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Abstract

In a recent paper, we presented a new logic called
&S for reasoning about the knowledge, action, and
perception of an agent. Although formulated using
modal operators, we argued that the language was
in fact a dialect of the situation calculus but with
the situation terms suppressed. This allowed us to
develop a clean and workable semantics for the lan-
guage without piggybacking on the generic Tarski
semantics for first-order logic. In this paper, we re-
consider the relation between &S and the situation
calculus and show how to map sentences of &S into
the situation calculus. We argue that the fragment
of the situation calculus represented by &S is rich
enough to handle the basic action theories defined
by Reiter as well as Golog. Finally, we show that
in the full second-order version of £S, almost all of
the situation calculus can be accommodated.

1 Introduction

In a recent paper, we [Lakemeyer and Levesque, 2004] pre-
sented a new logic called &S for reasoning about the knowl-
edge, action, and perception of an agent. Our main justifica-
tion for introducing yet another knowledge representation for-
malism was twofold. First, we claimed that the language was
not a new formalism at all, but merely a situation-suppressed
version of part of the situation calculus, as originally pre-
sented by McCarthy and Hayes [McCarthy and Hayes 1969]
and subsequently formalized by Reiter [Reiter 2001a]. Sec-
ond, we claimed that because the language was defined se-
mantically rather than axiomatically, certain mathematical ar-
guments about the formalism were considerably simpler than
in the original situation calculus. We presented evidence for
this by showing a very compact proof of the correctness of
Reiter’s regression operator, and another involving a property
called the determinacy of knowledge.

However, our first claim, which was that £S is in fact just
an alternate way of writing some formulas of the situation
calculus, was left unsubstantiated. In this paper, we remedy
this. The main result we prove is the correctness of a simple
mapping between sentences of £S and their counterparts in
the classical language of the situation calculus. In addition,
we show that the fragment of the situation calculus expressed
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by &S is rich enough to handle (among other things) basic ac-
tion theories (as defined by Reiter) and the Do operator which
is the basis of the Golog language [Levesque et al. 1997]. We
also illustrate this richness more informally using an exam-
ple involving the knowledge, action, and sensing of a simple
robot. However, there are sentences of the situation calcu-
lus that cannot be expressed directly in &S, and which may
be useful in some contexts. In the final part of the paper, we
show that if we are prepared to use second-order quantifica-
tion, there is a way to encode (almost) every sentence of the
situation calculus in £S. This encoding is a bit of a trick,
and not something we advocate for everyday use. But it does
exist. So we gain the clarity that comes from having a real
semantic basis, and the ability to present concise semantic ar-
guments, without any significant loss of expressiveness.

The rest of the paper is organized as follows. In the next
section, we define the full language of &S, its syntax and
semantics. This generalizes the version of &S presented in
[Lakemeyer and Levesque, 2004] in a variety of ways, the
most important of which is that it allows functions, predi-
cates, and second-order variables that are fluent (vary from
situation to situation) as well as rigid (fixed for all situations).
In Section 3, we consider the mapping from &S to the situa-
tion calculus and prove that a sentence of &S is valid iff its
mapping is a logical entailment of a suitable situation calcu-
lus theory. In Section 4, we consider the expressiveness of
&S, first with an example basic action theory and then with
Do. In Section 5, we consider the inverse mapping from the
situation calculus to &S, followed by some remarks on related
work and conclusions. Then we stop.

2 Thelanguage: syntax and semantics

The full language &S consists of formulas over symbols from
the following vocabulary:
o first-order variables: x1,x2,...,91,Y2, ..

o fluent second-order variables of arity k: P, P}, .. ;
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e rigid second-order variables of arity k: Q¥, Q5% .. ;

e standard names: ni,no,...;

o fluent function symbols of arity k: fF, f¥ .. ;
for example, location, bestAction;

e rigid function symbols of arity k: g¥ g5, .. .;
for example, block5, repair;



e fluent predicate symbols of arity k: FF, FF ..
for example, Broken;!

e rigid predicate symbols of arity k: G¥, G5, .. ;
for example, Fragile;

e connectives and other symbols: =, A, =, V, Know, [,
round and square parentheses, period, comma.

