
DP-SLAM: Fast, Robust Simultaneous Localization and Mapping Without
Predetermined Landmarks

Austin Eliazar and Ronald Parr
Department of Computer Science

Duke University
{eliazar, parr} @cs.duke.edu

Abstract
We present a novel, laser range finder based algorithm
for simultaneous localization and mapping (SLAM) for
mobile robots. SLAM addresses the problem of con­
structing an accurate map in real time despite imperfect
information about the robot's trajectory through the en­
vironment. Unlike other approaches that assume prede­
termined landmarks (and must deal with a resulting data-
association problem) our algorithm is purely laser based.
Our algorithm uses a particle filter to represent both robot
poses and possible map configurations. By using a new
map representation, which we call distributed particle
(DP) mapping, we are able to maintain and update hun­
dreds of candidate maps and robot poses efficiently. The
worst-case complexity of our algorithm per laser sweep
is log-quadratic in the number of particles we maintain
and linear in the area swept out by the laser. However, in
practice our run time is usually much less than that. Our
technique contains essentially no assumptions about the
environment yet it is accurate enough to close loops of
60m in length with crisp, perpendicular edges on corri­
dors and minimal or no misalignment errors.

1 Introduction
The availability of relatively inexpensive laser range finders
and the development of particle filter based algorithms have
led to great strides in recent years on the problem of robot
localization - determining a robot's position given a known
map [Fox et al, 1999]. Initially, the maps used for these
methods were constructed by hand. However, the accuracy
of the laser suggests its use for map-making as well as lo­
calization. Potential applications for accurate map-making
would include search and rescue operations, as well as space,
underwater and subterranean exploration.

Even with an accurate laser range finder, map-making
presents a difficult challenge: A precise position estimate is
required to make consistent updates to the the map, but a good
map is required for reliable localization. The challenge of si­
multaneous localization and mapping (SLAM) is that of pro­
ducing accurate maps in real time, based on a single pass over
the sensor data, without an off line correction phase. Straight­
forward approaches that localize the robot based upon a par­
tial map and then update the map based upon the maximum
likelihood position of the robot tend to produce maps with er­
rors that accumulate over time. When the robot closes a phys­

ical loop in the environment, serious misalignment errors can
result.

The EM algorithm provides a very principled approach to
the problem, but it involves an expensive off-line alignment
phase [Burgard et ah, 1999]. There exist heuristic approaches
to this problem that fall short of full EM1 , but they are not a
complete solution and they require additional passes over the
sensor data [Thrun, 2001]. Scan matching can produce good
maps fLu and Milios, 1997; Gutmann and Konolige, 2000]
from laser range finder data, but such approaches typically
must explicitly look for and require additional effort to close
loops. In varying degrees, these approaches can be viewed as
partially separating the localization and mapping components
of SLAM.

The FastSLAM algorithm [Montemerlo et a/., 2002J,
which does not require explicit loop-closing heuristics, is a
recent SLAM approach which has made great progress in
the field. FastSLAM follows a proposal by Murphy [Mur­
phy, 19991 using a Rao-Blackwellized particle filter to sam­
ple robot poses and track the position of a fixed number of
predetermined landmarks using a Kalman filter. (The land­
mark positions are conditionally independent given the robot
pose.) This method mitigates some of the challenges in map­
ping at the expense of some challenges in landmark selection
and identification. The latter can involve a fairly complicated
data association problem, although recent progress has been
made in addressing this [Montemerlo and Thrun, 20021.

We present a novel, laser range finder based algorithm
called DP-SLAM that, like FastSLAM, exploits the condi­
tional independences noted by Murphy. However, our algo­
rithm is purely laser based and makes no landmark assump­
tions. We avoid the data association problem by storing mul­
tiple detailed maps instead of sparse landmarks, thereby sub­
suming association with localization. Our algorithm uses a
particle filter to represent both robot poses and possible map
configurations. Using a new map representation, which wc
call distributed particle (DP) mapping, we are able to main­
tain and update hundreds or thousands of candidate maps and
robot poses in real time as the robot moves through the en­
vironment. The worst-case complexity of our algorithm per
laser sweep is log-quadratic in the number of particles we

lThis approach is heuristic because it does not maintain a joint
probability distribution over maps and poses.

ROBOTICS 1135

maintain and linear in the area swept out by the laser. How­
ever, in practice our run time is usually much less. Our tech­
nique makes essentially no assumptions about the environ­
ment yet it is accurate enough to close loops of 60m in length
with crisp, perpendicular edges on corridors and minimal or
no misalignment errors. This accuracy is achieved throughout
the mapping process, without a need for explicit algorithms
to correct the loop as temporally distant observations begin to
overlap. In fact, DP-SLAM could be further complimented
by inclusion of existing algorithms for closing loops, though
the addition may be unnecessary if a sufficient number of par­
ticles is used.

