
Minimal and Absent Information in Contexts

Floris Roelofsen1 and Luciano Serafini2
1 Institute for Logic, Language, and Computation, Amsterdam

2 Instituto per la Ricerca Scientifica e Tecnologica, Trento

Abstract

Multi-context systems (MCS) represent contextual
information flow. We show that the semantics of
an MCS is completely determined by the informa-
tion that is obtained when simulating the MCS, in
such a way that aminimalamount of information is
deduced at each step of the simulation.
In MCS, the acquisition of new information is
based on thepresenceof other information only.
We give a generalized account to model situations
in which information can be obtained as a result of
theabsenceof other information as well.

1 Introduction
Based on motivational papers by McCarthy[1987] and
Giunchiglia [1993] several formalizations of contextual in-
formation and inter-contextual information flow have been
proposed. Most notable are the propositional logic of context
developed by McCarthy, Buvač and Mason[1993; 1998], and
the multi-context systems devised by Giunchiglia and Ser-
afini [1994], which later have been associated with the lo-
cal model semantics introduced by Giunchiglia and Ghidini
[2001]. Serafini and Bouquet[2004] have argued from a tech-
nical point of view that multi-context systems constitute the
most general formal framework. This conclusion is supported
by a more conceptual argument of Benerecetti et.al.[2000].

A multi-context system describes the information available
in a number of contexts (i.e., to a number of people / agents
/ databases, etc.) and specifies the information flow between
those contexts. The local model semantics defines a system
to entail a piece of information, if and only if that piece of in-
formation is acquired, independently of how the information
flow described by the system is accomplished.

Our first contribution is based on the observation that the
local model semantics of a multi-context system is com-
pletely determined by the information that is obtained when
simulating the information flow specified by the system, in
such a way that aminimalamount of information is deduced
at each step of the simulation. We define an operator which
suitably implements such a simulation, and thus determines
the information entailed by the system. This operator consti-
tutes a first constructive account of the local model semantics.

Our second contribution is based on the observation that in
multi-context systems, new information is derived based on
the presenceof other information only. However, in many
natural situations (concrete examples will be given below),
new information is obtained due to alack of other informa-
tion. We propose a generalized framework so as to account
for such situations. Non-monotonic reasoning techniques are
applied to formulate a suitable semantics for this framework.

We proceed, in section 2, with a brief review of multi-
context system syntax and local model semantics. Minimal-
ity is discussed in section 3, and the generalized framework
is presented in section 4. We conclude, in section 5, with a
concise recapitulation of our main observations and results.1

2 Preliminaries

Mr.1 Mr. 2

Figure 1: a magic box.

A simple illustration of the main intuitions underlying the
multi-context system framework is provided by the situation
depicted in figure 1. Two agents, Mr.1 and Mr.2, are looking
at a box from different angles. The box is called magic, be-
cause neither Mr.1 nor Mr.2 can make out its depth. As some
sections of the box are out of sight, both agents have partial
information about the box. To express this information, Mr.1
only uses proposition lettersl (there is a ball on the left) and
r (there is a ball on the right), while Mr.2 also uses a third
proposition letterc (there is a ball in the center).

In general, we consider a set of contextsI, and a language
Li for each contexti ∈ I. We assumeI and{Li}i∈I to be
fixed, unless specified otherwise. Moreover, for the purpose
of this paper we assume eachLi to be built over a finite set of
proposition letters, using standard propositional connectives.

To state that the information expressed by a formulaϕ ∈
Li is established in contexti we use so-calledlabeled formu-
las of the formi : ϕ (if no ambiguity arises, we simply refer

1Seehttp://home.student.uva.nl/f.roelofsen/
for all proofs that are omitted or merely sketched here.

to labeled formulas as formulas, and we even use capital let-
tersF , G, andH to denote labeled formulas, if the context
label is irrelevant). Arule r is an expression of the form:

F ← G1 ∧ . . . ∧Gn (1)

whereF and allG’s are labeled formulas;F is called the con-
sequence ofr and is denoted bycons(r); all G’s are called
premises ofr and together make up the setprem(r). Rules
without premises are calledfacts. Rules with at least one pre-
miss are calledbridge rules. A multi-context system(system
hereafter) is a finite set of rules. A fact describes informa-
tion that is established in a certain context, independently of
which information is obtained in other contexts. A bridge
rule specifies which information is obtained in one context, if
other pieces of information are acquired in different contexts.
Thus a system can be thought of as a specification of contex-
tual information and an inter-contextual information flow.