We assume that first-order variables, standard names, and
function symbols come in two sorts, action (like repair and
bestAction) and object (like block5 and location). Constants
are function symbols of 0 arity.> We let A/ denote the set of
all standard names and Z denote the set of all sequences of
standard names for actions, including ( ), the empty sequence.

2.1 Terms and formulas

The terms of the language are of sort action or object, and
form the least set of expressions such that

1. Every standard name and first-order variable is a term of
the corresponding sort;

2. If ty, ..., ty are terms and h is a k-ary function symbol
then h(t1, ..., 1) is a term of the same sort as h.

By a primitive term we mean one of the form h(ny,...,ng)
where h is a (fluent or rigid) function symbol and all of the
n; are standard names.

The well-formed formulas of the language form the least set
such that

1. Ift4, ..., t; areterms, and H is a k-ary predicate symbol
then H (t1,...,tx) is an (atomic) formula;
2. If t1, ..., tg are terms, and V is a k-ary second-order

variable, then V (¢4, ..
3. If t; and to are terms, then (¢1 = t2) is a formula;

., tx) is an (atomic) formula;

4. If ¢ is an action term and « is a formula, then [t]« is a
formula;

5. If @ and 3 are formulas, v is a first-order variable, and
V' is a second-order variable, then the following are also
formulas: (o A ), —a, Y. a, VV. @, Oa, Know(a).

We read [t]« as “« holds after action ¢”, and O« as “« holds
after any sequence of actions.” As usual, we treat (a V f3),
(a D B), (@ =), Jv., and V. « as abbreviations. We
call a formula without free variables a sentence. By a primi-
tive sentence we mean a formula of the form H (ny,...,ng)
where H is a (fluent or rigid) predicate symbol and all of the
n; are standard names.

2.2 The semantics

The language contains both fluent and rigid expressions. The
former vary as the result of actions and have values that may
be unknown, but the latter do not. Intuitively, to determine
whether or not a sentence « is true after a sequence of ac-
tions 2z has been performed, we need to specify two things: a
world w and an epistemic state e. We write e, w,z = a. A

"'We assume this list includes the predicates Possand SF.

The standard names can be thought of as special extra constants
that satisfy the unique name assumption and an infinitary version of
domain closure.

world determines truth values for the primitive sentences and
co-referring standard names for the primitive terms after any
sequence of actions. An epistemic state is defined by a set of
worlds, as in possible-world semantics. More precisely:

e a world w € W is any function from the primitive sen-
tences and Z to {0, 1}, and from the primitive terms and
Z to N (preserving sorts), and satisfying the rigidity
constraint: if r is a rigid function or predicate symbol,
then wir(ny,...,nk), 2] = wlr(ny,...,ng), 2], for all
zand 2’ in Z.

e an epistemic state e C W is any set of worlds.

We extend the idea of co-referring standard names to arbitrary
ground terms as follows. Given a term ¢ without variables, a
world w, and an action sequence z, we define |t|Z, (read: the
co-referring standard name for ¢ given w and z) by:

1. If t € NV, then |t|Z, = ¢;

2. |h(t1, N 7tk)|fu = w[h(nl, N
where n; = |t;|Z.

ank)uz]7

To interpret formulas with free variables, we proceed as fol-
lows. First-order variables are handled substitutionally using
the standard names. To handle the quantification over second-
order variables, we use second-order variable maps defined
as follows:

The second-order primitives are formulas of the
form V' (nq,...,ng) where V is a (fluent or rigid)
second-order variable and all of the n; are stan-
dard names. A variable map w is a function from
worlds, second-order primitives, and Z to {0,1},
satisfying the rigidity constraint: if @ is a rigid
second-order variable, then for all w and w’ in W,
and all z and 2’ in Z, ulw,Q(n1,...,nk), 2] =
ulw’, Q(nq, ..., ng), 2'.
Let u and ' be variable maps, and let V' be a (fluent or rigid)
second-order variable; we write v’ ~y u to mean that u and
u’ agree except perhaps on the second-order primitives in-
volving V. Finally, to interpret what is known after a se-
quence of actions possibly including sensing has taken place,
we define w’ ~, w (read: w’ and w agree on the sensing
throughout action sequence z) inductively by the following:

1. w ~¢y w iff w' and w agree on the value of
every primitive rigid term and sentence;
2. w ~,., w iff
w' ~, wand w’'[SF(n), z] = w[SF(n), z].

Putting all these together, here is the semantic definition of
truth. Givene C W and w € W, we define e, w = « (read:
« is true) as e, w, () = «, where for any z € Z and any
second-order variable map u:

1. e,w,z,ul= H(ty,...,t) iff
w[H(nq,...,ng),z] =1, where n; = |t;|%;

2. e,w, z,u =V (t, ..., tg) iff
u[w,V(ny,...,ng), 2] =1, where n; = |t;]%;

3. e,w, z,u = (t1 = t2) iff
nq and ny are identical, where n; = |¢;|%;

4. e,w, z,u = [tla iff e,w,z-n,u = a, wheren = [t|Z);



5. e,w,z,u = (A p) iff
e,w,z,u = aand e,w, z,u = G;

6. e,w,z,u = —a iff e,w,z,u fE o

7. e,w, z,u EVo.a iff e,w,z,u ok,
for every standard name n (of the same sort as v);

8. e,w,z,u EVV. o iff
e,w,z,u = «a, forevery v’ ~v u;

9. e,w, z,u = D« iff
e,w,z- 2 u = a, forevery 2’ € Z;

10. e, w, z,u = Know(a) iff
e,w',z,u = «, forevery w’ € e such that w’ ~, w.

When « is objective (has no Know operators), we can leave
out the e and write w = o. When X is a set of sentences and
« is a sentence, we write ¥ = « (read: X logically entails
@) to mean that for every e and w, if e,w = o’ for every
o/ € 3, then e,w = «. Finally, we write = « (read: « is
valid) to mean {} = a.

3 Mapping to the situation calculus

How do we know that the semantics of &S is correct? In this
section, we argue that it is indeed correct by showing how
formulas « in £S can be translated in a direct way to formulas
a* in the situation calculus as defined by Reiter.?

The most desirable and simplest outcome of this translation
would be that = « iff ¥ |ErorL o, where = is validity
in &S, ¥ is the set of foundational axioms of the situation
calculus (see [Levesque et al, 1998], for example), and Fror,
is ordinary classical logical consequence. Unfortunately, we
do not get exactly this correspondence for a variety of reasons
we will discuss below. But we do get something close:

': a iff XUT ':FOLOC*a

where YT is a set of four axioms that we will justify separately.

To prove this result it will be necessary to work with or-
dinary Tarski models of sentences of the situation calculus.
As argued in [Lakemeyer and Levesque, 2004], this is diffi-
cult and painstaking, and is indeed one of the main reasons to
prefer &S over the situation calculus. So while the proof of
the theorem is quite laborious, we remind the reader that this
can be thought of as a final reckoning for a formalism that is
unworkable semantically. For space reasons, we do not re-
view the conventional notation used for talking about Tarski
interpretations, denotations, extensions, variable maps. See,
for example, [Enderton 1972].

