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1 Introduction 
The GSTP system has been developed at the University of 
Milan with the objective of providing universal access to the 
implementation of a set of algorithms for multi-granularity 
temporal constraint satisfaction. The many formalisms and 
algorithms proposed in the literature for Temporal Constraint 
Satisfaction Problems (TCSP) have essentially ignored the 
subtleties involved in the presence of multiple time granu­
larities in the temporal constraints. Examples of simple con­
straints specified in terms of a time granularity are the fol­
lowing: "package shipment must occur the next business day 
after check clearance" and "package delivery should occur 
during working hours". More technically, the GSTP sys­
tem allows the user to specify binary constraints of the form 
Y - X € [m^n]G, where m and n are the minimum and 
maximum values of the distance between X and Y in terms of 
granularity G. Variables take values in the positive integers, 
and unary constraints can be applied on their domains. This 
can be considered the extension of STP [Dechter et al. 1991] 
to multiple and arbitrary granularities. 

A first issue in the representation and processing of these 
constraints is the need for a clear semantics for time gran­
ularities. Business days, for example, may really have dif­
ferent meanings in different countries or even in different 
companies. In this respect GSTP adopts a formalism, first 
introduced in [Wang et al. 1997; Bettini et al. 1998], which 
can model arbitrary user-defined time granularities and has 
a clear set-theoretic semantics. In order to guarantee a fi­
nite representation, granularities in GSTP are limited to those 
that can be defined in terms of periodic sets. Hours, days, 
weeks, business days, business weeks, fiscal years, and aca­
demic semesters are common examples. 

A second issue is related to the difficulty to reduce a net­
work of constraints given in terms of different granularities 
into an equivalent one with all constraints in terms of the same 
granularity, so that some of the standard algorithms for CSP, 
like consistency checking through arc- or path-consistency 
[Bessiere 1994; Dechter et al. 1991], could be successfully 
applied. Indeed, any conversion necessarily introduces an 
approximation; For example, the above constraint imposing 
delivery to start the next business day may be translated in 
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terms of hours with a minimum of 1 hour and a maximum of 
95 hours. (The number 95 takes into account a check clear­
ance at the beginning of a Friday and a shipment at the end 
of next Monday according to the constraint.) However, if the 
check is cleared on Monday, the new constraint would allow 
a shipment on Thursday which is clearly a violation of the 
original constraint. Approximate conversion algorithms are 
extensively discussed in [Bettini et al. 1998]. We have shown 
that any consistency algorithm adopting these conversions as 
the only tool to reduce the problem to a standard CSP is in­
evitably incomplete, and have proposed a different algorithm, 
called ACG, which has been proved to be complete [Bettini 
et al.2002]. 

GSTP, in addition to implementing the reasoning algo­
rithms, assists the user in the definition of constraint net­
works, in their submission to a remote processing service and 
in the analysis of the output. 

2 The Algorithms 
The most interesting part of the system is perhaps the imple­
mentation of the ACG algorithm which has been recently pro-
posed in [Bettini et a/.2002]. It is based on arc-consistency, 
and it is essentially an extension of the AC-3 algorithm 
[Mackworth et al. 1985] to deal with possibly infinite (but 
periodic) domains and with constraints in terms of multiple 
periodic granularities. This extension is not trivial since it in­
volves the algebraic manipulation of the mathematical char­
acterization of granularities. ACG also derives the minimal 
solution for the constraint network. 

Repeat 
1. Conversion+PC 
2. ACG 
3. RcfincEdgcsFromNodes() 

Until no change is observed 
Return Inconsistent or NewNetwork+solution 

Figure 1: The main loop of the constraint solver 

Despite several optimizations have been introduced in the 
implementation, ACG greatly benefits from any preprocess­
ing phase that can refine some of the original constraints. This 
is the main reason why GSTP integrates with ACG an approx­
imate algorithm, proposed in [Bettini et al. 1998], and based 
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on the conversion of constraints in different granularities fo l ­
lowed by path consistency. The interaction of the two algo­
rithms is also used to further refine the original constraints. 

Fig. 1 shows the three main steps behind the GSTP con­
straint solver. In step 1, the original network is decomposed 
in as many networks as are the granularities appearing in the 
constraints; each network has the explicit constraints given 
in terms of one granularity as well as constraints in the same 
granularity obtained by conversion from others on the same 
edge, but in terms of different granularities. Then, standard 
path consistency is applied to each network. The resulting 
network most likely has refined constraints with respect to 
the original one. Any inconsistency captured by this process­
ing has the effect of terminating the constraint solver report­
ing the inconsistency status. However, if this is not the case, 
the network may still be inconsistent and it w i l l go through 
ACG, the complete consistency algorithm (step 2). From the 
node domains returned by ACG, it is possible to further refine 
some of the constraints (the function doing this job in step 3 
is called RefineEdgesFromNodesO)- The steps are repeated, 
since path consistency applied to the refined constraints may 
lead to some changes. Our experiments show that after few 
iterations of the main loop a fixpoint is always reached. 

3 The GSTP Architecture 
Fig. 2 shows the general architecture of the GSTP system. 
There are three main modules: the constraint solver, the web 
service, which enables external access to the solver, and a 
user interface that can be used locally or remotely to design 
and analyze constraint networks. 

networks, to submit them to the constraint solver, and to ana­
lyze results. In particular, it is possible to have views in terms 
of specific granularities, to visualize implicit constraints, to 
browse descriptions of domains, and to obtain a network so­
lution. Fig. 3 shows a screenshot from the interface. 

Figure 2: The GSTP Architecture 

The constraint solver is the C implementation of the al­
gorithms described above, and it runs on a server machine. 
The Web Service defines, through a WSDL specification, the 
parameters that can be passed to the constraint solver, includ­
ing the X M L schema for the constraint network specification; 
It accepts connections through soap/http from client appli­
cations or other web services which require constraint pro­
cessing, it invokes the solver after validating the parameters, 
and it passes back the results. The third module is a remote 
java-based user interface, which is extensively described in 
the system demo. It allows the user to easily edit constraint 

Figure 3: The User Interface 
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