
A General Framework for Scheduling in a Stochastic Environment∗

Julien Bidot

Universität Ulm

Ulm, Germany

julien.bidot@uni-ulm.de

Thierry Vidal

ENIT

Tarbes, France

thierry@enit.fr

Philippe Laborie

ILOG S.A.

Gentilly, France

plaborie@ilog.fr

J. Christopher Beck

University of Toronto

Toronto, Canada

jcb@mie.utoronto.ca

Abstract

There are many systems and techniques that ad-
dress stochastic scheduling problems, based on dis-
tinct and sometimes opposite approaches, espe-
cially in terms of how scheduling and schedule
execution are combined, and if and when knowl-
edge about the uncertainties are taken into ac-
count. In many real-life problems, it appears that
all these approaches are needed and should be com-
bined, which to our knowledge has never been
done. Hence it it first desirable to define a thor-
ough classification of the techniques and systems,
exhibiting relevant features: in this paper, we pro-
pose a tree-dimension typology that distinguishes
between proactive, progressive, and revision tech-
niques. Then a theoretical representation model
integrating those three distinct approaches is de-
fined. This model serves as a general template
within which parameters can be tuned to implement
a system that will fit specific application needs: we
briefly introduce in this paper our first experimental
prototypes which validate our model.

1 Introduction

Many approaches to scheduling assume an execution envi-
ronment without uncertainty. The problem there is to allo-
cate resources and assign start times to a set of given activ-
ities, so that temporal and resource constraints are satisfied.
The resulting predictive schedule is then sent to the execu-
tion controller. However, in practical applications, we have to
schedule with incomplete, imprecise, and/or uncertain data:
simply executing a strictly and completely determined pre-
dictive schedule is not a right answer anymore, as there is
high chance that such a schedule will not fit the real situation
that will arise. Scheduling and schedule execution can then
be reconsidered in many ways: for instance, setting activity
start times of a sequence of activities can be postponed until
execution, adding some flexibility to a schedule that will bet-
ter adapt to observed events; the execution controller can be

∗Partially supported by Convention Industrielle de Formation par
la REcherche 274/2001.

augmented by rescheduling capabilities in case a failure oc-
curs; or schedule generation and execution can be interleaved
so as to only predict in a short range, where uncertainty re-
mains low enough. Such approaches are very different from
one another, and it is still unclear which one is the best an-
swer in a given application context: in this paper, we will pro-
pose (in Section 3) a thorough classification of techniques for
scheduling under uncertainty, exhibiting their strengths and
weaknesses. Our conclusion is that in real-life applications,
mixing those techniques within a single system appears to be
highly desirable. For that purpose we will propose (in Sec-
tion 4) a conceptual theoretical model encompassing both the
generation and the execution of the schedule and in which a
large number of techniques for dealing with uncertainty can
be concurrently implemented. Section 5 will present experi-
mental prototypes that partially validate our model.

2 Background

A standard scheduling problem comprises a set of activities
and resources. Each activity has a duration, and each re-
source has a limited capacity. The objective is to assign re-
sources and times to activities given temporal and resource
constraints. In general, scheduling problems are optimization
problems: typical optimization criteria are makespan, number
of tardy activities, tardiness or allocation cost. If we assume
an execution environment without uncertainty, we generate a
predictive schedule offline that is then executed online with-
out any problem. There are however many possible sources
of uncertainty in scheduling; e.g., some activity durations or
some resource capacities are imprecise (as e.g. resources may
break down).

We now give some definitions to avoid ambiguity of terms
commonly used by different communities.

Definition 2.1 (flexibility) A flexible schedule is a schedule
that is not fully set: decisions have still to be made.

Decisions to make or to change can be of heterogeneous
types; e.g., allocation or sequencing decisions.

Definition 2.2 (conditional schedule) A conditional sched-
ule is a special kind of flexible schedule in which distinct al-
ternative subsets of partially ordered activities can be mod-
eled: the remaining decisions here are to choose between
such alternatives at execution time.

IJCAI-07
56

Definition 2.3 (executable schedule) An executable sched-
ule is a schedule that does not violate any constraint.

Definition 2.4 (adaptive scheduling system) An adaptive
scheduling system is a system that is able to generate a new
executable schedule whenever the current executing schedule
is no longer executable.

