
Approximate Policy Iteration using Large-Margin Classifiers 

Michail G. Lagoudakis and Ronald Parr 
Duke University 

Durham, NC 27708 
{ m g l , p a r r } @ c s . d u k e . e d u 

Abstract 

We present an approximate policy iteration algo­
rithm that uses rollouts to estimate the value of each 
action under a given policy in a subset of states and 
a classifier to generalize and learn the improved 
policy over the entire state space. Using a multi-
class support vector machine as the classifier, we 
obtained successful results on the inverted pendu­
lum and the bicycle balancing and riding domains. 

1 Introduction 
Reinforcement learning provides an intuitively appealing 
framework for addressing a wide variety of planning and con­
trol problems. There has been significant success in tackling 
large-scale problems through the use of value function and/or 
policy approximation. The success of these methods, how­
ever, is contingent upon extensive and careful feature engi­
neering, a common problem in most machine learning meth­
ods. 

Modern classification methods have mitigated the feature 
engineering problems through the use of kernel methods, but 
very little has been done to exploit these recent advances for 
the purposes of reinforcement learning. Of course, we are not 
the first to note the potential benefits of modern classifica­
tion methods to reinforcement learning. For example, Yoon et 
al. [2002] use inductive learning techniques, including boost­
ing, to generalize across similar problems. Dietterich and 
Wang [2001] also use a kernel-based approximation method 
to generalize across similar problems. The novelty in our ap­
proach is the application of modern learning methods within 
a single, noisy problem at the inner loop of a policy iteration 
algorithm.1 By using rollouts, we avoid the sometimes prob­
lematic step of value function approximation. Thus, our tech­
nique aims to address the critiques of value function methods 
raised by the proponents of direct policy search, while avoid­
ing the confines of a parameterized policy space. 

2 Definitions and Assumptions 
A Markov decision process (MDP) is defined as a 6-tuple 
(5, A, P, R, r, D) where: S is the state space of the process; 

!Fcrn, Yoon, and Givan are also pursuing a similar approach. 

A is a finite set of actions; P is a Markovian transition model, 
where is the probability of making a transition to 
state sf when taking action a in state s; R is a reward (or cost) 
function, such that R(s, a) is the expected reward for taking 
action a in state s: [0,1) is the discount factor for future 
rewards; and, D is the initial state distribution from which 
states are drawn when the process is initialized. 

In reinforcement learning, it is assumed that the learner can 
observe the state of the process and the immediate reward at 
every step, however P and R are completely unknown. In 
this paper, we also make the assumption that our learning al­
gorithm has access to a generative model of the process which 
is a black box that takes a state s and an action a as inputs and 
outputs a next state s' drawn from P and a reward r. Note that 
this is not the same as having the model (P and R) itself. 

A policy for an MDP is a mapping : S A from 
states to actions, where is the action the agent takes at 
state s. The value of a state s under a policy n is the 
expected, total, discounted reward when the process begins 
in state s and all decisions at all steps are made according to 
policy 7r: 

The goal of the decision maker is to compute or learn an op­
timal policy that maximizes the expected total discounted 
reward from the initial state distribution: 

It is known that for every MDP, there exists at least one opti­
mal deterministic policy. 

3 (Approximate) Policy Iteration 
Policy iteration (PI) is a method of discovering such a policy 
by iterating through a sequence of monotonically improving 
policies. Improvement at each iteration i is typically achieved 
by computing or learning the state-action value function 
of the current policy 7rt, defined as 

and then the improved policy as 
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In practice, policy iteration terminates in a surprisingly small 
number of steps, however, it relies on exact representation of 
value functions and policies. 

Approximate methods are frequently used when the state 
space of the underlying MDP is extremely large and exact 
(solution or learning) methods fail. A general framework of 
using approximation within policy iteration is known as ap­
proximate policy iteration (API). In its most general form, 
API assumes approximate representations of value functions 
(Q) and policies As a result, API cannot guarantee mono-
tonic improvement and convergence to the optimal policy. A 
performance bound on the outcome of API can be constructed 
in terms of bounds on the approximation errors [Bert-
sekas and Tsitsiklis, 1996]. In practice, API often finds very 
good policies in a few iterations, since it normally makes big 
steps in the space of possible policies. This is in contrast to 
policy gradient methods which, despite acceleration methods, 
are often forced to take very small steps. 

4 Practical API without Value Functions 
The dependence of typical API algorithms on approximate 
value functions places continuous function approximation 
methods at their inner loop. These methods typically mini­
mize L2 error, which is a poor match with the bounds 
for API. This problem is not just theoretical. Efforts to im­
prove performance, such as adding new features, can some­
times lead to surprisingly worse performance, making feature 
engineering a somewhat tedious and counterintuitive task. 

An important observation, also noted by Fern, Yoon and 
Givan 120031, is that a Monte-Carlo technique, called roll-
outs, can be used within API to avoid the problematic 
value function approximation step entirely. Rollouts estimate 
Qnt (s,a) from a generative model by executing action a in 
state s and following policy 7r, thereafter, while recording the 
total discounted reward obtained during the entire trajectory. 
This simulation is repeated several times and the results are 
averaged over a large number of trajectories to obtain an accu­
rate estimate Rollouts were first used 
by Tesauro and Galperin [1997] for online improvement of a 
backgammon player. For our purposes, we can choose a rep­
resentative set of states Sp (with distribution over the state 
space) and perform enough rollouts to determine which ac­
tion maximizes for the current policy. Rather than 
fitting a function approximator to the values obtained by the 
rollouts, we instead train a classifier on Spy where each state 
is labelled with the maximizing action for the state. The al­
gorithm is summarized in Figure 1. 