3.1 Definition of the translation

Before describing T, we present the translation from &S
into the situation calculus. In the simplest case, the idea is
that a formula like Broken(c), where Broken is a fluent, will

3We assume that this language has functional and relational flu-
ents, functions and predicates that are not fluents, the distinguished
constant Sy, function do, predicates C, Possand SF, and a two-place
predicate K for knowledge. We take Knows(c, o) in the situation
calculus as an abbreviation for the formula Vs(K(s,0) D of®),
where o} is the result of replacing by s in « every occurrence of
now that is not within the scope of a further Knows.

be mapped to the situation calculus formula Broken(c, Sp),
where we have restored the distinguished situation term
So for the fluent. Similarly, [repair(c)]—Broken(c) will be
mapped to —Broken(c, do(repair(c), Sp)). So &S formulas
can be thought of as “situation-suppressed” (in situation-
calculus terminology) and the * mapping restores the situa-
tion argument to the fluents, leaving the rigids unchanged.
More precisely, we have the following:

Definition 3.1 Let « be any term or formula of &S without
standard names. The expression «* is defined as «[Sy] where,
for any situation term o, a[o] is defined inductively by:

1. v[o], where v is a first-order variable, is v;
2. g(t1,...,tx)|o], where g is a rigid function, predicate,
or second-order variable, is g(t1[0], . .., tx[o]);

3. f(t1,...,tx)[o], where f is a fluent function, predicate,
or second-order variable is f(¢1[o], ..., tk[o], 0);

4. (t1 =to)[o] is (t1]o] = t2]o]);
5. ([tja)[o] is aldo(t[o],o)];

6. (anpB)lo] is (alo] AB[o])

7. (ma)[o] is —alol;

8. (Vw.a)lo] is Yv.alo];

9. (VV.a)[o] is VV.a[o].

10. (Oa)[o] is Vs'(o E §' D als']);

11. Know(a)[o] is Knows(a[now], o).

Note that the translation of U« introduces quantification over
situations, where the introduced variable s’ is assumed to be
one that does not appear in situation term o.

3.2 The situation-calculus axioms Y
The axioms we assume in Y are the following:
1. domain of objects is countably infinite;*
2. domain of actions is countably infinite (as above);

3. equality is the identity relation:
Vavy. (z =y) = VQ(Q(z) = Q(y)).
4. the K predicate:® Vs(K (s, Sp) D Ini(s)) A
Vs'Vs. K(s',s) = VP(... D P(s,3s)),
where the ellipsis stands for the universal closure of
[K(Sl,SQ) VAN |n|(82) D P(Sl,SQ)] A
[P(s1,82) A SF(a,s1) = SF(a,s2) D
P(dO(a, 51)3 dO((L 52))]

Axioms (1) and (2) talk about the cardinality of the set of
objects and actions respectively: they are both countable and
infinite. The countability aspect is not very controversial. In
the first-order case, every satisfiable set of sentences is satis-
fiable in a countable domain, and we do not expect users of
the situation calculus to use second-order logic to defeat this.
Note that this does not rule out having theories that talk about

“For space reasons, we omit the formula of second-order logic
that fixes the cardinality of the domain of objects and actions.

SWe let Ini(t) be an abbreviation for the situation calculus for-
mula VaVs(t # do(a, s)). In this version of the axiom, we ignore
the correspondence between K and Poss.



real numbers or other continuous phenomena; it simply rules
out using second-order logic to force the interpretations of
these theories to be uncountable. We can, however, imagine
contexts where finiteness might be desirable. In such cases,
we can introduce a new predicate O and instead of assert-
ing that there are finitely many objects, assert that there are
finitely many objects in O.

As for axiom (3), it is hard imagining anyone taking the
negation of this one seriously. The usual first-order axiomati-
zation of equality is often enough, but the intent is invariably
for the equality symbol to be understood as the identity rela-
tion, which this second-order axiom ensures.

Finally axiom (4) is a second order definition of the K
predicate in terms of the value it has at Sp. This is just an-
other way of capturing the successor state axiom for K in-
troduced by Scherl and Levesque [2003], and the added ma-
chinery to make Knows be a weak-S5 operator [Hughes and
Cresswell, 1968]. Other knowledge operators are possible in
the situation calculus, but weak-S5 and its extensions (such
as strong-S5) are the most often used.

3.3 The embedding theorem

What we show is that provided certain properties hold be-
tween a Tarski structure on one side and an epistemic state,
and a collection of worlds on the other, sentences will be true
in &S iff their translations are true in the Tarski structure.

