
Approximate Policy Iteration using Large-Margin Classifiers

Michail G. Lagoudakis and Ronald Parr
Duke University

Durham, NC 27708
{ m g l , p a r r } @ c s . d u k e . e d u

Abstract

We present an approximate policy iteration algo­
rithm that uses rollouts to estimate the value of each
action under a given policy in a subset of states and
a classifier to generalize and learn the improved
policy over the entire state space. Using a multi-
class support vector machine as the classifier, we
obtained successful results on the inverted pendu­
lum and the bicycle balancing and riding domains.

1 Introduction
Reinforcement learning provides an intuitively appealing
framework for addressing a wide variety of planning and con­
trol problems. There has been significant success in tackling
large-scale problems through the use of value function and/or
policy approximation. The success of these methods, how­
ever, is contingent upon extensive and careful feature engi­
neering, a common problem in most machine learning meth­
ods.

Modern classification methods have mitigated the feature
engineering problems through the use of kernel methods, but
very little has been done to exploit these recent advances for
the purposes of reinforcement learning. Of course, we are not
the first to note the potential benefits of modern classifica­
tion methods to reinforcement learning. For example, Yoon et
al. [2002] use inductive learning techniques, including boost­
ing, to generalize across similar problems. Dietterich and
Wang [2001] also use a kernel-based approximation method
to generalize across similar problems. The novelty in our ap­
proach is the application of modern learning methods within
a single, noisy problem at the inner loop of a policy iteration
algorithm.1 By using rollouts, we avoid the sometimes prob­
lematic step of value function approximation. Thus, our tech­
nique aims to address the critiques of value function methods
raised by the proponents of direct policy search, while avoid­
ing the confines of a parameterized policy space.

2 Definitions and Assumptions
A Markov decision process (MDP) is defined as a 6-tuple
(5, A, P, R, r, D) where: S is the state space of the process;

!Fcrn, Yoon, and Givan are also pursuing a similar approach.

A is a finite set of actions; P is a Markovian transition model,
where is the probability of making a transition to
state sf when taking action a in state s; R is a reward (or cost)
function, such that R(s, a) is the expected reward for taking
action a in state s: [0,1) is the discount factor for future
rewards; and, D is the initial state distribution from which
states are drawn when the process is initialized.

In reinforcement learning, it is assumed that the learner can
observe the state of the process and the immediate reward at
every step, however P and R are completely unknown. In
this paper, we also make the assumption that our learning al­
gorithm has access to a generative model of the process which
is a black box that takes a state s and an action a as inputs and
outputs a next state s' drawn from P and a reward r. Note that
this is not the same as having the model (P and R) itself.

A policy for an MDP is a mapping : S A from
states to actions, where is the action the agent takes at
state s. The value of a state s under a policy n is the
expected, total, discounted reward when the process begins
in state s and all decisions at all steps are made according to
policy 7r:

The goal of the decision maker is to compute or learn an op­
timal policy that maximizes the expected total discounted
reward from the initial state distribution:

It is known that for every MDP, there exists at least one opti­
mal deterministic policy.

3 (Approximate) Policy Iteration
Policy iteration (PI) is a method of discovering such a policy
by iterating through a sequence of monotonically improving
policies. Improvement at each iteration i is typically achieved
by computing or learning the state-action value function
of the current policy 7rt, defined as

and then the improved policy as

1432 POSTER PAPERS

In practice, policy iteration terminates in a surprisingly small
number of steps, however, it relies on exact representation of
value functions and policies.

Approximate methods are frequently used when the state
space of the underlying MDP is extremely large and exact
(solution or learning) methods fail. A general framework of
using approximation within policy iteration is known as ap­
proximate policy iteration (API). In its most general form,
API assumes approximate representations of value functions
(Q) and policies As a result, API cannot guarantee mono-
tonic improvement and convergence to the optimal policy. A
performance bound on the outcome of API can be constructed
in terms of bounds on the approximation errors [Bert-
sekas and Tsitsiklis, 1996]. In practice, API often finds very
good policies in a few iterations, since it normally makes big
steps in the space of possible policies. This is in contrast to
policy gradient methods which, despite acceleration methods,
are often forced to take very small steps.

4 Practical API without Value Functions
The dependence of typical API algorithms on approximate
value functions places continuous function approximation
methods at their inner loop. These methods typically mini­
mize L2 error, which is a poor match with the bounds
for API. This problem is not just theoretical. Efforts to im­
prove performance, such as adding new features, can some­
times lead to surprisingly worse performance, making feature
engineering a somewhat tedious and counterintuitive task.