Example 1 The situation in figure 1 can be modeled by the
following system:

1 : ¬r ←
2 : l ←
1 : l ∨ r ← 2 : l ∨ c ∨ r
2 : l ∨ c ∨ r ← 1 : l ∨ r

Mr.1 knows that there is no ball on the right, Mr.2 knows that
there is a ball on the left, and if any agent gets to know that
there is a ball in the box, then he will inform the other agent.

A classical interpretationm of languageLi is called alocal
modelof contexti. A set of local models is called alocal
information state. Intuitively, every local model in a local
information state represents a “possible state of affairs”. If a
local information state contains exactly one local model, then
it represents complete information. If it contains more than
one local model, then it represents partial information: more
than one state of affairs is considered possible. Adistributed
information stateis a set of local information states, one for
each context. In conformity with the literature, we will refer
to distributed information states aschains.

Example 2 The situation in figure 1, in which Mr.1 knows
that there is no ball on the right but does not know whether
there is a ball on the left, is represented by a chain whose first
component[{l,¬r} , {¬l,¬r}] contains two local models.
As such, the chain reflects Mr.1’s uncertainty about the left
section of the box.

A chain c satisfiesa labeled formulai : ϕ (denotedc |=
i : ϕ) iff all local models in itsith component classically
satisfyϕ. A rule r is applicablewith respect to a chainc iff
c satisfies every premiss ofr. Notice that facts are applicable
with respect to any chain. A chainc complies witha ruler,
iff, wheneverr is applicable with respect toc, thenc satisfies
r’s consequence. We callc a solution chainof a systemS iff
it complies with every rule inS. A formula F is true in S
(denotedS |= F) iff every solution chain ofS satisfiesF .

Let C denote the set of all chains. Notice that, as eachLi is
assumed to be built over a finite set of proposition letters,C is
assumed to be finite. Letc⊥ denote the chain containing ev-
ery local model of every context (notice thatc⊥ does not sat-
isfy any non-tautological expression); letc> denote the chain

containing no local models at all (notice thatc> satisfies any
expression). IfC is a set of chains, then the component-wise
union ofC is the chain, whoseith component consists of all
local models that are in theith component of some chain in
C. If c andc′ are chains, thenc \ c′ denotes the chain, whose
ith component consists of all local models that are inci but
not in c′i. Finally, we sometimes say that a local modelm
is (not) inc, when we actually mean thatm is (not) in some
(any) componentci of c.

3 Minimality
We order chains according to the amount of information they
convey. Intuitively, the more local models a chain component
contains, the more possibilities it permits, so the less infor-
mative it is. Formally, we say thatc is less informativethan
c′ (c � c′), if for every i we haveci ⊇ c′i. If, moreover, for at
least onei we haveci ⊃ c′i, then we say thatc is strictly less
informativethanc′ (c ≺ c′).

Lemma 1 Let c andc′ be two chains, such thatc � c′. Then
any formula that is satisfied byc is also satisfied byc′.

We call c minimal among a set of chainsC, iff c is in C
and no other chainc′ in C is strictly less informative thanc.
In particular, we callc a minimal solution chainof a system
S, if it is minimal among the set of all solution chains ofS.

Theorem 1 Every systemS has a unique minimal solution
chaincS .

Proof. LetCS be the set of all solution chains ofS. CS 6= ∅
asc> ∈ CS for anyS. Let cS be the component-wise union
of all chains inCS . Then cS ∈ CS and cS � c for any
c ∈ CS . SocS is the unique minimal solution chain ofS. �

Theorem 2 The semantics of a systemS is completely deter-
mined by its unique minimal solution chaincS :

S |= F ⇔ cS |= F

Proof. F is true inS iff F is satisfied by all solution chains
of S iff F is satisfied by the component-wise unioncS of all
solution chains ofS. �

Theorem (1) and (2) are extremely useful, because they
establish that, to answer queries about a systemS, it is no
longer necessary to compute all solution chains ofS; we only
need to consider the system’s minimal solution chaincS .

3.1 Computing the Minimal Solution Chain
The minimal solution chain ofS can be characterized as the
�-least fixpoint of an operatorTS , which, intuitively, simu-
lates the information flow specified byS. Let S∗(c) denote
the set of rules inS, which are applicable w.r.t.c. Then we
define:

TS(c) = c \ {m | ∃r ∈ S∗(c) : m 2 cons(r)} (2)

For every ruler in S that is applicable w.r.t.c, TS re-
moves fromc all local models that do not satisfycons(r).