Let M be a Tarski structure for the situation calculus over
the domain D = Dy U Dy U Dy, with Dy, C Dy as
the set of initial situations, and with ¢ty = S{JV‘ € D;pi. Let
e be an epistemic state, and assume that we are given three
mappings w € Dy — W], 0 € [N — Dyer U Dyyjl, and
7 € [Z X Dini — Ds). These mappings need to satisfy
various consistency properties that we cannot enumerate here.
But we can at least quote the lemma that uses them:

Lemma 3.2 Let « be a formula of &S with no standard
names and whose free variables are among x,..
Then, given the consistency properties, for any variable map
w, the &S variable map v, (defined in terms of 1), any vari-
able s,any z € Z,any ¢ € Dy,;, and w = w(t),

s T

e, W, 2, Uy = ot .o
iff
M, u{x1/0(n1), ..., xm/0(nm), s/m(2,0)} E als].

This is proved by a (long) induction on the structure of o.. The
main result is then the following:

Theorem 3.3 Let « be any sentence of £S without standard
names. Then cisvalid iff YUY Epor o,

Proof: (Sketch) First assume that « is not valid. Then there
is an e, wo such that e, wy = «. We define a Tarski structure
M whose domain is D = D,p; U Dyey U Dsje, Where Dy
(resp. Dyer) is the set of standard names of objects (resp. ac-
tions), and Dy;; = Z x W. Then we define =M, SM, do™,
CM, KM as well as the extension of every rigid and fluent
predicate and function symbol using e and wg in a way that
ensures that M satisfies X U Y. Next, define the mappings 6,
m, and w by letting §(n) = n, and for any initial « = ({), w),
letting w(z,t) = (z,w), and w(¢) = w. This ensures that the

—» backward

Figure 1: A simple robot

properties needed for Lemma 3.2 are satisfied, and therefore
M }E o*. Consequently, ¥ U Y fpor, o*.

Conversely, assume that X U T £ror, . Then there is a
Tarski structure M that satisfies UTY but such that M = o*.
The domain D must be Dy U Dy U Doy, With Dy © Degy
as the set of initial situations, and with 1y = 5’6‘/‘ € Dipi.
Since M = T, both D,y; and D, are countably infinite,
Dov; = {01,02,...}, and Dyer = {A1, Ag, ...}. We define 6
to map the i-th standard name for objects to §; and analogous-
ly for actions. We then define 7 using do™, and w using the
extensions of the function and predicate symbols given by M.
Finally, we let e = {w(¢) | (¢,20) € KM}, and wy = w(1p).
These ensure that the properties needed for Lemma 3.2 are
satisfied, and so e, wg [~ «. Consequently, « is not valid. I

4 The expressiveness of the language

Now that we have established that &£S is actually a disguised
fragment of the situation calculus, we next consider the ex-
pressiveness of this fragment, starting with a simple example
problem, adapted from [Levesque and Lakemeyer 2001].
Imagine a robot that lives in a 1-dimensional world, and
that can move towards or away from a fixed wall. The robot
also has a sonar sensor that tells it when it gets close to the
wall, say, less than 10 units away. See Figure 1. So we might
imagine three actions, forward and backward which move the
robot one unit towards and away from the wall, and a sonar
sensing action which tells the robot if it is close to the wall.
Each of these is a rigid constant, but for simplicity, we will
simply assume that they are standard names. We have a sin-
gle fluent, distance, which gives the actual distance from the
robot to the wall. We can use Close as an abbreviation for the
formula “distance < 10.” ® We begin our formalization by
writing preconditions for the three actions:
VaOPoss(a) =

a = forward A distance >0 VvV

a = backward A TRUE V

a = sonar A TRUE.

Next, we define the sensing results for the actions:
VYaOSF(a) =
a = forward A TRUE V
a = backward A TRUE V

®Here and below, we use simple arithmetic involving <, 4, and
—, which can easily be defined in second-order terms with the stan-
dard names acting as natural numbers. We omit the details.



a = sonar A Close.