An important observation, also noted by Fern, Yoon and
Givan 120031, is that a Monte-Carlo technique, called roll-
outs, can be used within API to avoid the problematic
value function approximation step entirely. Rollouts estimate
Qnt (s,a) from a generative model by executing action a in
state s and following policy 7r, thereafter, while recording the
total discounted reward obtained during the entire trajectory.
This simulation is repeated several times and the results are
averaged over a large number of trajectories to obtain an accu­
rate estimate Rollouts were first used
by Tesauro and Galperin [1997] for online improvement of a
backgammon player. For our purposes, we can choose a rep­
resentative set of states Sp (with distribution over the state
space) and perform enough rollouts to determine which ac­
tion maximizes for the current policy. Rather than
fitting a function approximator to the values obtained by the
rollouts, we instead train a classifier on Spy where each state
is labelled with the maximizing action for the state. The al­
gorithm is summarized in Figure 1.

L E A R N is a supervised learning algorithm that trains a clas­
sifier given a set of labeled training data. The termination
condition is left somewhat open ended. It can be when the
performance of the current policy does not exceed that of the
previous one, when two subsequent policies are similar (the
notion of similarity will depend upon the learner used), or
when a cycle of policies is detected (also learner dependent).
If we assume a fortuitous choice of Sp and a sufficiently pow­
erful learner that can correctly generalize from Sp to the en­
tire state space, the algorithm at each iteration learns the im­
proved policy over the previous one, effectively implement-

POSTER PAPERS

Figure 1: API with rollouts and classification

ing a ful l policy iteration algorithm, and terminating with the
optimal policy. However, for large-scale problems, choosing
Sf) and dealing with imperfect classifiers poses challenges.

We consider a number of alternative choices for the dis­
tribution p. A uniform distribution over the state space is
a good choice for a low-dimensional state space, but it w i l l
result in poor coverage in high-dimensional spaces. A bet­
ter choice would be a distribution that favors certain impor­
tant parts of the state space over others. In classification, it
is widely assumed that the classifier is trained on examples
that are drawn from the same distribution it w i l l be tested on.
Therefore, representative states for learning policy in it­
eration i should be drawn f rom the future state
distribution [Jaakkola et al, 19951 of the yet unknown policy
7T i+1. Even though this policy is yet unknown, it is possible to
closely approximate this distribution2 . Starting in some state
.s0 drawn from Z), a trajectory under can be simulated
by using rollouts repeatedly in each visited state to determine
the actions of If the trajectory terminates with proba­
bi l i ty then states visited along such trajectories can
be viewed as samples f rom the desired distribution.

The main contribution of this paper is a particular em­
bodiment of the algorithm described in the previous section.
For rollouts, we used basic statistical hypothesis testing (two-
sample f.-test) to determine statistically significant differences
between the rol lout estimates of for different actions. If
action a is determined to be a clear winner for state s, then
we treat (s, a) as a positive training example for state s, and
all (s, a ') , as negative examples for s. Even if there
is no clear winner action in some state s, negative examples
can be stil l extracted for the clearly bad actions in s, allow­
ing the classifier to choose freely any of the remaining (good)
actions as the winner. The only case where no examples are
generated is when all actions seem to be equally good.

The most significant contribution of effort is the use of sup­
port vector machines (SVMs) for LEARN. In our implemen­
tation we used the SVMTorch package [Collobert and Ben-
gio, 2001] as the multi-class classifier. With the kernel tr ick,
SVMs are able to impl ic i t ly and automatically consider clas­
sifiers wi th very complex feature spaces.

Special thanks to Alan Fern for sharing this observation.

1433

Figure 2: Positive(+), negativc(x) examples; support vcctors(o).

5 Experimental Results
In the inverted pendulum problem the goal is to balance a pen­
dulum by applying forces to the left (LF) , or to the right (RF),
or no force (NF) at al l . A l l actions are noisy. The state space
is continuous and consists of the vertical angle and the angu­
lar velocity of the pendulum. Transitions are governed by the
nonlinear dynamics of the system and the time step is 0.01
seconds. The reward is -1 when the angle exceeds in
absolute value (end of the episode) and 0 otherwise. The dis­
count factor is 0.95. Using about 200 states f rom p to perform
rollouts, the algorithm consistently learns balancing policies
in one or two iterations, starting f rom the random policy. The
choice of p or the kernel (polynomial/Gaussian) did not affect
the results significantly. Figure 2 shows the training data for
the LF action w i th p being the uni form distribution. The num­
ber of support vectors was normally smaller than the number
of rollout states. The constant C, the trade-off between train­
ing error and margin, was set to 1.