Definition 2.5 (robustness) A robust schedule is a schedule
whose quality (according to the optimization criterion) does
not deviate too much during execution with respect to known
online perturbations: the less deviation, the more robustness.

Definition 2.6 (stability) A stable schedule is a schedule in
which no decision will be changed during execution.

3 Classification

In this section, we concisely describe a taxonomy of schedul-
ing systems or techniques that is independent of any specific
representation model or reasoning technique. Such classifi-
cations have already been done, especially in the Operations
Research community (as in Herroelen et al. [2004]), but none
is totally satisfactory to our need since they only distinguish
between offline and online techniques. We go beyond this
distinction and consider more issues such as how and when
decisions are made, optimality requirements, etc.

3.1 Proactive Techniques

A proactive technique takes into account uncertainty to pro-
duce schedules that are less sensitive to online perturbations.

A first naive method for making a schedule insensitive to
online perturbations is to produce offline a unique predictive,
robust schedule by taking into account the worst scenario.

Another approach consists in introducing some flexibility
in the schedule: only a subset of decisions are made offline
with a search and the rest online without search; this is a
kind of least commitment approach with respect to decision-
making since we only make decisions when information is
more precise, and/or more certain. Morris et al. [2001] for
instance maintain a plan with uncertain activity durations in
which start times are not set: they provide algorithms to guar-
antee the executability of such schedules whatever the actual
durations will be. Here we have an incomplete flexible sched-
ule. Another way is to build an undecided flexible schedule:
everything is set but with alternative branches, leading to a
conditional schedule.

Different uncertainty models (probability distributions,
possibility theory, etc.) can be used in proactive techniques
for the representation of the problem, and for solving it (e.g.,
find the schedule that will have the highest probability that
the makespan will not exceed a given value).

3.2 Revision Techniques

Revision techniques consist in changing decisions during e-
xecution when it is necessary; e.g., we change decisions when
the current predictive schedule becomes inconsistent, when
estimated quality deviates too much from the predicted one,
or in a more opportunistic way when a positive event occurs
(for example, an activity finishes earlier than expected). In
other words, we need an execution-monitoring system able to

react and indicate when it is relevant to change decisions of
the current predictive schedule; e.g., Sadeh et al. [1993] de-
veloped both simple rules to adapt a current schedule through
e.g. activities shifting, and more elaborated local reschedul-
ing techniques when the problem is more acute.

3.3 Progressive Techniques

The idea behind progressive techniques is to interleave
scheduling and execution, by solving the whole problem
piece by piece, where each piece corresponds to a time hori-
zon slice. Reasoning is done as a background task online; i.e.,
we can afford more time to search, we incrementally commit
to scheduling decisions periodically or when new information
arrives, and no decisions are changed.

One way of proceeding when using a progressive approach
is to select and schedule new subsets of activities to extend
the current executing schedule on a gliding time horizon; e.g.,
Vidal et al. [1996] allocate container transfer activities in a
harbor to robots only as long as temporal uncertainty remains
low enough to be reasonably sure that the chosen robot will
actually be the first available. A decision is made when un-
certainty level of the used information is not too high, and/or
when the anticipation horizon, the interval between the cur-
rent time and the expected end time of the last scheduled ac-
tivity, has become too small. One thus needs an execution-
monitoring system able to react and indicate when, what, and
what type of new decisions to make.1

3.4 Discussion

We can compare the three families of techniques with respect
to the following criteria: online memory need, online CPU
need, schedule quality/robustness, and stability.

Revision techniques do not consume a lot of memory on-
line since we only have to store one schedule. They may re-
quire a lot of CPU online, depending on the time spent on
rescheduling. We can expect a very high schedule quality if
we are able to reoptimize very often and globally revise the
current schedule, but robustness is not guaranteed. Stability
may be very bad if we change a lot of decisions.

Online memory may vary for proactive techniques depend-
ing on whether we have to store one or more schedules: con-
ditional schedules may require a lot of memory. In general,
online computational power keeps low since we do not have
to search for solutions with backtracking. We can expect a
high schedule robustness or stability since we take into ac-
count what may occur online to make decisions.

