
Improving Word Sense Disambiguation in Lexical Chaining 

Michel Galley and Kathleen McKeown 
Columbia University 

Department of Computer Science 
New York, NY 10027, USA 

{ga l ley ,kathy}@cs.Columbia.edu 

Abstract 
Previous algorithms to compute lexical chains suf­
fer either from a lack of accuracy in word sense 
disambiguation (WSD) or from computational in­
efficiency. In this paper, we present a new linear-
time algorithm for lexical chaining that adopts the 
assumption of one sense per discourse. Our results 
show an improvement over previous algorithms 
when evaluated on a WSD task. 

1 Introduction 
Passages from spoken or written text have a quality of unity 
that arises in part from the surface properties of the text; 
syntactic and lexical devices can be used to create a sense of 
connectedness between sentences, a phenomenon known as 
textual cohesion [Halliday and Hasan, 1976]. Of all cohesion 
devices, lexical cohesion is probably the most amenable 
to automatic identification [Hoey, 1991]. Lexical cohesion 
arises when words are related semantically, for example 
in reiteration relations between a term and a synonym or 
superordinate. 

Lexical chaining is the process of connecting semantically 
related words, creating a set of chains that represent different 
threads of cohesion through the text. This intermediate 
representation of text has been used in many natural language 
processing applications, including automatic summarization 
[Barzilay and Elhadad, 1997; Silber and McCoy, 2003 ], infor­
mation retrieval [Al-Halimi and Kazman, 1998], intelligent 
spell checking [Hirst and St-Onge, 1998], topic segmentation 
[Kan et al, 1998], and hypertext construction [Green, 1998]. 

A first computational model of lexical chains was in­
troduced by Hirst and St-Onge [1998]. This linear-time 
algorithm, however, suffers from inaccurate WSD, since their 
greedy strategy immediately disambiguates a word as it is 
first encountered. Later research [Barzilay and Elhadad, 
1997] significantly alleviated this problem at the cost of a 
worse running time (quadratic); computational inefficiency 
is due to their processing of many possible combinations of 
word senses in the text in order to decide which assignment is 
the most likely. More recently, Silber and McCoy [2003] pre­
sented an efficient linear-time algorithm to compute lexical 
chains, which models Barzilay's approach, but nonetheless 
has inaccuracies in WSD. 

In this paper, we further investigate the automatic identifi­
cation of lexical chains for subsequent use as an intermediate 
representation of text. In the next section, we propose a new 
algorithm that runs in linear time and adopts the assumption 
of one sense per discourse [Gale et al., 19921. We suggest 
that separating WSD from the actual chaining of words can 
increase the quality of chains. In the last section, we present 
an evaluation of the lexical chaining algorithm proposed in 
this paper, and compare it against [Barzilay and Elhadad, 
1997; Silber and McCoy, 2003] for the task of WSD. This 
evaluation shows that our algorithm performs significantly 
better than the other two. 

2 Lexical Chaining with a Word Sense 
Disambiguation Methodology 

Our algorithm uses WordNet [Miller, 1990] as a knowledge 
source to build chains of candidate words (nouns) that are 
related semantically. We assign a weight to each semantic 
relation; in our work semantic relations are restricted to 
hypernyms/hyponyms (e.g. between cat and feline) and 
siblings (hyponyms of hypernyms, e.g. dog and wolf). 
Distance factors for each type of semantic relation prevent 
the linkage of words that are too far apart in the text; these 
factors are summarized in Table 1. 

The algorithm can be decomposed into three steps: build­
ing a representation of all possible interpretations of the text, 
disambiguating all words, and finally building the lexical 
chains. First, similarly to [Silber and McCoy, 2003], we 
process the whole text and collect all semantic relations 
between candidate words under any of their respective senses. 
No disambiguation is done at this point; the only purpose is to 
build a representation used in the next stages of the algorithm. 
Note that this is the only stage where the text is read; all 
later stages work on this implicit representation of possible 
interpretations, called a disambiguation graph (Figure 1). 
In this kind of graph, nodes represent word instances and 
weighted edges represent semantic relations. Since WordNet 
doesn't relate words but senses, each node is divided into as 
many senses as the noun has, and each edge connects exactly 
two noun senses. 

This representation can be built in linear time by first build­
ing an array indexed by senses of WordNet and processing a 
text sequentially, inserting a copy of each candidate word into 

1486 POSTER PAPERS 



Table 1: Weights of relations depending on the kind of 
semantic relationship and distance (in number of sentences 
or paragraphs) between two words. 