Intuitively, this corresponds to augmentingc with the infor-
mation expressed bycons(r). In this sense,TS simulates the
information flow described byS. AsTS(c) is obtained fromc
only by removinglocal models from it,TS(c) is always more
informative thanc.

As (C,�) forms a complete lattice, andTS is monotone
and continuous w.r.t.�, [Tarski, 1955] yields:

Theorem 3 TS has a�-least fixpoint, which is obtained af-
ter a finite number of consecutive applications ofTS to c⊥.

Lemma 2 Letc be a chain and letS be a system. Thenc is a
fixpoint ofTS if and only ifc is a solution chain ofS.

Theorem 4 Let S be a system. Then the minimal solution
chaincS of S coincides with the�-least fixpoint ofTS .

From theorems 3 and 4 we conclude that the minimal solu-
tion chaincS of a systemS is obtained after a finite number
of applications ofTS to the least informative chainc⊥. But
we can even prove a slightly stronger result:

Theorem 5 LetS be a system and let|S| denote the number
of bridge rulesin S. Then the minimal solution chaincS of S
is obtained after at most|S|+ 1 applications ofTS to c⊥.

In fact, a slightly more involved, but essentially equiva-
lent procedure was introduced for rather different reasons by
Roelofsen et.al.[2004]. This procedure was shown to have
worst-case time complexityO(|S|2 × 2M), whereM is the
maximum number of propositional variables in either one of
the contexts involved inS.

Example 3 Consider the system from example 1. Applying
TS to c⊥ establishes the facts given by the first two rules of
the system. But then Mr.2 knows that there is a ball in the box,
so the next application ofTS simulates the information flow
specified by the third rule of the system: Mr.2 informs Mr.1 of
the presence of the ball. The resulting chain is left unaltered
by any further application ofTS , and therefore constitutes the
minimal solution chain ofS. The fact that this chain satisfies
the formula1 : l reflects, as desired, that Mr.1 has come to
know that there is a ball in the left section of the box.

4 Absent Information
Rules of the form (1) only allow us to model a rather restricted
kind of information flow, namely one in which new informa-
tion is established based on thepresenceof other information
only. There are many natural situations in which information
is obtained as a result of theabsenceof other information.
Such situations cannot be modeled by the present formalism.

Example 4 (Coordination) Let d1, d2 be two meteorologi-
cal databases that collect their respective data from sensors
located in different parts of the country. At the end of the
day each database produces a weather forecast based on its
own data but also on the information obtained by the other
database. For example,d1 predicts rain, if that follows from
its own data and if, moreover,d2 does not maintain that it
won’t rain:

1 : r ← 1 : r ∧ not 2 : ¬r

Example 5 (Integration) Let d1 andd2 be as in example 4
and letd3 be a third database, which integrates the informa-
tion obtained ind1 andd2, respectively. Any piece of infor-
mation that is established byd1 and not refuted byd2 (or vice
versa) is included ind3:

3 : ϕ ← 1 : ϕ ∧ not 2 : ¬ϕ

3 : ϕ ← 2 : ϕ ∧ not 1 : ¬ϕ

Example 6 (Trust) Let d1, d2, and d3 be as in example 5.
It would be natural ford3 to regardd1 as more trustworthy
thand2 (or vice versa). In this case any piece of information
that is established ind1 is automatically included ind3, but
information obtained ind2 is only included ind3 if it is not
refuted byd1:

3 : ϕ ← 1 : ϕ

3 : ϕ ← 2 : ϕ ∧ not 1 : ¬ϕ

To model these situations we need rulesr of the form:

F ← G1 ∧ . . . ∧Gm ∧ not H1 ∧ . . . ∧ not Hn (3)

whereF , all G’s, and allH ’s are labeled formulas. As before,
F is called the consequence ofr (cons(r)). G1, . . . , Gm are
calledpositive premisesof r and together constitute the set
prem+(r). H1, . . . ,Hn are callednegative premisesof r and
make up the setprem−(r). A rule does not necessarily have
any premises (m,n ≥ 0). In analogy with commonplace ter-
minology in deductive database and logic programming the-
ory, we call such rulesnormal rules, and finite sets of them
normal multi-context systems(normal systems for short). If a
rule only has positive premises, we call it apositiverule. Note
that a system, which consists of positive rules only conforms
with the original definition of multi-context systems. From
now on we call such systemspositivesystems.