L E A R N is a supervised learning algorithm that trains a clas­
sifier given a set of labeled training data. The termination 
condition is left somewhat open ended. It can be when the 
performance of the current policy does not exceed that of the 
previous one, when two subsequent policies are similar (the 
notion of similarity will depend upon the learner used), or 
when a cycle of policies is detected (also learner dependent). 
If we assume a fortuitous choice of Sp and a sufficiently pow­
erful learner that can correctly generalize from Sp to the en­
tire state space, the algorithm at each iteration learns the im­
proved policy over the previous one, effectively implement-
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Figure 1: API with rollouts and classification 

ing a ful l policy iteration algorithm, and terminating with the 
optimal policy. However, for large-scale problems, choosing 
Sf) and dealing with imperfect classifiers poses challenges. 

We consider a number of alternative choices for the dis­
tribution p. A uniform distribution over the state space is 
a good choice for a low-dimensional state space, but it w i l l 
result in poor coverage in high-dimensional spaces. A bet­
ter choice would be a distribution that favors certain impor­
tant parts of the state space over others. In classification, it 
is widely assumed that the classifier is trained on examples 
that are drawn from the same distribution it w i l l be tested on. 
Therefore, representative states for learning policy in it­
eration i should be drawn f rom the future state 
distribution [Jaakkola et al, 19951 of the yet unknown policy 
7T i+1. Even though this policy is yet unknown, it is possible to 
closely approximate this distribution2 . Starting in some state 
.s0 drawn from Z), a trajectory under can be simulated 
by using rollouts repeatedly in each visited state to determine 
the actions of If the trajectory terminates with proba­
bi l i ty then states visited along such trajectories can 
be viewed as samples f rom the desired distribution. 

The main contribution of this paper is a particular em­
bodiment of the algorithm described in the previous section. 
For rollouts, we used basic statistical hypothesis testing (two-
sample f.-test) to determine statistically significant differences 
between the rol lout estimates of for different actions. If 
action a is determined to be a clear winner for state s, then 
we treat (s, a) as a positive training example for state s, and 
all (s, a ' ) , as negative examples for s. Even if there 
is no clear winner action in some state s, negative examples 
can be stil l extracted for the clearly bad actions in s, allow­
ing the classifier to choose freely any of the remaining (good) 
actions as the winner. The only case where no examples are 
generated is when all actions seem to be equally good. 

The most significant contribution of effort is the use of sup­
port vector machines (SVMs) for LEARN. In our implemen­
tation we used the SVMTorch package [Collobert and Ben-
gio, 2001] as the multi-class classifier. With the kernel tr ick, 
SVMs are able to impl ic i t ly and automatically consider clas­
sifiers wi th very complex feature spaces. 

Special thanks to Alan Fern for sharing this observation. 
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Figure 2: Positive(+), negativc(x) examples; support vcctors(o). 

5 Experimental Results 
In the inverted pendulum problem the goal is to balance a pen­
dulum by applying forces to the left (LF) , or to the right (RF), 
or no force (NF) at al l . A l l actions are noisy. The state space 
is continuous and consists of the vertical angle and the angu­
lar velocity of the pendulum. Transitions are governed by the 
nonlinear dynamics of the system and the time step is 0.01 
seconds. The reward is -1 when the angle exceeds in 
absolute value (end of the episode) and 0 otherwise. The dis­
count factor is 0.95. Using about 200 states f rom p to perform 
rollouts, the algorithm consistently learns balancing policies 
in one or two iterations, starting f rom the random policy. The 
choice of p or the kernel (polynomial/Gaussian) did not affect 
the results significantly. Figure 2 shows the training data for 
the LF action w i th p being the uni form distribution. The num­
ber of support vectors was normally smaller than the number 
of rollout states. The constant C, the trade-off between train­
ing error and margin, was set to 1. 

In the bicycle balancing and r iding problem [Randlov and 
Alstrom, 1998] the goal is to learn to balance and ride a b i ­
cycle to a target position located 1 km away from the starting 
location. The state description is a six-dimensional vector 

where is the angle of the handlebar, is 
the vertical angle of the bicycle, and is the angle of the 
bicycle to the goal. The actions are the torque r applied to 
the handlebar { - 2 , 0 , + 2 } and the displacement of the rider 
v { - 0 . 0 2 , 0 , 4 - 0 . 0 2 } . Actions are restricted so that either 
r = 0 or v = 0 g iv ing a total of 5 actions. The noise is 
a uni formly distributed term in [ - 0 .02 , + 0.02] added to the 
displacement. The dynamics of the bicycle are based on the 
model of Randlov and Alstrom [1998] and the time step is set 
to 0.02 seconds. As is typical w i th this problem, we used a 
shaping reward [Ng et al., 1999]. The reward rt given at each 
time step was rt — where dt is the distance 
of the back wheel of the bicycle to the goal position at t ime t 
and 7 is the discount factor which is set to 0.95. 

Using a polynomial kernel of degree 5, we were able to 
solve the problem wi th uni form sampling of about 5000 ro l l ­
out states. Sampling f rom the distribution of 
the target policy, the problem is solved wi th as few as 1000 
rollout states, as shown in Figure 3 which shows ten sam­
ple trajectories of the bicycle in the two-dimensional plane 
f rom the ini t ial position (0 ,0) (left side) to the goal position 

Figure 3: Successful trajectories of the bicycle. 

(1000,0) (right side). The input to the S V M was simply the 
six-dimensional state description and the value of C was 1. 
Performance was sensitive to the S V M parameters. We are 
currently doing further experimentation w i th larger numbers 
of rol lout states and different kernel parameters. 

This research was supported in part by NSF grant 0209088. 
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