2 Particle Filters for Localization and
Mapping

A particle filter is a simulation-based method of tracking a
system with partially observable state. We briefly review par­
ticle filters here, but refer the reader to excellent overviews
of this topic iDoucet el ai, 2001] and its application to
robotics [Thrun, 2000J for a more complete discussion.

A particle filter maintains a weighted (and normalized) set
of sampled states, cahed particles. At each
step, upon observing an observation o (or vector of observa­
tions), the particle filter:

1 . Samples new s t a t e s f r o m S with
replacement.

2. Propagates each new state through a Markovian transi­
tion (or simulation) model: . This entails sam­
pling a new state from the conditional distribution over
next states given the sampled previous state.

3. Weighs each new state according to a Markovian obser­
vation model:

4. Normalizes the weights for the new set of states

Particle filters arc easy to implement have been used
to track multimodal distributions for many practical prob­
lems [Doucet et al, 2001].

2.1 Particle Fi l ters for Local izat ion
A particle filter is a natural approach to the localization prob­
lem, where the robot pose is the hidden state to be tracked.
The state transition is the robot's movement and the observa­
tions are the robot's sensor readings, all of which are noisy.

The change of the state over time is handled by a mo­
tion model. Usually, the motion indicated by the odometry
is taken as the basis for the motion model, as it is a reliable
measure of the amount that the wheels have turned. However,
odometry is a notoriously inaccurate measure of actual robot
motion, even in the best of environments. The slip and shift
of the robot's wheels, and unevenness in the terrain can com­
bine to give significant errors which will quickly accumulate.
A motion model differs across robots and types of terrain, but
generally consists of a linear shift, to account for systematic
errors and Gaussian noise. Thus, for odometer changes of x,

and a particle filter applies the error model and obtains,
for particle

The a and b terms are linear correction to account for consis­
tent errors in motion. The function. returns random
noise from a normal distribution with mean 0 and standard
deviation a, which is derived experimentally and may depend
upon the magnitudes of and

After simulation, we need to weight the particles based on
the robot's current observations of the environment. For pure
localization, the robot stores a map in memory. The position
described by each particle corresponds to a distinct point and
orientation in the map. Therefore, it is relatively simple to de­
termine what values the sensors should return, given the pose
within the map. The standard assumption is that sensor errors
are normally distributed. Thus, if the first obstruction in the
map along a line traced by a laser cast is at distance d and the
reported distance is the probability density of observing
discrepancy is normally distributed with mean 0.
For our experiments we assumed a standard deviation in laser
measurements of 5cm. Given the model and pose, each sen­
sor reading is correctly treated as an independent observation
1 Murphy, 19991. The total posterior for particle i is then

where is the difference between the expected and per­
ceived distances for sensor (laser cast) and particle i.

2.2 Particle Fi l ters for S L A M
Some approaches for SLAM using particle filters attempt
to maintain a single map with multiple robot poses [Thrun,
2001], an approach that we avoid because it leads to errors
that accumulate over time. The basic problem is that the hid­
den state is actually both the robot pose and the map itself. An
important consequence of this problem is that all observations
arc no longer compared to a single map, which is presumed
to be correct. Instead, the observations are compared against
an incomplete and possibly incorrect map, identified with the
particle in question. The map itself is created by the accu­
mulation of observations of the environment and estimates of
robot positions.

In principle, this "solves" the SLAM problem. In prac­
tice, it replaces a conceptual problem with an algorithmic one.
Particles with errors in robot position estimates will make er­
roneous additions to their maps. An error in the map will
then, in turn, cause another error in localization in the next
step, and these inaccuracies can quickly compound. Thus,
the number of particles required for SLAM is typically more
than that required for localization since the price of accumu­
lated errors is much higher. Note that in pure localization,
small errors in position estimation can be absorbed as part of
the noise in the motion model.

The algorithmic problem becomes one of efficiently main­
taining a large enough set of particles to obtain robust perfor­
mance, where each particle is not merely a robot pose, but a
pose and map. Since maps are not light weight data struc­
tures, maintaining the hundreds or thousands of such maps
poses a serious challenge. One reasonable approach to tam­
ing this problem is to assume that the uncertainty in the map

1136 ROBOTICS

can be represented in a simple parametric form. This is essen­
tially the approach taken by FastSLAM, for which the map is
a Kalman filter over a set of landmark positions. This is cer­
tainly the right thing to do if one is given a set of landmarks
that can be quickly and unambiguously identified. We will
show that this strong assumption is not required: By using
raw laser data, combined with an occupancy grid and efficient
data structures, we can handle a large number of candidate
maps and poses efficiently, achieving robust performance.

