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Abstract

Weighted A* (WA¥*) is a popular search technique that
scales up A* while sacrificing solution quality. Recently,
researchers have proposed two variants of WA*: KWA*
adds diversity to WA*, and MSC-WA* adds commitment
to WA*. In this paper, we demonstrate that there is bene-
fit in combining them. The resulting MSC-KWA* scales
up to larger domains than WA*, KWA* and MSC-WA*,
which is rather surprising since diversity and commit-
ment at first glance seem to be opposing concepts.

1 Introduction

Weighted A* (WA*) is a popular search technique that scales
up A* while sacrificing solution quality, by weighing the
heuristic values more strongly than A*. In this paper, we
study how to scale up WA* to even larger domains, building
on two variants of WA* that have been proposed recently:
First, WA* expands only one state per iteration. KWA* is
a variant of WA* that expands several states per iteration,
which adds diversity to WA* to give it a stronger breadth-
first component. Second, WA* considers all states in the
OPEN list as candidates for expansion. Multi-State Commit-
ment WA* (MSC-WA¥*) is a variant of WA* that considers
only a small number of states in the OPEN list as candidates
for expansion, which adds commitment to WA* to give it a
stronger depth-first component. In this paper, we demonstrate
that there is benefit in combining them. Our experimental re-
sults, for example, show that the resulting MSC-KWA* with
the Manhattan heuristic scales up to the 48-Puzzle, whereas
WA*, KWA* and MSC-WA* do not.

2 WA* KWA* and MSC-WA*

WA*: WA* is a variant of A* that scales it up by making
its search more greedy and thus more focused [Pohl, 1970].
While A* calculates the f-value of a state s as f(s) = g(s) +
h(s), WA* calculates itas f(s) = (1 — W)g(s) + W x h(s),
where 1 > W > 0.5 is the only parameter of WA*. KWA*:
Due to its strong focus, WA* is likely to be led into goal-free
regions of the search space by misleadingly small heuristic
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values. KWA* tackles this problem by adding a breadth-
first component to WA* (diversity) to make its search less fo-
cused. It expands the K > 1 states with the smallest f-values
in the OPEN list (rather than just one) in parallel during each
iteration [Felner et al., 2003]. Thus, KWA* has two param-
eters, namely W and K. If K = 1, then KWA* reduces
to WA*. Larger values of K increase the probability that
WA* selects a state on the shortest path from the start state
to the goal state during the next iteration at the risk of gener-
ating more states than necessary during each iteration. MSC-
WA*: WA* focuses the search more than A*. However, the
state that WA* expands next can be any state in the OPEN list
(depending on the f-values). Multi-State Commitment WA*
(MSC-WA¥*) increases the focus of WA* even more by fo-
cusing the search on a subset of the states in the OPEN list
(commitment) [Kitamura er al., 1998]. MSC-WA* splits the
OPEN list into a COMMIT list of at most C states and a RE-
SERVE list. Thus, MSC-WA* has two parameters, namely
W and C. The COMMIT list plays the role of a smaller
OPEN list, whereas the RESERVE list stores the remaining
states of the original OPEN list. MSC-WA* expands the state
with the smallest f-value in the COMMIT list. MSC-WA*
never re-expands a state, even if it finds a shorter path from
the start state to the state in question. The number of states in
the COMMIT list can thus get smaller than C. In this case,
MSC-WA* uses the states with the smallest f-values in the
RESERVE list to refill the COMMIT list. If C' = oo, then the
RESERVE list remains empty and MSC-WA* reduces to a
variant of WA* that never re-expands a state. Smaller values
of C' make MSC-WA* focus the search on a smaller subset of
the states in the original OPEN list.

3 Comparison

Table 1 reports the results of our experiments with WA*,
KWA* and MSC-WA* on the N-Puzzle with N = 15,24, 35
and 48, using the Manhattan distance as the heuristic func-
tion. The goal state has the blank in the upper left corner. For
each combination of parameters, we average over 50 experi-
ments (100 experiments for N = 15) with a memory capacity
of six million states. (For W, for example, we use the values
0.50, 0.56, 0.60, 0.67, 0.75, 0.80, 0.86, 0.90, 0.95 and 0.99.)
Each row of the table then reports the parameter combinations
that optimize the average performance for each one of four
performance measures, namely the solution cost, the num-



Table 1: Comparison of WA*, KWA*, MSC-WA*, and MSC-KWA* for the N-Puzzle

N Performance WA* KWA* MSC-WA* MSC-KWA*
Measure Value w Best Value W K Best Value W C Best Value w K=C Best

Solution Cost 63.51 0.67 53.85 0.67 50,000 v 56.29 0.60 80,000 53.89 0.99 50,000 v

