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Abstract Our second contribution is based on the observation that in
) multi-context systems, new information is derived based on
Multi-context systems (MCS) represent contextual  the presenceof other information only. However, in many

information flow. We show that the semantics of natural situations (concrete examples will be given below),
an MCS is completely determined by the informa- new information is obtained due tolack of other informa-

tion that is obtained when simulating the MCS, in tion. We propose a generalized framework so as to account
such a way that eninimalamount of information is for such situations. Non-monotonic reasoning techniques are
deduced at each step of the simulation. applied to formulate a suitable semantics for this framework.
In MCS, the acquisition of new information is We proceed, in section 2, with a brief review of multi-
based on theresenceof other information only. context system syntax and local model semantics. Minimal-
We give a generalized account to model situations ity is discussed in section 3, and the generalized framework
in which information can be obtained as a result of is presented in section 4. We conclude, in section 5, with a
theabsencef other information as well. concise recapitulation of our main observations and re$ults.

1 Introduction 2 Preliminaries

Based on motivational papers by McCartth¥987 and

Giunchiglia[1993 several formalizations of contextual in-

formation and inter-contextual information flow have been Mr. 2
proposed. Most notable are the propositional logic of context Mrl — — M
developed by McCarthy, Bugand Maso1993; 1998, and

the multi-context systems devised by Giunchiglia and Ser- Figure 1: a magic box.

afini [1994, which later have been associated with the lo-
cal model semantics introduced by Giunchiglia and Ghidini
[2001]. Serafini and Bouqug¢R004 have argued from a tech-

nical point of view that multi-context systems constitute the
most general formal framework. This conclusio_n is supporte t a box from different angles. The box is called magic, be-
bya more conceptual argument of Bengrecettl e'[tZEIOd.. cause neither Mr.1 nor Mr.2 can make out its depth. As some
A multi-context system _descrlbes the information availableg, tions of the box are out of sight, both agents have partial
in @ number of contexts (i.e., to @ number of people / agentgtormation about the box. To express this information, Mr.1

/ databases, etc.) and specifies the inforr_nation'flow betwe ly uses proposition lettefgthere is a ball on the left) and
those contexts. The local model semantics defines a syste;:n(there is a ball on the right), while Mr.2 also uses a third

to entail a piece of information, if and only if that piece of in- proposition letter: (there is a ball in the center)
formation is acquired, independently of how the information™ | general, we consider a set of contekxand.a language
flow described by the system is accomplished. L; for each context € I. We assumd and{L;};c; to be
Our first contribution is based on the observation that thgjyeq unless specified otherwise. Moreover, for the purpose
local model semantics of a multi-context system is com-sf this paper we assume eabhto be built over a finite set of
pletely determined by the information that is obtained when, o hqsition letters, using standard propositional connectives.
simulating the mfo_rmatlon flow spegﬁed by thg system, in" T4 state that the information expressed by a formula
such a way that aninimalamount of information is deduced ﬁ% is established in contexiwe use so-calletabeled formu-

at each step of the simulation. We define an operator whicfyg of the formi : ¢ (if no ambiguity arises, we simply refer
suitably implements such a simulation, and thus determines

the information entailed by the system. This operator consti- !See http://home.student.uva.nl/f.roelofsen/
tutes a first constructive account of the local model semanticgor all proofs that are omitted or merely sketched here.

A simple illustration of the main intuitions underlying the
multi-context system framework is provided by the situation
epicted in figure 1. Two agents, Mr.1 and Mr.2, are looking



to labeled formulas as formulas, and we even use capital letontaining no local models at all (notice thdt satisfies any

tersF', G, and H to denote labeled formulas, if the context expression). I{” is a set of chains, then the component-wise

label is irrelevant). Aule r is an expression of the form: union of C' is the chain, whosé&” component consists of all
FeGin. . AG (1) local models that are in thé" component of some chain in

