation theory. Different argument-based proof
procedures have included particular dialectical constraints as
part of their specification. In [Besnard and Hunter, 2001]

the authors present a logic of argumentation which disal-
lows repetition of arguments in argument trees [Besnard and
Hunter, 2001, p.215] Other approaches for computing well-
founded semantics via trees (e.g., [Kakas and Toni, 1999])
defense nodes (which account for Proponent’s argument in
an argumentation line) cannot attack any other defense node
in the tree. Similarly, in [Dung et al., 2006], for computing
assumption-based admissible semantics there is a further re-
quirement in the proof procedure that “the proponent does not
attack itself”. Such kind of restrictions can be seen as partic-
ular dialectical constraints in the context of our proposal.

Recently there have been other research oriented towards
formalizing dialectical proof procedures for argumentation.
To the best of our knowledge, none of such works formalizes
the dialectical search space through a lattice as presented in
this paper. Our work complements previous research con-
cerning the dynamics of argumentation, notably [Prakken,
2001] and [Brewka, 2001]. Although Prakken develops
a very comprehensive general framework, some important
computational issues (e.g., search space considerations) are
not taken into account.

6 Conclusions. Future Work
In this paper we have presented a novel approach to model
the search space associated with warrant computation in an

abstract argumentation framework. We have shown how the
notion of dialectical tree can be used constructively to model
different stages in the process of computing warranted argu-
ments. We have also shown how the process of computing
warrant can be recast into computing dialectical trees within
a lattice, illustrating how dialectical constraints can play a
role for guiding an efficient computation of warranted liter-
als. Part of our future work is related to studying theoretical
properties of the proposed framework, analyzing their inci-
dence for developing efficient argument-based inference en-
gines. Research in this direction is currently being pursued.
Acknowledgements
We thank anonymous reviewers for comments which helped to im-
prove the final version of this paper. This research was partially sup-
ported by the Dept. of Computer Science and Eng., SeCyT, U.N.Sur,
CONICET, and ANPCyT (PICT 13096, 15043, PAV076), Argentina.
Partial research support was also obtained from Project TIN2004-
07933-C03-01/03 and Ramón y Cajal Program (MCyT, Spain).

References
[Besnard and Hunter, 2001] P. Besnard and A. Hunter. A logic-

based theory of deductive arguments. Artificial Intelligence,
1:2(128):203–235, 2001.

[Brewka, 2001] G. Brewka. Dynamic argument systems: A formal
model of argumentation processes based on situation calculus. J.
of Logic and Computation, 11(2):257–282, 2001.
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