Progressive techniques permit to limit our online memory
need to the minimum since we only store a piece of schedule.
The requirement in CPU online is limited since we only solve
sub-problems. It is difficult to guarantee a very high schedule
quality/robustness since decisions are made without taking
into account knowledge about uncertainty to make schedul-
ing decisions and with a more or less short-term/aggregated
view. This family of techniques generates stable schedules.

These features can help a decider to choose a technique in
a specific application domain: if memory usage is limited,

1Alternatively, new subsets of activities can simply be integrated
periodically, and so no complex conditions are monitored.

IJCAI-07
57

then conditional schedules are probably not the right answer.
Moreover, one can easily see that mixed techniques are nec-
essary: for instance, in a highly stochastic world, the time
spent on rescheduling can be reduced when a proactive or
a progressive approach is used, but on the contrary a pure
proactive technique is not realistic since there will always be
unpredicted or unmodeled deviations that can only be dealt
with by a revision technique. The combinatorial explosion
of conditional schedules also suggests to develop only some
of the branches and add more piece by piece in a progres-
sive way. As a matter of conclusion, a decider should also
be given a global system encompassing all of the three kinds
of approaches, allowing her to tune the levels of proactivity,
progression, and revision that will best fit her needs. A few
mixed techniques have been proposed for making scheduling
decisions in a stochastic environment, but as far as we know,
no one has proposed a system or an approach that combines
the three ways of scheduling.

4 Representation Model

This section describes a generic representation model for
scheduling in a stochastic execution environment. This model
integrates the three families of approaches presented in the
previous section.

4.1 Schedule

We are interested in extended scheduling problems with mu-
tually exclusive subsets of activities, in a way similar to what
was done in Tsamardinos et al. [2003]. At the roots of our
model, we need variables and constraints inspired by the con-
straint paradigm.

Definition 4.1 (variable) A variable is associated with a do-
main of values or symbols, and it is instantiated with one and
only one of the values or symbols in this domain.

Definition 4.2 (constraint) A constraint is a function relat-
ing one (unary constraint), two (binary constraint) or more
(k-ary constraint) variables that restrict the values that these
variables can take.

The domain of a variable is reduced when a decision is
made or when a decision is propagated via constraints.

We distinguish two types of variables in the problem: the
controllable variables and the contingent variables.2

Definition 4.3 (controllable variable) A controllable vari-
able is a variable instantiated by a decision agent.

Decisions may influence the state of the environment. One
of the issues that depends on application domains is to decide
when to instantiate controllable variables. For example, it is
difficult to set activity start times in advance when activity
durations are imprecise because of temporal constraints.

Definition 4.4 (contingent variable) A contingent variable
is a variable instantiated by Nature.

2Controllable variables correspond to decision variables, and
contingent variables to state variables in the Mixed Constraint-
Satisfaction Problem framework [Fargier et al., 1996].

Moreover, a set of (probabilistic/possibilistic/etc.) distri-
butions of possible values may be attached to each contingent
variable. Such distributions are updated during execution.

We can now define the basic objects of a scheduling prob-
lem, namely resources and activities.

Definition 4.5 (resource) A resource r is associated with
one or more variables, that represent its capacity, efficiency,
and/or state. Its capacity is the maximal amount that it can
contain or accommodate at the same time. Its efficiency de-
scribes how fast or how much it can do with respect to its
available capacity. Its state describes its physical condition.
A resource capacity, efficiency, and state can all vary over
time. These variables are either controllable or contingent.
r states a global resource constraint ctr on all its variables
and the variables of the activities that require it. The schedul-
ing problem comprises a finite set of resources noted R.

We can model the state of the execution environment as a
set of state resources; e.g., the outside temperature is modeled
by a resource that can be in only one of three states depending
on time: hot, mild, and cool.

Definition 4.6 (activity) An activity
ay = 〈startay , day, enday, [CT ay]〉 is defined by three vari-
ables: a start time variable startay , a duration variable day ,
and an end time variable enday . These variables are either
controllable or contingent. ay may be associated with an op-
tional set of resource constraints CT ay that involve the vari-
ables of the resources it requires.

In a constraint-based model, to propagate the bounds of the
variable domains, we usually post the following constraint for
each activity: enday − startay ≥ day . Of course, constraints
of any type between variables can be posted on our schedul-
ing problem.

Our scheduling problem is composed of resources, activ-
ities, and constraints relating them, with possibly additional
variables describing the state of execution environment.