T " C. If candc are chains, then\ ¢’ denotes the chain, whose

whereF and allG’s are labeled formulad? is called the con-  i** component consists of all local models that are;itut

sequence of and is denoted byons(r); all G’s are called not in ¢;. Finally, we sometimes say that a local model

premises of- and together make up the getern(r). Rules s (not) inc¢, when we actually mean that is (not) in some

without premises are calldects Rules with at least one pre- (any) component; of c.

miss are calledbridge rules A multi-context systersystem

hereafter) is a finite set of rules. A fact describes informa-3 Minimality

tion that is established in a certain context, independently O{Ne order chains according to the amount of information the
which information is obtained in other contexts. A bridge ' Ing u ' : y

rule specifies which information is obtained in one context, ifCONVEY. Intuitively, the more local models a chain component

other pieces of information are acquired in different contexts?noz;'t?aéni’.;hng‘r)T:lepossébs'g'etSh;t F;elggsn fsoc:r:]r:;’[. lish‘c‘ji I|1nfor-
Thus a system can be thought of as a specification of contex; VeIt IS. y, W Y ' ! v

/ AN . . /
tual information and an inter-contextual information flow. . (¢ = ¢, if for everyi we havec; 2 c;. If, moreover, for at
T least one we havec; D ¢}, then we say that is strictly less
Example 1 The situation in figure 1 can be modeled by thejnformativethane’ (c < ¢).
following system: .
Lemma 1 Letc andc¢’ be two chains, such that=< ¢. Then

% : ;T - any formula that is satisfied hyis also satisfied by'.

: — - e
1:1Vr — 92:lVeVvr We call c minimalamong a set of chainS, iff cisin C
2:1VeVvr « 1:1Vr and no other chair’ in C is strictly less informative than.

) ) In particular, we calk a minimal solution chairof a system
Mr.1 knows that there is no ball on the right, Mr.2 knows that g if it is minimal among the set of all solution chains $f

there is a ball on the left, and if any agent gets to know tha
there is a ball in the box, then he will inform the other agent.

A classical interpretatiom: of languagel; is called alocal

modelof contexti. A set of local models is called lacal . .

information state Intuitively, every local model in a local Pro9f. LetCs be the set of all solution chains 6t C's #0
information state represents a “possible state of affairs”. If £5¢ < C.S fo'r anyS. Letcs be the component-wise union
local information state contains exactly one local model, therPf @ll chains inCs. Thencs € Cs andcs =< ¢ for any
it represents complete information. If it contains more thart € Cs- S0c¢s is the unique minimal solution chain 6f U
one local model, then it represents partial information: more

than one state of affairs is considered possibleiis%ributed Theorem 2 The semantics of a SySt@TiS Comp|ete|y deter-
information stateis a set of local information states, one for mined by its unique minimal solution chaip:

each context. In conformity with the literature, we will refer

to distributed information states abains SEF & cEF

Example 2 The situation in figure 1, in which Mr.1 knows _ o ' o _ .
that there is no ball on the right but does not know whetherProof. = F'is true inS'iff I is satisfied by all solution chains
there is a ball on the left, is represented by a chain whose firsef S iff I is satisfied by the component-wise unignof all

LI'heorem 1 Every systent has a unique minimal solution
chaincg.

component {I,—r},{-l,—~r} ] contains two local models. solution chains of. O
As such, the chain reflects Mr.1's uncertainty about the left
section of the box. Theorem (1) and (2) are extremely useful, because they

establish that, to answer queries about a systent is no
longer necessary to compute all solution chainS;ofre only
need to consider the system’s minimal solution chain

A chain ¢ satisfiesa labeled formula : ¢ (denotede =
i : ) iff all local models in itsi'” component classically
satisfyp. A rule r is applicablewith respect to a chain iff
c satisfies every premiss of Notiqe that fapts are applicable 3.1 Computing the Minimal Solution Chain
with respect to any chain. A chaincomplies witha ruler, o . . .
iff, wheneverr is applicable with respect tq thenc satisfies ~ The minimal solution chain of can be characterized as the
7's consequence. We calla solution chainof a systems iff <-least f|>_<p0|nt of_ an operatoTb_«,. which, intuitively, simu-
it complies with every rule irS. A formula F is true in S lates the information flow specified by. Let S*(c¢) denote