Our aim is to generalize the result obtained section 3, i.e. to
define the semantics of a normal systemS in terms of a single
canonicalchaincS of S, such that, wheneverS is a positive
system,cS coincides with the minimal solution chain ofS.

A first naive attempt would be to say that a chainc complies
with a normal ruler iff it satisfiesr’s consequence, whenever
it satisfies every positive premise ofr and does not satisfy
any negative premise ofr. The (minimal) solution chains
of a normal system can then be defined as for positive sys-
tems. However, as the following example shows, a normal
system does not generally have a unique minimal solution
chain, and worse, its minimal solution chains do not gener-
ally correspond with its intended meaning.

Example 7 Let a systemS be given by the following rule:

1 : p ← not 2 : q

ThenS has two minimal solution chains:

cp =
{[

{p}
]
1

[
{q}
{¬q}

]
2

}
cq =

{[
{p}
{¬p}

]
1

[
{q}

]
2

}

Intuitively, S provides no ground for derivingq in context2.
Thus,p should be derived in context1, and every “proper”
canonical chain ofS should satisfy1 : p. As cq fails to do
so, it should be rejected as such. But how, then, should the
canonical chain of a normal system be characterized?

Extensive research efforts have been involved with an anal-
ogous question in the setting of logic programming, when, in
the late 80’s / early 90’s, a proper semantics for normal logic
programs was sought. In motivating our characterization of
canonical chains for normal multi-context systems, we will
recall some important intuitions and adapt some crucial defi-
nitions that have resulted from these efforts.

A first desired property of canonical chains, introduced in
the setting of logic programming by Apt et.al.[1988] and
Bidoit and Froidevaux[1991], is termedsupportedness. In-
tuitively, a chainc is a supported solution chain of a normal
systemS iff, wheneverc satisfies a formulaF , thenS pro-
vides an explanation for why this is so.

Definition 1 We call a chainc a supported solution chain of
a normal systemS iff, wheneverc satisfies a formulaF , then
S contains a setR of rules, such that:

• ∀r ∈ R :
{
∀G ∈ prem+(r) : c |= G
∀H ∈ prem−(r) : c 2 H

•
⋃

r∈R cons(r) |= F

Example 8 In example 7, as desired,cp is a supported so-
lution chain ofS, while cq is not. But bothcp and cq are
supported solution chains of the following extensionS′ of S:

1 : p ← not 2 : q

2 : q ← 2 : q

Intuitively, cp should be accepted as a canonical chain ofS′,
but cq should be rejected as such, because the explanation
provided byS′ for the fact thatcq satisfies2 : q is circular,
i.e., it relies on the very fact thatcq satisfies2 : q. So, in
general, the concept of supportedness does not satisfactorily
characterize the canonical chain of a normal system.

The notion ofwell-supportedness, first introduced for logic
programs by Fages[1991], refines the notion of supported-
ness to avoid the counter-intuitive result obtained in example
8. Intuitively, a chainc is a well-supported solution chain of
a normal systemS iff, wheneverc satisfies a formulaF , then
S provides anon-circularexplanation for why this is so.

Fages also proved this notion to be equivalent to the notion
of stability, which had been defined somewhat earlier by Gel-
fond and Lifschitz[1988]. The results obtained in section 3
pave the way for a straightforward adaptation of the notion of
stability to our present setting.

Definition 2 Letc be a chain andS a normal system. Define:

S′(c) = {r ∈ S | ∀H ∈ prem−(r) : c 2 H}
S′′(c) = pos(S′(c))

wherepos(S′(c)) is obtained fromS′(c) by removing all neg-
ative premises from its rules. Then,c is a stable solution chain
of S, iff it is the unique minimal solution chain ofS′′(c).

Intuitively, a solution chainc of a systemS is stable iff,
whenever the information represented byc is assumed, then

the information flow specified byS reproduces exactlyc.
Namely, ifc is assumed to contain valid information, then any
rule inS, one of whose negative premises is satisfied byc, is
certainly not applicable w.r.t.c. Negative premises which are
not satisfied byc can be removed from the remaining rules,
because they do certainly not inhibit those rules from being
applicable w.r.t.c. Thus,c is stable iff it corresponds exactly
to the meaning ofS′′(c), i.e., by Theorem 2, to its minimal
solution chain.