15 Stored States 6,050 0.99 6,028 0.99 8 4,113 0.95 20 3,223 0.99 5 v
Generated States 6,972 0.99 6,704 0.99 8 4,191 0.95 20 3,259 0.99 5 v
Runtime (Seconds) 0.003 0.99 0.003 0.99 5 0.002 0.99 6 0.001 0.95 3 v
Solution Cost 165.16 0.75 113.56 0.99 20,000 v 164.56 0.75 90,000 116.32 0.99 20,000

24 Stored States 44097 | 099 32567 | 099 5 36907 | 0.9 300 16,178 | 0.9 6 v
Generated States 56,070 0.99 43,578 0.99 4 37,832 0.99 300 16,331 0.99 6 v
Runtime (Seconds) 0.027 0.99 0.021 0.99 4 0.021 0.99 50,000 0.007 0.99 6 v
Solution Cost 236.50 0.99 7,000 v 472.10 0.90 3,000 244.14 0.99 7,000

35 Stored States 417,675 0.95 20 456,777 0.99 90 56,807 0.99 5 '
Generated States 652,100 0.95 500 467,586 0.99 90 57,291 0.99 5 '
Runtime (Seconds) 0.377 0.95 500 0.297 0.99 90 0.033 0.99 5 v
Solution Cost 18,379.32 0.60 5 v

48 Stored States 275.293 0.80 4 v
Generated States 277,282 0.80 4 v
Runtime (Seconds) 0.181 0.80 4 v

ber of stored states, the number of generated states, and the
actual runtime. A check mark indicates that the algorithm is
within one percent of the optimal performance reported in the
row. An empty cell indicates that the algorithm does not solve
all of our random instances. The table shows the following
trends: First, all runtimes are small because the algorithms
quickly either solve a search problem or run out of mem-
ory. Second, KWA* has a smaller solution cost than WA* and
MSC-WA*. The solution cost of MSC-WA* remains roughly
the same as the one of WA*, whereas the one of KWA* im-
proves with IV compared to the one of WA*, which can be at-
tributed to the breadth-first component (diversity) of KWA*.
Third, MSC-WA* has a smaller number of generated states
than WA* and KWA*, which can be attributed to the depth-
first component (commitment) of MSC-WA*. Fourth, both
KWA* and MSC-WA* store a smaller number of states than
WA* although neither KWA* nor MSC-WA* dominates the
other one in this respect. (KWA* stores a smaller number
of states than WA* only for large values of N.) The small
memory consumption of KWA* and MSC-WA* allows them
to solve all of our random instances of the 35-Puzzle, while
WA* solves only 98 percent of our random instances, even
for the best possible value of W. For KWA*, this result is
partly due to our improved implementation of KWA* that
stores each state at most once on the OPEN and CLOSED
list. However, it turns out that the low memory consumption
of our implementation of KWA* is not a systematic effect but
due to noise since it requires one to hit the correct value of K
precisely, which is not possible in practice.

4 MSC-KWA*

Although the concepts of diversity and commitment seem to
be opposing at first glance, we now combine them: MSC-
WA* splits the OPEN list into a COMMIT list of C' states
and a RESERVE list. This makes MSC-WA* even more fo-
cused than WA*, and thus makes it more likely that MSC-
WA* is led into goal-free regions of the search space by mis-
leadingly small heuristic values. We alleviate this problem by
adding to MSC-WA* the mechanism used by KWA*. MSC-
KWA*, the resulting algorithm, expands in parallel during
each iteration all X < C states with the smallest f-values in
the COMMIT list (rather than just one). Thus, MSC-KWA*
has three parameters, namely W, C' and K. We eliminate

one of them by setting K = C' to simplify the experimen-
tal conditions, which is reasonable since decreasing K and C
both increase the focus of MSC-KWA*. Table 1 shows that
MSC-KWA* has a smaller number of stored states, a smaller
number of generated states, and a smaller actual runtime than
WA*, KWA* and MSC-WA*. The savings are significant and
increase with N. For example, the number of stored states of
MSC-KWA* is at least a factor of seven smaller for the 35-
Puzzle than the ones of WA*, KWA* and MSC-WA*. The
small memory consumption of MSC-KWA* allows it to solve
all of our random instances of the 48-Puzzle, which WA*,
KWA* and MSC-KWA* cannot. (KWA* solves only 76 per-
cent and MSC-WA* solves only 78 percent of our random
instances, even if their parameter values are optimized.) Fur-
thermore, the solution cost of MSC-KWA¥* is always within
about three percent of the solution cost of KWA*, the algo-
rithm with the smallest solution cost. Additional experiments
are reported in [Furcy, 2004]. For example, MSC-KWA*
(with K # C) solves all of our random instances of the 4-Peg
Towers of Hanoi, which WA*, KWA* and MSC-WA* can-
not. Note that beam search is a special case of MSC-KWA*
(namely, with K = C and no RESERVE list) and thus can
be understood as a variant of best-first search with commit-
ment and diversity, not just commitment (the current view).
It is future work to determine the best parameters values of
MSC-KWA* automatically.
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