(denotedsS |= F) iff every solution chain ofS satisfiesF. the_set of rules ir5, which are applicable w.r.tc. Then we
Let C denote the set of all chains. Notice that, as eacls ~ define:

assumed to be built over a finite set of proposition leti@ris, T _ Jr € S*(c) - m 2

assumed to be finite. Let- denote the chain containing ev- s(e) = e\ {m|3r (c) = m ¥ cons(r)} @

ery local model of every context (notice thet does not sat- For every ruler in S that is applicable w.r.t.c, Tg re-

isfy any non-tautological expression); let denote the chain  moves frome all local models that do not satisfyns(r).



Intuitively, this corresponds to augmentingvith the infor-  Example 5 (Integration) Letd; andd, be as in example 4
mation expressed lyns(r). In this senseT ¢ simulates the  and letds be a third database, which integrates the informa-
information flow described by. AsT s(c) is obtained fronz  tion obtained ind; andd,, respectively. Any piece of infor-
only by removinglocal models from itT s(c) is always more  mation that is established la§; and not refuted by, (or vice

informative tharr. versa) is included inls:
As (C, <) forms a complete lattice, anfls is monotone
and continuous w.r.tz, [Tarski, 1955 yields: 3:p «— l:ipAnot2:-yp

o . . 3:9 «— 2:pANOtl:-p
Theorem 3 T has a=-least fixpoint, which is obtained af-
ter a finite number of consecutive applicationsTgfto c*. Example 6 (Trust) Let d,, d», andds be as in example 5.
It would be natural fords to regardd; as more trustworthy
thand, (or vice versa). In this case any piece of information
that is established i, is automatically included inl3, but
Theorem 4 Let S be a system. Then the minimal solution information obtained in; is only included inds if it is not
chaincg of S coincides with the<-least fixpoint ofT s. refuted byd; :

Lemma 2 Letc be a chain and lef be a system. Thenis a
fixpoint of T¢ if and only ifc is a solution chain of.

From theorems 3 and 4 we conclude that the minimal solu- 3:p «— 1l:op
tion chaincg of a systemS is obtained after a finite number

S : ; . 3: 2:pANOt1:~
of applications ofT 5 to the least informative chain". But L 4 4

we can even prove a slightly stronger result: To model these situations we need rutesf the form:

Theorem 5 Let S be a system and |é§| denote the number FeGiA...ANGn ANOLH, A...ANOtH, (3)

of bridge rulesn S. Then the minimal solution chairy of S

is obtained after at moss5| + 1 applications ofT s to c*. whereF', all G’s, and allH’s are labeled formulas. As before,
F is called the consequence©fcons(r)). Gy,...,G,, are

In fact, a slightly more involved, but essentially equiva- ., o yositive premisesf » and together constitute the set
lent procedure was introduced for rather different reasons b}ﬁreme(r) H, H, are callechegative premisesf r and
y sy in

Roelofsen et.al[2004. This procedure was shown to have make up the setrem- (r). A rule does not necessarily have

_ i i 2 M i X >
masimum number of roposiional variables i efther one of2Y Premisesi(. . > ). In analogy with commonplace ter-
the contexts involved ipS P minology in deductive database and logic programming the-
' ory, we call such rulesormalrules, and finite sets of them

Example 3 Consider the system from example 1. Applyingnormal multi-confcht systep(]sormal sys_tem.s_for short). If a
Ts to ¢- establishes the facts given by the first two rules ofule only has positive premises, we call pasitiverule. Note
the system. But then Mr.2 knows that there is a ball in the boxthat a system, which consists of positive rules only conforms
so the next application of s simulates the information flow With the original definition of multi-context systems. From
specified by the third rule of the system: Mr.2 informs Mr.1 offow on we call such systenpesitivesystems.
the presence of the ball. The resulting chain is left unaltered Our aimis to generalize the result obtained section 3, i.e. to
by any further application of s, and therefore constitutes the define the semantics of a normal systgnm terms of a single
minimal solution chain of. The fact that this chain satisfies canonicalchaincs of S, such that, whenevef is a positive
the formulal : [ reflects, as desired, that Mr.1 has come to Systemgg coincides with the minimal solution chain 6t
know that there is a ball in the left section of the box. Afirst naive attempt would be to say that a chasomplies
with a normal ruler iff it satisfiesr’s consequence, whenever