Finally, we write a successor state axiom for our only fluent:
Va,x [ [a](distance = z) =
a = forward A distance=xz+1 V
a = backward A distance=2x—-1 V
a # forward A a # backward A distance = z.

Now we are ready to consider some specifics having to do
with what is true initially by defining an action theory . Let
¢ denote the conjunction of the sentences above. We assume
that ¢ is true and the robot knows it. We also assume the
robot is located initially 6 units away from the wall, but that
the robot has no idea where it is. So, we let X be

{#, Know(¢), distance = 6, Vz—Know(distance # z)},
and we get this:
Theorem 4.1 The following are logical entailments of X:

1. Close A —Know(Close) A [forward] -Know(Close)
the robot is close to the wall, but does not know it, and
continues not to know it after moving forward;

2. [sonar] (Know(Close) A [forward]Know(Close))
after reading the sonar, the robot knows it is close, and
continues to know it after moving forward;

3. [sonar] [backward] —Know(Close)
after reading the sonar and then moving backward, the
robot no longer knows that it is close to the wall;

4. [backward] [sonar] Know(Close)
after moving backward and then reading the sonar, the
robot knows that it is close to the wall;

5. [sonar] [forward] [backward] Know(Close)
after reading the sonar, moving forward, and then back-
ward, the robot knows that it is still close to the wall;

6. [sonar] Know([forward] Close)
after reading the sonar, the robot knows that it will re-
main close after moving forward,;

7. =Know([sonar] Know(Close))
the robot does not know initially that it will know that it
is close after reading the sonar;

8. Know([sonar] (Know(Close) V Know(—Close)))
the robot does know initially that after reading the sonar,
it will then know whether or not it is close to the wall;

9. Know([sonar] [backward] —Know(Close))
the robot knows initially that it will not know that it is
close after reading the sonar and moving backwards.

Proof:  The proofs of these are similar. Here we will only
do item 3. Let z = (sonar - backward), and suppose that
e,w = X; we must show that e, w, z = -Know(Close). Be-
cause e, w = —Know(distance # 9), there exists w’ € e such
that w’ ~(y w and w'[distance, ()] = 9. Since 9 < 10, we
also have that w’ ~, w. However, w’[distance, z] = 10. So
there exists w’ € e such that w’ ~, w and w’, z = —Close.
Therefore, e, w, z = ~-Know(Close). 1

Although we will not attempt to formulate a theorem here, it
should be clear from this example that any basic action theory
[Reiter 2001a] including those involving the Scherl-Levesque
knowledge operator can be expressed in £S.

4.1 The Do operator

We now turn our attention to the Do operator which is the ba-
sis of the Golog language [Levesque et al. 1997], and show
that a variant of Do can be represented in £&S. We cannot en-
code Do(d, s, s") directly since we do not have situations as
terms. Instead we will use D8(J, o) which intuitively means
that « holds after doing Golog program 4. There are two pos-
sible readings: one says that « holds in all final states, and the
other says that o holds in some final state. They can be inter-
defined, so we consider only the latter. We treat D3(0, ) as
an abbreviation for a formula of &S, defined recursively on
the § as follows:

1. for any action a, D8(a, @) . (Poss(a) A [a]a);

2. D8(6?, @) < (6 A );

3. D8(5; o', a) " DB(s, DB, ));
4. D8(5 |8, o) & (DB(S, ) vV DB(S, a));
5. DO(mzx. ¢, @) 3. D8(4, «);
6. DB(6*, o) &

VP. {O(a D P) AO(D8(6,P) D P)} D P.
As usual, we can define while-loops and if-then-else as ab-
breviations. The main theorem that we state here is that this
account of DO is correct relative to the original account of Do
and the mapping from &£S defined above:

Theorem 4.2 Let § be any program, « be any sentence of &S,
and o be any situation term of the situation calculus.

Then =ror DO(6,a)[c] = Js. Do(d,0,s) A afs].