To fit the classification described in Section 3, additional
constraints may have to be posted by the schedule generation
algorithm to (more or less) set resource allocations, make se-
quencing decisions, and set precise activity start times. Hence
we do not need to add anything to our model to achieve this.

Central to our model is the notion of conditions that are
subsets of variables related by logical and/or mathematical
relations: such conditions guide the branching within condi-
tional schedules, the selection of new subsets of activities in
a progressive technique, etc.

Definition 4.7 (condition) A condition
cond = 〈func, [atw]〉 is a logical and/or mathematical rela-
tion func in which at least one variable is involved. It may be
associated with an optional active temporal window that is an
interval atw = [st, et] between two time-points st and et in
the current schedule. If st = et, then it means the condition
must be checked at a precise time-point in the schedule.

A condition can involve characteristics of the distributions
of contingent variables. A condition can be expressed with
conjunctions and disjunctions of conditions.

A typical example of a condition is what we will call a
branching condition; i.e., a branching condition is a condition

IJCAI-07
58

that will be attached to one of mutually exclusive subsets of
activities (see below). Such a condition will be checked at a
specific time-point that we will call a branching node.

We propose the following recursive definition of a schedule
to describe our model with respect to these particular mutu-
ally exclusive subsets of activities.3

Definition 4.8 (schedule) A schedule S is either
• void S = ∅, or
• S = 〈ayS , {CT S}∗,S′〉 is an activity ayS partially ordered
via constraints in {CT S}∗ with respect to the activities of a
schedule S′, or
• S = 〈bndS , nbS , {rcpS}∗, cndS〉 is a set of nbS mutu-
ally exclusive recipes rcpS; i.e., mutually exclusive recipes
represent different ways of attaining the same goal, as de-
fined below; such recipes follow a branching node bndS and
lead to a converging node cndS . A node is a dummy activity
aydum of null duration that does not require any resource:
aydum = 〈startdum

ay , 0, enddum
ay 〉, with startdum

ay = enddum
ay .

Definition 4.9 (recipe) A recipe rcp = 〈S, [Pyrcp], bcrcp〉 is
a schedule S associated with an optional probability, possi-
bility, or plausibility of being executed Pyrcp and a branch-
ing condition bcrcp: it will be executed if and only if bcrcp is
met.

A recipe can describe one of several possibilities for per-
forming an action; e.g., a product can be made in different
ways that are mutually exclusive. At execution, for each set
of mutually exclusive recipes, only one will be executed.

The first two ways of defining a schedule are just two al-
ternatives to define recursively a classical partially ordered
schedule without alternatives. The third introduces parts of
a schedule that divide, at some given time-point, into mutu-
ally exclusive recipes: each recipe rcpi will be executed if a
branching condition is met at that point.

It should be noted that conditions must be designed such
that they are actually mutually exclusive and cover all cases.

The previous recursive definitions are actually constructive
definitions that permit to build a schedule piece by piece,
building subsets of partially ordered activities that are then
composed into a set of mutually exclusive recipes, this set be-
ing in turn integrated into a subset of partially ordered activ-
ities that is in turn one of several mutually exclusive recipes,
and so on: alternatives may be nested within alternatives.

For tractability reasons, we assume there is no temporal
constraint between two activities that do not belong to the
same recipe. However, some precedence constraints can be
added to constrain branching conditions to be checked before
their related recipes would be executed.

4.2 Generation and Execution

We only defined a model that a proactive method could use to
generate a more or less flexible schedule that would then be
entirely sent to the execution controller. To make it possible

3One should notice that what we call a schedule would be better
referred to as a solution to a scheduling problem, which is possibly
not fully set but only defines a partial order, a schedule implying in
the Operations Research community that all start times are set.

to use revision and progressive techniques, we need to con-
sider now a dynamic problem in which a solution is executed
in a stochastic environment, thus requiring more scheduling
decisions to be made while executing. Hence we need to de-
sign a model interleaving schedule generation and execution:
the resulting system must be able to react, to know what to do
(e.g., reschedule, schedule next subset, make new scheduling
decisions, etc.), and to know how to do it.

Two types of algorithms will be needed: execution algo-
rithms will be in charge of dealing with the current flexible
schedule (as defined in previous section) and both making the
scheduling decisions that remain and actually executing activ-
ities; generation algorithms will be in charge of changing the
current schedule, either because some part is not valid any-
more and must be modified (revision approach), or because
new activities must be added (progressive approach).

