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Abstract

This paper describes a dynamic simulation of a
space habitat. The simulation is configurable and
controllable via external programs. Several groups
have been using the simulation to study the impact
of artificial intelligence tools on space habitat de-
sign and control. We outline some of the AI chal-
lenges and invite the AI community to use our sim-
ulation to further NASA’s exploration goals.

1 Introduction

NASA has embarked on a new exploration strategy that will
return people to the moon and eventually to Mars [National
Aeronautics and Space Administration, 2004]. Two key as-
pects of this strategy are sustainability and autonomy. The
former means that these will not be single-shot missions, but
a continued, evolving presence by humans outside of low-
earth orbit. The latter means that the missions will be more
self-reliant and less dependent on a standing army of earth-
based controllers. Achieving both of these aspects requires
significant advances in intelligent software systems. In this
paper we present an integrated simulation of a space habitat
that allows for testing of artificial intelligence approaches.

1.1 Space habitats

The function of a space habitat is to provide a livable envi-
ronment to the crew. A typical space habitat will have sub-
systems that provide oxygen and remove carbon dioxide; that
provide potable water; that provide food; that remove solid
waste; and that provide power. In addition, a biomass subsys-
tem may supply crops that can be turned into food and also
help with other life support functions. Figure 1 shows such
a habitat configuration. Many of the subsystems impact each
other creating complex interactions and dependencies. Since
the cost of placing materials on a lunar or planetary surface
is so high, minimizing the consumables required to provide
life support functions is important. Recycling or regenerating
resources, often achieved by using biological-based subsys-
tems, adds additional complexity but reduces overall habitat
mass. In the next section we present a dynamic simulation of
such an integrated, closed habitat system.

Figure 1: The various modules that comprise a habitat life
support system

2 BioSim
BioSim is a discrete-event simulation of a space habitat [Ko-
rtenkamp and Bell, 2003]. Each of the life support com-
ponents of a habitat are modeled as processes that consume
certain resources and produce other resources. For example,
the water recovery system model consumes dirty water and
power and produces potable water. Crew members are also
modeled – they consume and produce resources just as other
life support components. All of the components, including
crew members and crops, if any, exist in one or several envi-
ronments that consists of a volume of mixed gases. Figure 1
shows the different models that compose our simulation and
the resources that pass between the models. BioSim is imple-
mented in Java.

2.1 Configuring BioSim
BioSim can be configured to simulate a wide variety of dif-
ferent habitats. This includes the number, genders and ages
of crew members, the size of the habitat environments, atmo-
spheric pressure, capacities of tanks, initial levels of consum-
ables, processing capacity of life support modules and many



other variables. Initial setup is configured via an XML file
that is read in when BioSim is started.

2.2 Controlling BioSim
BioSim has sensors and actuators that connect to various con-
trollable elements and allow for real-time control. Sensors
read simulation values, such as oxygen levels in the environ-
ment. Actuators set flow-rates of resources between compo-
nents. Higher level actuators control more abstract variables
such as the crew schedule, extravehicular activities (EVAs),
crop harvesting, crop planting and equipment maintenance.
Crop management is a particular focus in BioSim and up to
nine different crops can be planted and harvested. Each has
their own model for oxygen production, carbon dioxide con-
sumption, water consumption and food production. Sensors
and actuators are accessible via CORBA method calls so that
control programs can be created in most programming lan-
guages and connected as clients to the BioSim server. We
have defined BioSim control methods that let you advance
BioSim in one hour increments or advance BioSim until the
mission has ended. Malfunctions can be injected into any of
the components of BioSim at any time.

3 Habitat design
One use of artificial intelligence tools is in the design of an
optimal habitat for a specific exploration mission. As an ex-
ample, let’s take a 90 day lunar mission with a crew of four
and one eight hour EVA per day. The goal is to find an opti-
mal habitat configuration that meets those mission objectives,
i.e., provides sufficient life support to the crew. A habitat
configuration includes sizing each of the life support com-
ponents (e.g., water processing, air processing, crops, power,
etc.), sizing tank capacities, deciding on initial levels of con-
sumables, sizing the air volume of the crew habitat, etc. An
optimal configuration is defined as one that meets the mission
goals with minimum mass. We have defined mass values for
all of the variables in a habitat configuration. Essentially, this
is a search through a large space of possible habitat designs
to find an optimal solution. Many artificial intelligence search
techniques would be applicable, including genetic algorithms
and reinforcement learning. Several groups are already using
BioSim to experiment in this area [Kortenkamp et al., 2005;
Wu and Garibay, 2004].

4 Habitat control
A second use of artificial intelligence tools is the control
of the habitat. That is, given a predefined habitat configu-
ration develop a control policy that optimizes resource uti-
lization and reduces buffer sizes. The control policy adjusts
resource flow rates, crew schedules, crop planting and har-
vesting schedules and EVA schedules to meet mission ob-
jectives with minimum resource utilization. Habitat con-
trol will involve dealing with real-time control issues such
as water production, air production, etc. as well as plan-
ning and scheduling around time and resource constraints.
Several groups are looking at different approaches to this
problem [Bonasso et al., 2003; Muscettola et al., 2005;
Klein et al., 2004]. Habitat control also involves diagnosing

faults in the habitat and devising a recovery strategy. Gautam
Biswas at Vanderbilt has been using BioSim to test model-
based approaches to fault diagnosis [Biswas et al., 2004]. An-
other research area is distributed control, for example, deter-
mining whether market-based approaches are valid for habitat
control and finding what advantages they provide. Distributed
control architecture will need to look at integration of control
across the various subsystems of the habitat and integration
of different artificial intelligence techniques.

5 Conclusion
With a renewed mission to head back to the moon and then
to Mars, NASA needs the artificial intelligence community’s
help in achieving its exploration mission objectives in a cost
effective and safe manner. BioSim provides a portable testbed
for researchers to test their ideas and demonstrate relevance to
NASA. BioSim also provides a baseline in which a standard-
ized set of configurations, malfunctions and metrics can be
established and used to compare control approaches. BioSim
can be obtained from http://www.traclabs.com/biosim.
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