3 DP-SLAM
In this section we motivate and present the main technical
contribution of the DP-SLAM algorithm. DP-SLAM imple­
ments what is essentially a simple particle filter over maps
and robot poses. However, it uses a technique called dis­
tributed particle mapping (DP-Mapping), which enables it to
maintain a large number of maps very efficiently.

3.1 Naive S L A M
When using a particle filter for SLAM, each particle corre­
sponds to a specified trajectory through the environment and
has a specific map associated with it. When a particle is re-
sampled, the entire map itself is treated as part of the hidden
state that is being tracked and is copied over to the new parti­
cle. If the map is an occupancy grid of size M and P particles
are maintained by the particle filter, then ignoring the cost of
localization, O(MP) operations must be performed merely
copying maps. For a number of particles sufficient to achieve
precise localization in a reasonably sized environment, the
naive approach would require gigabytes worth of data move­
ment per update2.

3.2 Distr ibuted Part icle Mapp ing
By now the astute reader has most likely observed that the
naive approach is doing too much work. To make this clearer,
we will introduce the notion of a particle ancestry. When a
particle is sampled at iteration i to produce a successor parti­
cle at iteration we call the generation i particle a parent
and the generation particle a child. Two children with
the same parent are siblings. From here, the concept of a par­
ticle ancestry extends naturally. Suppose the laser sweeps out
an area of size and consider two siblings, s1 and s2.
Each sibling will correspond to a different robot pose and will
make at most A updates to the map it inherits from its parent.
Thus, s1 and s2 can differ in at most A map positions.

When the problem is presented in this manner, the natural
reaction from most computer scientists is to propose record­
ing the "diff" between maps, i.e, recording a list of changes
that each particle makes to its parent's map. While this would
solve the problem of making efficient map updates, it would
create a bad computational problem for localization: Trac­
ing a line though the map to look for an obstacle would re­
quire working through the current particle's entire ancestry
and consulting the stored list of differences for each particle
in the ancestry. The complexity of this operation would be

2In addition to the theoretical analysis, anecdotal comments
made by researchers in this area reinforce the impracticality of this
approach.

linear in the number of iterations of the particle filter. The
challenge is, therefore, to provide data structures that permit
efficient updates to the map and efficient localization queries
with time complexity that is independent of the number of
iterations of the particle filter. We call our solution to this
problem Distributed Particle Mapping or DP-Mapping, and
we explain it in terms of the two data structures that are main­
tained: the ancestry tree and the map itself.

Maintaining the particle ancestry tree
The basic idea of the particle ancestry tree is fairly straight­
forward. The tree itself is rooted with an initial particle, of
which all other particles are progeny. Each particle maintains
a pointer to its parent and is assigned a unique numerical ID.
Finally each particle maintains a list of grid squares that it has
updated.

The details of how we will use the ancestry tree for local­
ization are described in the subsequent section. In this section
we focus on the maintenance of the ancestry tree, specifically
on making certain that the tree has bounded size regardless of
the number of iterations of the particle filter.

We maintain a bounded size tree by pruning away unnec­
essary nodes. First, note that certain particles may not have
children and can simply be removed from the tree. Of course,
the removal of such a particle may leave its parent without
children as well, and we can recursively prune away dead
branches of the tree. After pruning, it is obvious that the
only particles which are stored in our ancestry tree are exactly
those particles which are ancestors of the current generation
of particles.

This is still somewhat more information than we need to
remember. If a particle has only one child in our ancestry
tree, we can essentially remove it, by collapsing that branch
of the tree. This has the effect of merging the parent's and
child's updates to the map, a process described in the subse­
quent section. By applying this process to the entire tree after
pruning, we obtain a minimal ancestry tree, which has several
desirable and easily provable properties:

Proposition 3.1 Independent of the number of iterations of
particle filtering, a minimal ancestry tree of P particles

J. has exactly P leaves,

2. has branching factor of at least 2, and

3. has depth no more than P.

Map representation
The challenge for our map representation is to devise a data
structure that permits efficient updates and efficient localiza­
tion. The naive approach of a complete map for each parti­
cle is inefficient, while the somewhat less naive approach of
simply maintaining history of each particle's updates is also
inefficient because it introduces a dependency on the number
of iterations of the particle filter.

Our solution to the map representation problem is to asso­
ciate particles with maps, instead of associating maps with
particles. DP-mapping maintains just a single occupancy
grid. (The particles are distributed over the map.) Unlike a
traditional occupancy grid, each grid square stores a balanced
tree, such as a red-black tree. The tree is keyed on the IDs of

ROBOTICS 1137

the particles that have made changes to the occupancy of the
square.

The grid is initialized as a matrix of empty trees. When a
particle makes an observation about a grid square it inserts its
ID and the observation into the associated tree. Notice that
this method of recording maps actually allows each particle
to behave as if it has its own map. To check the value of a
grid square, the particle checks each of its ancestors to find
the most recent one that made an observation for that square.
If no ancestor made an entry, then the particle can treat this
position as being unknown.