The dynamic evolution of our model will be monitored via
condition meeting: if such a condition is met, then we know
we have to make or change decisions. The branching con-
dition defined in the previous section is actually used by the
execution algorithms, guiding them into the adequate alterna-
tive. We need to introduce here two new types of condition:
an activation condition, when met, activates a new generation
step through the generation algorithm; then a fire condition
will actually enforce the global monitoring system to turn to
this newly generated schedule. Such activation and fire condi-
tions are needed both in revision and progressive approaches.

Typical examples of activation and fire conditions are vio-
lations of some constraints in the current schedule, arrivals of
new activities to execute, critical resources no longer avail-
able (implying a revision mechanism), or more simply a con-
dition stating that the anticipation horizon becomes too small
and so we need to schedule a new subset of activities to an-
ticipate execution (implying a progressive mechanism).

The generation and execution model can be represented by
an automaton whose states are called execution contexts.

Definition 4.10 (execution context) An execution context
ect = 〈Sect, αect〉 is composed of a schedule Sect and an
execution algorithm αect.

An execution context is a schedule that is a solution of the
whole scheduling problem or a part of it. In addition, an ex-
ecution context may not contain all recipes starting from a
branching node, but only those with the highest values Py;
another example of activation condition is hence that when
the value Py of a remaining recipe becomes high enough, that
recipe should be developed and included in the current sched-
ule: we hence generate in a progressive way a new schedule
which is the current one augmented with an additional recipe.

αect makes decisions (start time setting, resource alloca-
tions, branching on one recipe among several candidates, etc.)
on the run, greedily: it cannot change decisions that are al-
ready made. In case of pure execution approach, such as dis-
patching, αect makes all decisions.

Our automaton also includes transitions for generating ex-
ecution contexts and going from one execution context to an-
other one.

Definition 4.11 (transition) A transition
tr = 〈ectsrc

tr , ecttat
tr , condact

tr , condfir
tr , βtr〉 is composed of

IJCAI-07
59

a source execution context ectsrc
tr , a target execution con-

text ecttat
tr , an activation condition condact

tr , a fire condition
condfir

tr , and a generation algorithm βtr.

The default situation for the temporal windows of the acti-
vation and fire conditions of transition tr is the whole source
execution context ectsrc

tr ; i.e., their temporal windows equal
the interval between the start point and the end point of ectsrc

tr .

Transition tr is activated when its activation condition is
met. When tr is activated, generation algorithm βtr generates
target execution context ecttat

tr from source execution context
ectsrc

tr and the data of the problem model. Execution algo-
rithm αecttat

tr
is set by βtr from a library of template execution

algorithms. βtr may be run offline or online; it can decide or
change a part of or all decisions, in particular it can select
a subset of activities to include into ecttat

tr (progressive ap-
proach). Transition tr is fired when its fire condition is met.
When tr is fired, we change contexts: we go from source exe-
cution context ectsrc

tr to target execution context ecttat
tr . Acti-

vation condition condact
tr must be more general than or equal

to fire condition condfir
tr since condact

tr must be met before or
when condfir

tr is met.

Template transitions are defined offline and each of them is
an implicit description of many transitions that may be fired
in an automaton model; e.g., a template transition associated
with a resource constraint rct1 may be fired each time one of
the activities involved in rct1 is executing and allocated to the
resource involved in rct1.

The generation algorithm generating ecttrl
and the execu-

tion algorithm associated with ecttrl
are complementary: the

former makes some decisions for a subset of activities, and
the latter makes the remaining decisions for these activities;
e.g., the former makes allocation and sequencing decisions,
and the latter sets activity start times.

It should also be noted that all conditions are checked by
execution algorithms. When a branching condition is met, we
do not change contexts. When an activation condition is met,
a new execution context is generated. When a fire condition
is met, we change execution contexts.

Our first assumption is that uncertainty level decreases
when executing a context. Ergo, we leave some decisions
to the execution algorithm to limit the computational effort
that would be used to revise decisions, and the perturbations
and instability due to such revision. Decisions that can be
made in advance because they concern variables with low un-
certainty are taken by generation algorithms, while remaining
decisions will be taken later either by generation or execution
algorithms when their uncertainty will be lower.