This is proved by induction over J, the only troublesome case
being for the nondeterministic iteration, 0*.

5 Mapping from the situation calculus

When mapping the situation calculus into £S, the main issue
is the treatment of quantified situations. While simple formu-
las can be translated using the inverse of * from Section 3, a
sentence like Vs3s'.s C s’ A (s # ') AF(s) = F(s'), which
says that from every situation another situation is reachable
that agrees on the truth value of F, has no counterpart in &£S.
To deal with situation-calculus sentences like these, our
proposal is to encode action sequences in second-order &£S.
Let nil be a (rigid) constant and seq a (rigid) binary function
symbol of £S. We define ActionSeq(x) as an abbreviation for

vQ.Q(nil) A Vy,a.(Q(a) D Q(seq(a,y))) > Q(x).

In the situation calculus, a fluent like F'(do(«,do((3, Sp)))
actually means that F' holds after doing § then a. So the
actions are in reverse order in a situation term. It is therefore
useful to be able to reverse a sequence as follows:

Definition 5.1 Rev(z,y) < VR(... > R(x,nil,y)), where
the ellipsis stands for the universal closure of

R(nil,z,z) AN [R(z,5eq(a,y),z) D R(seq(a,x),y, 2)].

Next we define what it means for a formula « to be true after
a sequence of actions.



Definition 5.2 After(s,a) “< VP.(... > P(s)) where the
ellipsis stands for the universal closure of

O{(a D P(nil)) A ([a]P(z) A Rev(seq(a,x),y) D P(y))}.

The fluent —Broken(do(repair, do(drop, Sp))) will then be
translated as After(seq(repair, seq(drop, nil)), -Broken). In
order to deal with quantification over situations, we define <
as a relation over action sequences, similar to the situation
calculus relation C.

Definition 5.3 (z < 2') & vQ.(... > Q(x,2’)) where the
ellipsis stands for the universal closure of

Qnil,z) A (Q(x,y) > Q(seq(a, ), seq(a, y)))-

The formula Vs3s'.s C s' A (s # s') A F(s) = F(s') of the
situation calculus will then be translated as

Vz. ActionSeq(x) D Jz’. ActionSeq(z’) A
(x<z') N (z#2") A [After(z, F) = After(a, F)].

The final problem we must deal with concerns unrestricted
quantification over initial situations. To simplify things, we
restrict ourselves to SC”, the rooted situation calculus, where
all situation quantification is of the form Vs. ¢ C s D a, for
some situation term o. Note that this is no restriction at all for
the non-epistemic situation calculus, since Vs.« is equivalent
to Vs.5p C s O «. We handle the Knows operator separately.
To ease the translation, we assume that situation-calculus
formulas are in the following normal form: all arguments of
predicates and functions are variables; equality expressions
have the form (x = t), where x is a variable and ¢ is a term
mentioning at most 1 function symbol. It is easy to show that
every formula of SC” is equivalent to one in this normal form.
The mapping from the situation calculus into £S begins
with a mapping ® from situation terms into sequences of
actions in &S. We assume that there is a countably infi-
nite set V; of extra object variables in &S for this purpose.
For any situation variable s, we assume that s®* € V; and
that ¢ is 1-to-1 and onto wrt V, when restricted to situation
variables. We also have that S§ = now® = nil, and that
do(a, s)* = seq(a, s*). We extend ® to formulas as follows:

Definition 5.4 Let « be any formula of SC™ in normal form.
Then its translation into &S, «*, is defined inductively by:

1. G(zx1,...,x)®, where G is a rigid predicate or rigid
second-order variable, is G(z1, . . ., zk);

2. F(xy,...,2x,)®, where F' is a fluent predicate or flu-
ent second-order variable, is After(s®, F'(z1,...,zk));

3. (x = g(x1,...,zx))*, where g is a rigid function, is
(x =g(x1,...,21));

4. (x = f(x1,...,2k,s))®, where f is a fluent function, is
After(s®, z = f(z1,...,2x));

(s=o0)%is(s* =0°);

o1 E 02)%is (0] < 03);

—@)® is —a®;

aAp)isa® AS%;

Vz.«r) is Vz.o® for an object or action variable z;

© o N o g

(
(
(
(

10. (Vs.o CsDa)®is
Vs®. ActionSeq(s®) A o® < s* D a®);

11. (VV.«a)® is VV.«* for a second-order variable V;
12. Knows(a, s)® is After(s®, Know(a?®)).