Figure 1: A disambiguation graph, an implicit representation 
of word-sense combinations (in this example, all weights are 
equal to 1.) 

all entries that are valid senses of this word (for example, in 
Figure 2, the instances car and auto have been inserted under 
the same sense in the array). Then, wc check whether the 
noun instance that was just inserted is semantically related 
to other nouns already present in the array. We do so by 
looking at hypernyms, hyponyms, and siblings, and if any 
of these related senses have non-empty entries in the array, 
we create the appropriate links in the disambiguation graph. 
For example, in Figure 2, the algorithm finds an hyponymy 
relation between the noun taxi (under its unique sense in 
the array) and another entry in the array containing car and 
auto, so semantic links are added to the disambiguation graph 
between these two words and taxi (shown here attached to 
the array). Processing all nouns this way, we can create 
all semantic l inks in the disambiguation graph in time 0{n) 
(where n is the number of candidate words.) 

In the second step, we use the disambiguation graph to 
perform W S D , enforcing the constraint of one sense per 

Figure 2: First pass of the algorithm: using an array, we can 
bui ld the disambiguation graph in linear time. 

discourse. We perform the disambiguation of every word, 
instead of disambiguating word occurrences as in e.g. [Hirst 
and St-Onge, 1998; Silber and McCoy, 2003]. We process 
all occurrences (nodes) of one word at a time, and sum the 
weight of all edges leaving these nodes under their different 
senses. The one sense of the word that is assigned the highest 
score (sum of weights) is considered the most probable sense. 
For example in Figure 1, the sense of bank that has the 
highest score is financial institution. That sense is assigned 
to all occurrences of the word; in other words, we impose the 
constraint of one sense per discourse. In case of a tie between 
two or more senses, we select the one sense that comes first 
in WordNet, since WordNet orders the senses of a word by 
decreasing order of frequency. 

The final step is to build the actual lexical chains by 
processing the entire disambiguation graph. At this point, we 
have already assigned a sense to each word, so the last step is 
to remove f rom the disambiguation graph all semantic links 
that connect words taken under their (assumed) wrong senses. 
Once all such edges have been removed, we are left wi th the 
semantic links corresponding to a unique interpretation of the 
text, and the edges that remain in the graph are the actual 
lexical chains of our algor i thm. l 

The separation of WSD and lexical chaining into two 
different sub-tasks is important. A l l semantic relations, 
whether correct or incorrect, can be investigated in WSD 
without necessarily creating incorrect semantic relations in 
the chaining process. Words are disambiguated by summing 
weights of semantic relations, but mistakenly counting edges 
relating words under wrong senses (as in Figure 2 between 
fall and bank) doesn't necessarily have the undesirable effect 
of l inking the two words in the same chain. Our assumption 
is that summing edge weights generally helps in selecting the 
right senses, e.g. bank is disambiguated as a financial institu­
t ion, 'and fall and bank are thus prevented from appearing in 
the same chain. 

3 Evaluation 
The evaluation of lexical chains is generally difficult. Even 
if they can be effectively used in many practical applica­
tions like automatic summarization, topic segmentation, and 
others, lexical chains are seldom desirable outputs in a real-
wor ld application, and it is unclear how to assess their quality 
independently of the underlying application in which they are 
used. For example, in summarization, it is hard to determine 
whether a good or bad performance comes from the efficiency 
of the lexical chaining algorithm or f rom the appropriateness 
of using lexical chains in that k ind of application. In 
this section, we evaluate lexical chaining algorithms on the 
basis of WSD. This arguably is independent of any targeted 

'Our algorithm has some similarities with Silber and McCoy's 
algorithm, but it is actually quite different. First, they process 
each noun instance separately; thus, nothing prevents a noun from 
having different senses in the same discourse. Second, they process 
the entire text twice instead of once. In the second pass of their 
algorithm, they perform WSD and the actual chaining at the same 
time, whereas we postpone the chaining process until each word has 
been fully disambiguated. 

POSTER PAPERS 1487 

Semantic relation 1 sent. 3 sent. 1 par. other 
synonym 

hypernym/hyponym 
sibling 

1 
1 
1 

1 
0.5 
0.3 

0.5 
0.3 
0.2 

0.5 
0.3 
0 



Algorithm Accuracy 
Barzilay and Elhadad 

Silber and McCoy 
Galley and McKeown 

56.56% 
54.48% 
62.09% 

Table 2: Accuracy of noun disambiguation on semcor. 

application, since any lexical chaining algorithm has to deal 
with the problem of WSD. We do not attempt to further 
evaluate other aspects of chains. 