Our second assumption is that dynamics of the underly-
ing controlled physical system are low enough with respect to
the time allotted to the reasoning system to search for sched-
ules online. Therefore one has enough time to find at least
one schedule, if not the optimal one. Generation algorithms
should be anytime; i.e., generation algorithms should be able
to produce a schedule whose quality, robustness, or stability
increases with search time. In principle, the decisions made
by generation algorithms are better with respect to an opti-
mization criterion than the decisions made by execution algo-
rithms. The former have more time to reason and choose the

best schedules among a set of executable schedules, whereas
the latter are greedy and return the first executable they find.

As a matter of conclusion, one can see any ‘pure’ technique
can be easily instantiated with our model: a pure proactive
technique will barely need a single context, generation being
made once for all offline, the remaining decisions being taken
by the sole execution algorithm; in a pure revision (resp. pro-
gressive) approach, contexts contain non-flexible predictive
schedules with basic execution algorithms, and activation/fire
conditions associated with failures or quality deviations in
the current context (resp. to the horizon getting too small or
the uncertainty level decreasing), and generation algorithms
change the current schedule to fit the new situation (resp. add
a new subset of activities). But the great strength of the model
is that now all three kinds of approaches can be integrated and
parameters can be tuned to put more or less flexibility, more
or less revision capabilities, etc., upon needs that are driven
by the application.

5 Experimental System

In this section, we simply recall a few software prototypes
that we implemented, and we show how they are actually
special cases of our global model and hence partly validate
it. Experimental results appear in the cited papers.

5.1 Scheduling Problem

The flexible job-shop scheduling problem (flexible JSP) is a
scheduling problem where the set of activities AY is parti-
tioned into jobs, and with each job is associated a total or-
dering over a subset of AY . Each activity specifies a set of
alternative resources on which it must execute without inter-
ruption. No activities that require the same resource can over-
lap their executions. We represent this formally by a partition
of the set of AY into resource sets. A solution corresponds
to allocating one resource to each activity and a total ordering
on each resource set such that the union of the resource and
job orderings is an acyclic relation on AY .

For our experimental investigations, we focused on prob-
abilistic flexible job-shop problems. Random variables are
fully independent and associated with probability distribu-
tions. We conducted experiments with two criteria to mini-
mize: makespan, and sum of tardiness and allocation costs.

5.2 Architecture

Our experimental system is composed of the following mod-
ules: a solver, a controller, and a world.4 The solver module is
in charge of making decisions with a backtrack search, con-
straint propagation, and Monte-Carlo simulation. The deci-
sions made by the solver module are sent to the controller
module. The latter is responsible for choosing activity start
times given decisions made by the solver module and what
happens during execution (observations sent by the world
module). The controller module monitors progression and
revision conditions to start either a selection of new activi-
ties or a re-optimization, when it is relevant. The controller is

4The world module is not a real execution environment but a
simulator of it, it instantiates random variables.

IJCAI-07
60

also in charge of maintaining known and unknown probabil-
ity distributions running Monte-Carlo simulation online.

5.3 Revision Approach

Our experimental revision approach is parametrized by
choosing a revision criterion and a sensitivity factor. A re-
vision criterion is a condition that is monitored during exe-
cution; e.g., we monitor the absolute difference between the
expected quality, computed before execution, and the current
expected quality, computed during execution based on what
we observe and using simulation for the non-executed part of
the schedule, and we compare this absolute difference with
a reference value. If the revision criterion is met, then we
reschedule. A sensitivity factor sets the sensitivity of the revi-
sion criterion with respect to perturbations that occur during
execution. The sensitivity factor is set to indirectly choose
the search effort that depends on the number of reschedulings
that occur online [Bidot et al., 2003].

5.4 Proactive Approach

Our experimental proactive approach is set by two main pa-
rameters. The first parameter proactgene is used to generate a
problem model without uncertainty from the stochastic prob-
lem model; i.e., we choose a value for each random variable.
The greater the values chosen, the more proactive the tech-
nique. A possibility is to choose and use the average values
of distributions. The second parameter proactsimu is Boolean
and determines whether Monte-Carlo simulation is used or
not during search. Moreover, the number of simulation runs
can be chosen [Beck and Wilson, 2005].