To show correctness of the translation, we need two more
axioms ¥, which are the universal closure of the following:
seq(a, z) # nil;
seq(a,x) =seq(a’,z’) D a=d Ax=2a'.

Theorem 5.5 Let a be a sentence of SC” in normal form.
Then X UT ):FOL o iff U ): af.

6 Redated Work

The situation calculus, which has been the sole focus of this
paper, is of course not the only language for reasoning about
action. Over the years, there have been many other propos-
als such as the event calculus [Kowalski and Sergot 19861,
Sandewall’s features and fluents [Sandewall 1994], the lan-
guage A [Gelfond and Lifschitz 1993], or the fluent calcu-
lus [Holldobler and Schneeberger 1990], to name but a few.
What distinguishes the situation calculus perhaps most from
its alternatives is that it admits an elegant monotonic solution
to the frame problem [Reiter 1991], which is shared by its
close relative, the fluent calculus [Thielscher 1999]. How-
ever, the fluent calculus also has situation terms as part of
the language and hence suffers from the same shortcomings
which &S tries to address.

&S itself has much in common with dynamic logic [Pratt
1976; Harel 1984], which has also been applied to reason-
ing about action [Castilho, Gasquet, and Herzig 1999]. A
new feature of &S, compared to dynamic logic, are quantified
modalities as in Va.[a]c, which are key in expressing succes-
sor state axioms, among other things.

Dynamic logic has been combined with epistemic
logic [Herzig et al. 2000; Demolombe 2003]. In the lan-
guage of [Herzig et al. 2000], it is possible to express things
like [backward] [sonar] Know(Close) using an almost iden-
tical syntax and where Know also has a possible-world se-
mantics. Despite such similarities, there are significant dif-
ferences, however. In particular, their language is proposi-
tional. Consequently, there is no quantification over actions.
Demolombe (2003) proposes an axiomatic translation of parts
of the epistemic situation calculus into modal logic. While his
modal language is first-order, he does not consider quantified
modalities.

Although they do not consider epistemic notions, the work
by [Blackburn et al. 2001] is relevant as it reconstructs a ver-
sion of the situation calculus in Hybrid Logic [Blackburn et
al. 2001], a variant of modal logic which was inspired by the
work on tense logic by Prior [Prior 1967]. In a sense, though,
this work goes only part of the way as an explicit reference
to situations within the logic is retained. To us this presents
a disadvantage when moving to an epistemic extension. The
problem is that the epistemic situation calculus requires us
to consider uncountably many situations, which precludes a
substitutional interpretation of quantification.



7 Conclusion

In this paper, we have substantiated the claim made infor-
mally in a previous paper that £S is a fragment of the situ-
ation calculus that admits an intuitive possible-world seman-
tics. We argued that this fragment is expressive enough to rep-
resent basic action theories by presenting a simple example
involving the action, knowledge, and sensing of a robot. We
also showed how a version of the Do operator of the Golog
language could be accommodated within the language. Fi-
nally, we proved that by using second-order encodings of se-
quences, virtually all of the situation calculus can be repre-
sented in &S. So what we get out of &S is a tool with prac-
tically the same expressive power as the standard situation
calculus, but which is much more amenable to analysis due
to its simple semantic basis.

In work currently under way [ClaBen 2005], &S is used
to simplify and extend results by Reiter on knowledge-based
programs [Reiter 2001b]. There are also a number of di-
rections for future research, but perhaps the most immediate
would be to implement a new version of Golog based on &S
and put it to work.
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