: it satisfies every positive premise pfand does not satisfy
4 Absent Information any negative premise of. The (minimal) solution chains
Rules of the form (1) only allow us to model a rather restrictedof a normal system can then be defined as for positive sys-
kind of information flow, namely one in which new informa- tems. However, as the following example shows, a normal
tion is established based on thesencef other information  system does not generally have a unique minimal solution
only. There are many natural situations in which informationchain, and worse, its minimal solution chains do not gener-
is obtained as a result of thebsenceof other information.  ally correspond with its intended meaning.

Such situations cannot be modeled by the present formalisntxample 7 Let a systens be given by the following rule:

Example 4 (Coordination) Let d;,d, be two meteorologi-

cal databases that collect their respective data from sensors Lip « not2:gq
located in different parts of the country. At the end of the ens has two minimal solution chains:
day each database produces a weather forecast based on |@ '

own data but also on the information obtained by the other v {p} {q}
database. For examplé; predicts rain, if that follows from ¢ = {[ L [ —q L}

its own data and if, moreoved, does not maintain that it

won't rain: i ct = {[{{%L {{q} L}



Intuitively, S provides no ground for deriving in context2.
Thus, p should be derived in context and every “proper”
canonical chain of5 should satisfyl : p. As ¢? fails to do

the information flow specified by reproduces exactly.
Namely, ifc is assumed to contain valid information, then any
rule in S, one of whose negative premises is satisfied,lig

so, it should be rejected as such. But how, then, should theertainly not applicable w.r.t.. Negative premises which are

canonical chain of a normal system be characterized?

not satisfied byc can be removed from the remaining rules,

Extensive research efforts have been involved with an anabecause they do certainly not inhibit those rules from being
ogous question in the setting of logic programming, when, inapplicable w.r.tc. Thus,c is stable iff it corresponds exactly
the late 80’s / early 90’s, a proper semantics for normal logi¢o the meaning of”(¢), i.e., by Theorem 2, to its minimal
programs was sought. In motivating our characterization osolution chain.

canonical chains for normal multi-context systems, we will
recall some important intuitions and adapt some crucial defi

nitions that have resulted from these efforts.

Example 9 In example 8, as desired? is a stable solution
chain ofS’, whilec? is not.

A first desired property of canonical chains, introduced in For many systems, stability suitably characterizes a unique

the setting of logic programming by Apt et.al1989 and
Bidoit and Froidevaux1991l, is termedsupportednessin-

canonical chain. There are still some special cases, however,
in which it fails to do so. We give some typical examples.

tuitively, a chainc is a supported solution chain of a normal Example 10 Both¢” and¢? from example 7 are stable solu-

systemsS iff, wheneverc satisfies a formuld’, thenS pro-
vides an explanation for why this is.so

Definition 1 We call a chairc a supported solution chain of
a normal systen$' iff, whenever satisfies a formuld’, then
S contains a seR of rules, such that:

VG € prem™(r):cE G
VH € prem™(r):cE H
e U,crcons(r) E F
Example 8 In example 7, as desired? is a supported so-

lution chain of S, while ¢? is not. But bothc? and ¢? are
supported solution chains of the following extensiiof S:

OVTGR:{

l:p «— not2:gq
2:q «— 2:q
Intuitively, ¢? should be accepted as a canonical chaif’of

but ¢? should be rejected as such, because the explanation

provided byS’ for the fact that? satisfies2 : ¢ is circular,
i.e., it relies on the very fact that! satisfies2 : ¢. So, in

tion chains of the system given by the following rules:

1:p < not2:gq
2:q < notl:p

Example 11 The following system does not have any stable
solution chains.

l:p < notl:p

In both cases we think it is most reasonable to conclude that
no information is derived at all, i.e. to regatdtl as the proper
canonical chain.