5.5 Progressive Approach

Our progressive approach is characterized by four parameters
that can be set to choose indirectly the anticipation horizon
and the size of each sub-problem: δtmin controls the antic-
ipation horizon with respect to time, σtmin controls the an-
ticipation horizon with respect to the uncertainty level, δtmax

controls the size of each sub-problem with respect to time,
and σtmax controls the size of each sub-problem with respect
to the uncertainty level [Bidot et al., 2006].

6 Conclusion and Future Work

In this paper, we presented a general framework for schedul-
ing when execution environment is stochastic. Our represen-
tation model acts as a generic conceptual model that can inte-
grate three general complementary families of techniques to
cope with uncertainty: proactive techniques use information
about uncertainty to generate and solve a problem model; re-
vision techniques change decisions when it is relevant during
execution; progressive techniques solve the problem piece by
piece on a gliding time horizon. We showed this model can
address diverse and complex scheduling problems; in particu-
lar, it is possible to handle mutually exclusive subsets of activ-
ities. In addition, we described software prototypes directly
instantiated from our representation model and controlled by
several parameters. The prototypes can address a large range
of probabilistic scheduling problems. This work paves the
way to the development of a software toolbox gathering a

large set of algorithms to manage scheduling and schedule
execution in a stochastic environment. Users of that tool-
box would use the general architecture designed through our
model but they would be able to design their own applica-
tion by selecting relevant modules and correctly tuning pa-
rameters (e.g., anticipation horizon, sensitivity factor, etc.).
Our future work is to implement such a complete toolbox and
make additional experiments to check how parameter tuning
will influence stability and robustness of the solutions that the
system will generate.

References
[Beck and Wilson, 2005] J. C. Beck and N. Wilson. Proac-

tive algorithms for scheduling with probabilistic durations.
In Proc. of the 19thInt’l Joint Conference on Artificial In-
telligence (IJCAI’05), Edinburgh, Scotland, July 2005.

[Bidot et al., 2003] J. Bidot, P. Laborie, J. C. Beck, and
T. Vidal. Using simulation for execution monitoring and
on-line rescheduling with uncertain durations. In Work-
ing Notes of the ICAPS’03 Workshop on Plan Execution,
Trento, Italy, June 2003.

[Bidot et al., 2006] J. Bidot, P. Laborie, J. C. Beck, and
T. Vidal. Using constraint programming and simulation
for execution monitoring and progressive scheduling. In
Proc. of the Twelfth IFAC Symposium on Information Con-
trol Problems in Manufacturing (INCOM 2006), Saint-

Étienne, France, May 2006.

[Fargier et al., 1996] H. Fargier, J. Lang, and T. Schiex.
Mixed constraint satisfaction: A framework for deci-
sion problems under incomplete knowledge. In Proc.
of the 13thNational Conference on Artificial Intelligence
(AAAI’96), Portland, Oregon, USA, August 1996.

[Herroelen and Leus, 2004] W. S. Herroelen and R. Leus.
Robust and reactive project scheduling: A review and clas-
sification of procedures. Int’l Journal of Production Re-
search, 42(8):1599–1620, 2004.

[Morris et al., 2001] P. H. Morris, N. Muscettola, and T. Vi-
dal. Dynamic control of plans with temporal uncertainty.
In Proc. of the 17thInt’l Joint Conference on Artificial In-
telligence (IJCAI’01), Seattle, Washington, USA, August
2001.

[Sadeh et al., 1993] N. M. Sadeh, S. Otsuka, and R. Schnel-
bach. Predictive and reactive scheduling with the Micro-
Boss production scheduling and control system. In Work-
ing Notes of the IJCAI’93 Workshop on Knowledge-based
Production Planning, Scheduling, and Control, Chambéry,
France, August 1993.

[Tsamardinos et al., 2003] I. Tsamardinos, T. Vidal, and
M. E. Pollack. CTP: A new constraint-based formalism
for conditional, temporal planning. CONSTRAINTS, 8(4),
2003.

[Vidal et al., 1996] T. Vidal, M. Ghallab, and R. Alami. In-
cremental mission allocation to a large team of robots. In
Proc. of the 1996 IEEE Int’l Conference on Robotics and
Automation (ICRA’96), Minneapolis, Minnesota, USA,
April 1996.

IJCAI-07
61

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