We tested three lexical chaining algorithms on the semantic 
concordance corpus (semcor), a corpus that was extracted 
from the Brown Corpus and semantically tagged with Word-
Net senses. We l imited our evaluation to a set of 74 
documents of that corpus; this represents about 35,000 nouns. 
W S D was evaluated on nouns, since all three algorithms that 
were tested (Barzilay and Elhadad; Silber and McCoy, and 
ours) build lexical chains wi th nouns only. We used the 
original implementation of Barzilay and Elhadad's algorithm, 
but had to implement Silber and McCoy's algorithm since 
we didn't have access to their source code. We tested the 
accuracy of W S D on the set of 35,000 nouns and obtained 
the results presented in Table 2;2 accuracy by polysemy 
is displayed in Figure 3. We can see that our algorithm 
outperforms Barzilay and Elhadad's, and a one-sided t-test3 

of the null hypothesis of equal means shows significance at 
the .001 level (p = 4.52 • 10 - 4 ) . Barzilay and Elhadad in turn 
outperform Silber and McCoy, but this result is not significant 
at the basic .05 level (p = 0.0537). 

4 Conclusions 

In this paper, we presented an efficient linear-time algo­
ri thm to build lexical chains, showing that one sense per 
discourse can improve performance. We explained how 
the separation of WSD f rom the construction of the chains 
enables a simplif ication of the task and improves running 
time. The evaluation of our algorithm against two known 
lexical chaining algorithms shows that our algorithm is more 
accurate when it chooses the senses of nouns to include 
in lexical chains. The implementation of our algorithm 
is freely available for educational or research purposes at 
http://www.cs.columbia.edurgalley/research.html. 

Acknowledgments 

We thank Regina Barzilay, the three anonymous reviewers, 
and the Columbia natural language group members for help­
fu l advice and comments. 

2In Barzilay and Elhadad's algorithm, a word can sometimes 
belong to two different chains. In order to map each word to 
one single sense, we applied the strong chain sense disambiguation 
strategy described in [Barzilay, 1997] (i.e. picking the word sense 
used in the strongest chain). 

3The samples in the t-test arc the WSD accuracies on each 
individual documents. 

Figure 3: Accuracy by polysemy of the three algorithms. 

References 
FAl-Halimi and Kazman, 1998] R. A l -Ha l im i and R. Kaz-

man. Temporal indexing of video through lexical chaining. 
In WordNet: An electronic lexical database. M I T Press, 
1998. 

IBarzilay and Elhadad, 1997] R. Barzi lay and M. Elhadad. 
Using lexical chains for text summarization. In Proc. 
of the Intelligent Scalable Text Summarization Workshop 
(ISTS'97),ACL, 1997. 

IBarzilay, 1997] R. Barzilay. Lexical chains for summariza­
tion. Master's thesis, Ben-Gurion University, 1997. 

[Gal et a l . , 1992] W. Gale, K. Church, and D. Yarowsky. 
One sense per discourse. In Proc. of the DARPA Speech 
and Natural Language Workshop, 1992. 

[Green, 1998] S. Green. Automated l ink generation: Can 
we do better than term repetition? In Proc. of the 7th 
International World-Wide Web Conference, 1998. 

[Hall iday and Hasan, 1976] M. Hall iday and R. Hasan. Co­
hesion in English. Longman, London, 1976. 

[Hirst and St-Onge, 1998] G. Hirst and D. St-Onge. Lexical 
chains as representations of context for the detection and 
correction of malapropisms. In WordNet: An electronic-
lexical database. M I T Press, 1998. 

[Hoey, 1991] M. Hoey. Patterns of lexis in text. Oxford 
University Press, 1991. 

(Kan et al, 1998] M.-Y. Kan, J. Klavans, and K. McKeown. 
Linear segmentation and segment significance. In Proc. 
of the 6th Workshop on Very Large Corpora (WVLC-98), 
1998. 

[Mi l ler , 1990] G. Mil ler. WordNet: An on-line lexi­
cal database. International Journal of Lexicography, 
3(4):235-312,1990. 

[Silber and McCoy, 2003] G. Silber and K. McCoy. Ef­
ficiently computed lexical chains as an intermediate 
representation for automatic text summarization. Compu­
tational Linguistics, 29(1), 2003. 

1488 POSTER PAPERS 