Example 9 In example 8, as desired,cp is a stable solution
chain ofS′, whilecq is not.

For many systems, stability suitably characterizes a unique
canonical chain. There are still some special cases, however,
in which it fails to do so. We give some typical examples.

Example 10 Bothcp andcq from example 7 are stable solu-
tion chains of the system given by the following rules:

1 : p ← not 2 : q

2 : q ← not 1 : p

Example 11 The following system does not have any stable
solution chains.

1 : p ← not 1 : p

In both cases we think it is most reasonable to conclude that
no information is derived at all, i.e. to regardc⊥ as the proper
canonical chain.

Example 12 The following system does not have any stable
solution chains either.

1 : p ← not 1 : p

1 : t ← not 2 : q

2 : r ← 1 : t

Example 12 illustrates that, even if the rest of the system is
unproblematic, one single rule (in this case the first one) can
cause the system not to have any stable solution chain at all.
In this case,t andr should be derived in context1 and2, resp.

The well-founded semantics, first proposed for logic pro-
grams by van Gelder et.al.[1991] avoids the problems en-
countered in the above examples. The well-founded model
of a program is defined as the least fixpoint of an operator,
which, given an interpretation, determines the atoms that are
necessarily true and those that are necessarily not true with
respect to the program and the interpretation. It assignstrue
to the former set of atoms, andfalse to the latter. As a result,
more atoms may become necessarily true or necessarily not
true. Corresponding truth values are assigned until a fixpoint
is reached. All atoms that have not been assigned a definite
truth value, are interpreted asunknown.

Our approach shares an important intuition with the well-
founded semantics for logic programs, namely, that while
constructing the canonical chain of a system, it is not only
important to accumulate the information thatcan certainly be
derivedfrom the system, but also to keep track of information
thatcan certainly not be derivedfrom the system.

But the two approaches are also fundamentally different.
The well-founded semantics constructs a 3-valued interpre-
tation I, which is minimal with respect to atruth orderv
(i.e. I v I ′ iff I makes less atoms true and more atoms false
thanI ′), whereas we seek a chain which is minimal with re-
spect to aninformation order� (i.e. c � c′ iff c makes less
expressions either true or false thanc′). This particularly re-
sults in a different treatment of expressions that are foundnot
to be true. To regard these expressions as false, as the well-
founded semantics does, would be to introduce redundant in-
formation. Instead, in our setting, such expressions should
simply be recorded as not being derivable.

4.1 Constructing the Canonical Chain
The canonical chain of a normal systemS, henceforward de-
noted bycS , is constructed by an iterative transformation of
a datastructure〈c, a〉, where:

• c is the “canonical chain under construction”. Initially,
c = c⊥. Every transformation ofc removes from it those
local models that are found not to be incS . So at any
phase of the construction ofcS , c contains those local
models that arepossiblyin cS , and as such represents
the information that isnecessarilyconveyed bycS .

• a is the “anti-chain”. Initially,c = c>. Every transfor-
mation ofa adds to it those local models that are found
to be incS . So at any phase of the construction ofcS ,
a contains those local models that arenecessarilyin cS ,
and as such represents the information that ispossibly
conveyed bycS .

Observation 1 By construction, we havec � cS � a.
Therefore, by lemma 1, for any formulaF :

c |= F ⇒ cS |= F

a 2 F ⇒ cS 2 F

�

We call a chain-anti-chain pair〈c, a〉 less evolvedthan an-
other such pair〈c′, a′〉 (denoted as〈c, a〉 ≤ 〈c′, a′〉) iff c is
less informative thanc′ anda is more informative thana′. If,
moreover,c is strictly less informative thanc′ or a is strictly
more informative thana′, then we say that〈c, a〉 is strictly
less evolved than〈c′, a′〉. We call〈c, a〉 minimalamong a set
CA of chain-anti-chain pairs, iff〈c, a〉 ∈ CA and no other
chain-anti-chain pair〈c′, a′〉 in CA is strictly less evolved
than〈c, a〉. Notice that, if〈c, a〉 is minimal amongCA, then
c is minimal among{c | 〈c, a〉 ∈ CA}.