In the bicycle balancing and r iding problem [Randlov and
Alstrom, 1998] the goal is to learn to balance and ride a b i ­
cycle to a target position located 1 km away from the starting
location. The state description is a six-dimensional vector

where is the angle of the handlebar, is
the vertical angle of the bicycle, and is the angle of the
bicycle to the goal. The actions are the torque r applied to
the handlebar { - 2 , 0 , + 2 } and the displacement of the rider
v { - 0 . 0 2 , 0 , 4 - 0 . 0 2 } . Actions are restricted so that either
r = 0 or v = 0 g iv ing a total of 5 actions. The noise is
a uni formly distributed term in [- 0 .02 , + 0.02] added to the
displacement. The dynamics of the bicycle are based on the
model of Randlov and Alstrom [1998] and the time step is set
to 0.02 seconds. As is typical w i th this problem, we used a
shaping reward [Ng et al., 1999]. The reward rt given at each
time step was rt — where dt is the distance
of the back wheel of the bicycle to the goal position at t ime t
and 7 is the discount factor which is set to 0.95.

Using a polynomial kernel of degree 5, we were able to
solve the problem wi th uni form sampling of about 5000 ro l l ­
out states. Sampling f rom the distribution of
the target policy, the problem is solved wi th as few as 1000
rollout states, as shown in Figure 3 which shows ten sam­
ple trajectories of the bicycle in the two-dimensional plane
f rom the ini t ial position (0 ,0) (left side) to the goal position

Figure 3: Successful trajectories of the bicycle.

(1000,0) (right side). The input to the S V M was simply the
six-dimensional state description and the value of C was 1.
Performance was sensitive to the S V M parameters. We are
currently doing further experimentation w i th larger numbers
of rol lout states and different kernel parameters.

This research was supported in part by NSF grant 0209088.

References
[Bcrtsekas and Tsitsiklis, 1996] D. Bertsekas and J. Tsitsiklis.

Neuro-Dynamic Programming. Athena Scientific, Belmont, Mas­
sachusetts, 1996.

[Collobert and Bengio, 2001] Ronan Collobert and Samy Bcngio.
SVMTorch: Support vector machines for large-scale regres­
sion problems. Journal of Machine Learning Research (JMLR),
1:143 160, 2001.

[Dietterich and Wang, 2001] T. G. Dietterich and X. Wang. Batch
value funtion approximation via support vectors. In Advances in
Neural Information Processing Systems 14, 2001. MIT Press.

I Fern et al, 2003] A. Fern, S. Yoon, and R. Givan. Approxi­
mately policy iteration with a policy language bias: Learning
control policies in relational planning domains. In Submitted to
The Nineteenth International Conference on Machine Learning
(ICML-2003), July 2003.

[Jaakkola et al., 1995] Tommi Jaakkola, Satinder P. Singh, and
Michael I. Jordan. Reinforcement learning algorithm for partially
observable Markov decision problems. In G. Tesauro, D. Touret-
zky, and T. Leen, editors, Advances in Neural Information Pro­
cessing Systems 7, Cambridge, Massachusetts, 1995. MIT Press.

[Ng et al, 1999] Andrew Y. Ng, Daishi Harada, and Stuart Russell.
Policy invariance under reward transformations: theory and ap­
plication to reward shaping. In Proc. 16th International Conf
on Machine Learning, pages 278-287. Morgan Kaufmann, San
Francisco, CA, 1999.

[Randl0V and Alstram, 1998] J. Randlav and P. Alstrom. Learn­
ing to drive a bicycle using reinforcement learning and shaping.
In The Fifteenth International Conference on Machine Learning,
1998. Morgan Kaufmann.

[Tesauro and Galperin, 1997] G. Tesauro and G. R. Galperin. On­
line policy improvement using monte-carlo search. In Advances
in Neural Information Processing Systems (NIPS) 9, 1997.

[Yoon et al, 2002] S. W. Yoon, A. Fern, and B. Givan. Inductive
policy selection for first-order MDPs. In Proceedings of the Eigh-
teenth Conference on Uncertainty in Artificial Intelligence, 2002.
Morgan Kaufmann.

1434 POSTER PAPERS