Example 12 The following system does not have any stable
solution chains either.

1:p < notl:p
1:t «— not2:gq
2:r 1:¢

“«—

general, the concept of supportedness does not satisfactorily

characterize the canonical chain of a normal system.
The notion ofwell-supportedneséirst introduced for logic

programs by Fageki991, refines the notion of supported-

Example 12 illustrates that, even if the rest of the system is
unproblematic, one single rule (in this case the first one) can
cause the system not to have any stable solution chain at all.

ness to avoid the counter-intuitive result obtained in examplén this caset andr should be derived in contextand2, resp.

8. Intuitively, a chaire is a well-supported solution chain of

a normal systeny iff, wheneverc satisfies a formuld’, then
S provides anon-circularexplanation for why this is so.

The well-founded semantigcgirst proposed for logic pro-
grams by van Gelder et.a[1991 avoids the problems en-
countered in the above examples. The well-founded model

Fages also proved this notion to be equivalent to the notiof a program is defined as the least fixpoint of an operator,
of stability, which had been defined somewhat earlier by Gelwhich, given an interpretation, determines the atoms that are
fond and Lifschitz[1984. The results obtained in section 3 necessarily true and those that are necessarily not true with
pave the way for a straightforward adaptation of the notion ofespect to the program and the interpretation. It assigns

stability to our present setting.

Definition 2 Letc be a chain and' a normal system. Define:
S'(¢) = {reS|VHeprem (r):ck¥ H}
S"(c) = pos(S'(c))

wherepos(S’(c)) is obtained from5’ (¢) by removing all neg-
ative premises from its rules. Theris a stable solution chain
of S, iff it is the unique minimal solution chain 6f’(c).

Intuitively, a solution chairc of a systems' is stable fiff,
whenever the information representeddig assumed, then

to the former set of atoms, arfdlse to the latter. As a result,
more atoms may become necessarily true or necessarily not
true. Corresponding truth values are assigned until a fixpoint
is reached. All atoms that have not been assigned a definite
truth value, are interpreted asknown

Our approach shares an important intuition with the well-
founded semantics for logic programs, namely, that while
constructing the canonical chain of a system, it is not only
important to accumulate the information tleain certainly be
derivedfrom the system, but also to keep track of information
thatcan certainly not be deriveftom the system.



But the two approaches are also fundamentally differentof » are satisfied by and all negative premises ofare not
The well-founded semantics constructs a 3-valued interpresatisfied by, thenr will be applicable with respect tes:
tation I, which is minimal with respect to &uth order C
(i.e. I C I' iff I makes less atoms true and more atoms false
than’), whereas we seek a chain which is minimal with re- S (c,a) = (res
spect to annformation order= (i.e. ¢ < ¢ iff ¢ makes less
expressions either true or false théh This particularly re- N ) o o
sults in a different treatment of expressions that are fowotd  If 7 has a positive premisé&, which is not satisfied by,
to be true. To regard these expressions as false, as the welflenG will not be satisfied by:s either. Ifr has a negative
founded semantics does, would be to introduce redundant iieremisefZ, which is satisfied by, then 7 will be satisfied
formation. Instead, in our setting, such expressions shoul8Y ¢s as well. In both caseswill certainly not be applicable
simply be recorded as not being derivable. with respect ta:s:

VG € prem™(r):cE G
and
VH € prem™(r):a¥ H

3G € prem™*(r) :a ¥ G
or
dH eprem=(r):c=H

4.1 Constructing the Canonical Chain

The canonical chain of a normal systeéinhenceforward de-
noted bycg, is constructed by an iterative transformation of
a datastructurée, a), where:

S7(c,a) = Sres

For convenience, we write:

e c is the “canonical chain under construction”. Initially, - _
¢ = c¢*. Every transformation of removes from it those S57(e,a) = S\ 57 (c,a)

local models that are found not to bedp. So atany  pin of 5~ (¢, o) as the set of rules that apessiblyapplica-
phase of the construction of;, ¢ contains those local )5 \vith resE)e,c'g ta:g, and notice that (imz) - gawpzpc) a)
models that argossiblyin cs, and as such represents | honever < 4. and ,thats“f(c a) = S~ (c ’a) T

the information that imecessarilyconveyed by:s.
Lemma 3 If S is a normal system anf, a) and (¢, a) are

e a is the “anti-chain”. Initially,c = ¢'. Every transfor- two chain-anti-chain pairs s.tc, a) < (¢', '), then we have:
mation ofa adds to it those local models that are found P KRG A) SACL A, .

to be incg. So at any phase of the constructioncgt 1. ST(c,a) C ST(,a)
a contains those local models that aecessarilyin cg, 2. S (c,a) C S—(¢,d)
and as such represents the information thaidssibly ' = ’

conveyed by:g. 3. 8%(¢c,a) D S™(,d)

Observation 1 By construction, we have < cg =< a.
Therefore, by lemma 1, for any formuta Proof. Suppose thatc,a) < (¢/,a’). Then, by definition,
I I ¢ < ¢ anda’ < a. Letr be aruleinS. For the first statement,
cEF = ok suppose that € S*(c, a). Thenc satisfies all of-'s positive
aFF = c¢EF premises, and does not satisfy any ofs negative premises.
0 By lemma 1, the same goes fdranda’, respectively, which
implies thatr € S*(¢’,a’). The second statement is proven

: . . analogously; the third follows directly from the second.]
We call a chain-anti-chain pafr, a) less evolvedhan an- gously y

other such paikc’,a’) (denoted agc,a) < (¢/,d’)) iff cis . .
less informative than’ anda is more informative than'. If, Next, we specify howt s refines(c, a), based or§™ (c, a)
moreovery is strictly less informative tharf or a is strictly ~ @ndS™(c,a). Every local modetn € c; that does not satisfy
more informative than/, then we say thatc, a) is strictly ~ the consequence of a rule $if"(c, a) should certainly not be
less evolved thar’, a’). We call(c, a) minimalamong a set N ¢s and is therefore removed fro_m On the other hand,
CA of chain-anti-chain pairs, iffc,a) € C.A and no other €very local modetn € ¢; that satisfies the consequences of
chain-anti-chain pairc’,a’) in CA is strictly less evolved €very rule inS~(c, a) should certainly be ims (S provides
than(c, a). Notice that, if(c, ) is minimal among’.4, then ~ NO ground for removing it) and is therefore added to
cis minimal among{c | {c,a) € CA}. _ c a

Given a certaing({:hc‘";\i<n-ar2ti-chai$1 pdit, a), the intended Us({e.a)) = (¥s({e.a)), ¥5({c,a)))
transformation¥ s first determines which rules isiwill (not)  \yhere:
be applicable w.r.t.cs, and then refinegc, a) accordingly.

The canonical chaing of S will be characterized as the first ®¢((c,a)) = ¢\ {m|3r e ST (c,a): m¥ cons(r)}
component of the<-least fixpoint of® 5. W — aU Vr € S~ .

We first specify how¥r ¢ determines which rules will (not) s((e:a)) alfm|vr (c,a) s m = cons(r)}
be applicable w.r.tcs. Let{c,a) and a ruler in S be given. As (C x C, <) forms a complete lattice, anli g is mono-

If » has a positive premis€', which is satisfied by, then  tone and continuous w.r.t, [Tarski, 195% yields:

G will also be satisfied by,s. On the other hand, if has S o )

a negative premisg&l, which is not satisfied bya, thenH  Theorem 6 ¥4 has a<-least fixpoint, which is obtained af-
will not be satisfied by:s either. So if all positive premises ter finitely many iterations o¥ s, starting with(c*, c¢").
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