Given a certain chain-anti-chain pair〈c, a〉, the intended
transformationΨS first determines which rules inS will (not)
be applicable w.r.t.cS , and then refines〈c, a〉 accordingly.
The canonical chaincS of S will be characterized as the first
component of the≤-least fixpoint ofΨS .

We first specify howΨS determines which rules will (not)
be applicable w.r.t.cS . Let 〈c, a〉 and a ruler in S be given.
If r has a positive premiseG, which is satisfied byc, then
G will also be satisfied bycS . On the other hand, ifr has
a negative premissH, which is not satisfied bya, thenH
will not be satisfied bycS either. So if all positive premises

of r are satisfied byc and all negative premises ofr are not
satisfied bya, thenr will be applicable with respect tocS :

S+(c, a) =

r ∈ S
∀G ∈ prem+(r) : c |= G

and
∀H ∈ prem−(r) : a 2 H


If r has a positive premiseG, which is not satisfied bya,
thenG will not be satisfied bycS either. If r has a negative
premiseH, which is satisfied byc, thenH will be satisfied
by cS as well. In both casesr will certainly not be applicable
with respect tocS :

S−(c, a) =

r ∈ S
∃G ∈ prem+(r) : a 2 G

or
∃H ∈ prem−(r) : c |= H


For convenience, we write:

S∼(c, a) = S \ S−(c, a)

Think of S∼(c, a) as the set of rules that arepossiblyapplica-
ble with respect tocS , and notice thatS+(c, a) ⊆ S∼(c, a),
wheneverc � a, and thatS+(c, a) = S∼(c, a), if c = a.

Lemma 3 If S is a normal system and〈c, a〉 and〈c′, a′〉 are
two chain-anti-chain pairs s.t.〈c, a〉 ≤ 〈c′, a′〉, then we have:

1. S+(c, a) ⊆ S+(c′, a′)

2. S−(c, a) ⊆ S−(c′, a′)

3. S∼(c, a) ⊇ S∼(c′, a′)

Proof. Suppose that〈c, a〉 ≤ 〈c′, a′〉. Then, by definition,
c � c′ anda′ � a. Letr be a rule inS. For the first statement,
suppose thatr ∈ S+(c, a). Thenc satisfies all ofr’s positive
premises, anda does not satisfy any ofr’s negative premises.
By lemma 1, the same goes forc′ anda′, respectively, which
implies thatr ∈ S+(c′, a′). The second statement is proven
analogously; the third follows directly from the second.�

Next, we specify howΨS refines〈c, a〉, based onS+(c, a)
andS∼(c, a). Every local modelm ∈ ci that does not satisfy
the consequence of a rule inS+(c, a) should certainly not be
in cS and is therefore removed fromc. On the other hand,
every local modelm ∈ ci that satisfies the consequences of
every rule inS∼(c, a) should certainly be incS (S provides
no ground for removing it) and is therefore added toa.

ΨS(〈c, a〉) = 〈Ψc
S(〈c, a〉),Ψa

S(〈c, a〉)〉

where:

Ψc
S(〈c, a〉) = c \

{
m | ∃r ∈ S+(c, a) : m 2 cons(r)

}
Ψa

S(〈c, a〉) = a ∪ {m | ∀r ∈ S∼(c, a) : m |= cons(r)}

As (C× C,≤) forms a complete lattice, andΨS is mono-
tone and continuous w.r.t.≤, [Tarski, 1955] yields:

Theorem 6 ΨS has a≤-least fixpoint, which is obtained af-
ter finitely many iterations ofΨS , starting with〈c⊥, c>〉.

Definition 3 Let S be a normal system, and let〈cS , aS〉 be
the≤-least fixpoint ofΨS . We definecS to be the canonical
chain ofS, and we define the semantics ofS to be completely
determined bycS . That is, for every formulaF :

S |= F ≡ cS |= F

�

A bound on the number of iterations needed byΨS to
reach its≤-least fixpoint can be formulated in terms of the
number of bridge rules inS.

Theorem 7 Let |S| denote the number ofbridge rulesof a
normal systemS. Then, starting with〈c⊥, c>〉, ΨS will reach
its≤-least fixpoint after at most|S|+ 1 iterations.

The semantics for normal systems defined above properly
generalizes the local model semantics for positive systems.

Theorem 8 The canonical chain of a positive systemS coin-
cides with its minimal solution chain.

Proof. If S is positive, then for every pair〈c, a〉, S+(〈c, a〉)
andS∗(c) coincide, soΨc

S(〈c, a〉) does not depend ona. As
a consequence,cS is the�-least fixpoint ofTS iff, for some
anti-chainaS , 〈cS , aS〉 is the≤-least fixpoint ofΨS . �

The canonical chain of a systemS, and other fixpoints of
ΨS , are intimately related to the stable solution chains ofS.

Theorem 9 Let S be a normal system, let〈cS , aS〉 be the
≤-least fixpoint ofΨS , and letcstable be any stable solution
chain ofS. ThencS � cstable � aS .

Theorem 10 Let S be a normal system and let〈cS , aS〉 be
the≤-least fixpoint ofΨS . If cS andaS coincide, thencS is
the unique stable solution chain ofS.

Finally, we remark that, in our view, all the examples pre-
sented above are suitably dealt with by the present analysis.
We treat one of them explicitly.

Example 13 LetS be the system from example 12. Then:

cS =
{[

{p, t}
{¬p, t}

]
1

[
{q, r}
{¬q, r}

]
2

}
As desired, no information is derived aboutp andq, while t
andr are indeed established in context1 and2, respectively.

5 Conclusions
We showed that the semantics of a multi-context system is
completely determined by its least informative solution chain.
We provided a way to compute this chain, and thus gave a first
constructive account of the local model semantics.

We presented a generalized framework in which new in-
formation can be derived based on the absence of other infor-
mation. We applied non-monotonic reasoning techniques to
establish a suitable semantics for this framework.

References
[Apt et al., 1988] K. R. Apt, H. A. Blair, and A. Walker. To-

wards a theory of declarative knowledge. 1988.

[Benerecettiet al., 2000] M. Benerecetti, P. Bouquet, and
C. Ghidini. Contextual reasoning distilled.Journal
of Experimental and Theoretical Artificial Intelligence,
12(3):279–305, 2000.

[Bidoit and Froidevaux, 1991] N. Bidoit and C. Froidevaux.
General logical databases and programs: Default logic se-
mantics and stratification.Information and Computation,
91:15–54, 1991.

[Fages, 1991] F. Fages. A new fixpoint semantics for gen-
eral logic programs compared with the wellfounded and
the stable model semantics.New Generation Computing,
9(4), 1991.

[Gelfond and Lifschitz, 1988] M. Gelfond and V. Lifschitz.
The stable model semantics for logic programming. InIn-
ternational Conference on Logic Programming (ICLP 88),
pages 1070–1080, 1988.

[Ghidini and Giunchiglia, 2001] C. Ghidini and
F. Giunchiglia. Local models semantics, or contex-
tual reasoning = locality + compatibility. Artificial
Intelligence, 127(2):221–259, 2001.

[Giunchiglia and Serafini, 1994] F. Giunchiglia and L. Ser-
afini. Multilanguage hierarchical logics, or: how we can
do without modal logics.Artificial Intelligence, 65(1):29–
70, 1994.

[Giunchiglia, 1993] F. Giunchiglia. Contextual reasoning.
Epistemologia, XVI:345–364, 1993.

[McCarthy and Buvǎc, 1998] J. McCarthy and S. Buvač.
Formalizing context (expanded notes). InComputing Nat-
ural Language, volume 81 ofCSLI Lecture Notes, pages
13–50. 1998.

[McCarthy, 1987] J. McCarthy. Generality in artificial in-
telligence. Communications of ACM, 30(12):1030–1035,
1987.

[McCarthy, 1993] J. McCarthy. Notes on formalizing con-
text. In International Joint Conference on Artificial Intel-
ligence (IJCAI 93), pages 555–560, 1993.

[Roelofsenet al., 2004] F. Roelofsen, L. Serafini, and
A. Cimatti. Many hands make light work: Localized sat-
isfiability for multi-context systems. InEuropean Con-
ference on Artificial Intelligence (ECAI 04), pages 58–62,
2004.

[Serafini and Bouquet, 2004] L. Serafini and P. Bouquet.
Comparing formal theories of context in AI.Artificial In-
telligence, 155:41–67, 2004.

[Tarski, 1955] A. Tarski. A lattice-theoretical fixpoint theo-
rem and its applications.Pacific Journal of Mathematics,
5:285–309, 1955.

[van Gelderet al., 1991] A. van Gelder, K. Ross, and J. S.
Schlipf. The well-founded semantics for general logic pro-
grams.Journal of the ACM, 38(3):620–650, 1991.