We can now describe the effects of collapsing an ancestor
with a single child in the ancestry tree more precisely: First,
the set of squares updated by the child is merged into the par­
ent's set. Second, for each square visited by the child, we
change the ID key stored in the balanced tree to match that of
the parent. (If both the child and parent have made an update
to the same square, the parent's update is replaced with the
child's.) The child is then removed from the tree and the par­
ent's grandchildren become its direct children. Note that this
ensures that the number of items stored in the balanced tree
at each grid square is 0{P).

3.3 Computat ional Complexi ty

The one nice thing about the naive approach of keeping a
complete map for each particle is the simplicity: If we ig­
nore the cost of block copying maps, lookups and changes
to the map can all be done in constant time. In these areas,
distributed particle mapping may initially seem less efficient.
However, we can show that DP maps are in fact asymptoti­
cally superior to the naive approach.

Lookup on a DP-map requires a comparison between the
ancestry of a particle with the balanced tree at that grid
square. Let D be the depth of the ancestry tree, and thus is
the maximum length of a particle's ancestry. Strictly speak­
ing, as the ancestry tree is not guaranteed to be balanced, D
can be O(P). However, in practice, this is almost never the
case, and we have found , as the nature of parti­
cle resampling lends to very balanced ancestry trees. (Please
see the discussion in the following section for more detail on
this point.) Therefore, we can complete our lookup after just
D accesses to the balanced tree. Since the balanced tree itself
can hold at most P entries, and a single search takes 0(lgP)
time. Accessing a specific grid square in the map can there­
fore be done in O(DlgP) time.

For localization, each particle wil l need to make 0 (A) ac­
cesses to the map. As each particle needs to access the en­
tire observed space for its own map, we need O(AP) ac­
cesses, giving localization with DP-maps a complexity of
O(ADPlgP).

To complete the analysis we must handle two remaining
details: The cost of inserting new information into the map,
and the cost of maintaining the ancestry tree. Since we use a
balanced tree for each grid square, insertions and deletions on
our map both take 0(lgP) per entry. Each particle can make
at most 0(A) new entries, which in turn wil l only need to be
removed once. Thus the procedure of adding new entries can
be accomplished in O(ADlgP) per particle, or O(ADPlgP)

total and the cost of deleting childless particles will be amor­
tized as O(ADPlgP).

It remains to be shown that the housekeeping required to
maintain the ancestry tree has reasonable cost. Specifically,
we need to show that the cost of collapsing childless ancestry
tree nodes does not exceed O(ADPlgP). This may not be
obvious at first, since successive collapsing operations can
make the set of updated squares for a node in the ancestry tree
as large as the entire map. We now argue that the amortized
cost of these changes wil l be O(ADPlgP). First, consider
the cost of merging the child's list of modified squares into
the parent's list. If the child has modified n squares, we must
perform 0(nlgP) operations (n balanced tree queries on the
parent's key) to check the child's entries against the parent's
for duplicates.

The final step that is required consists of updating the ID
for all of the child's map entries. This is accomplished by
deleting the old ID, and inserting a new copy of it, with the
parent's ID. The cost of this is again 0(nlgP). Consider that
each map entry stored in the particle ancestry tree has a po­
tential of D steps that it can be collapsed, since D is the total
number of nodes between its initial position and the root, and
no new nodes wil l ever be added in between. At each itera­
tion, P particles each create A new map entries with potential
D. Thus the total potential at each iteration is O(ADPlgP).

The computational complexity of DP-SLAM can be sum­
marized as follows:

Proposition 3.2 For a particle filter that maintains P parti­
cles, laser that sweeps out A grid squares, and an ancestry
tree of depth D, DP-SLAM requires:

• O(ADPlgP) operations for localization arising from:

- P particles checking A grid squares
- A lookup cost of O(DlgP) per grid square

• O(APlgP) operations to insert new data into the tree,
arising from:

- P particles inserting information at A grid squares
- Insertion cost of O(lgP) per new piece of informa­

tion

• Ancestry tree maintenance with amortized cost
O(ADPlgP) arising from

- A cost of O(lgP) to remove an observation or move
it up one level in the ancestry tree

- A maximum potential of ADP introduced at each
iteration.

3.4 Complexi ty Compar ison

Our analysis shows that the amortized complexity of
DP-SLAM is O(ADPlgP), which can be as large as
0(AP2lgP). For the naive approach, each map is repre­
sented explicitly, so lookups can be done in constant time per
grid square. The localization step thus takes only O(AP).
Without the need for updates to an ancestry tree, map updates
can likewise be done in O(AP) time. However, the main bulk
of computation lies in the need to copy over an entire map for
each particle, which wil l require 0(MP) time, where M is

1138 ROBOTICS

the size of the map. Since typically this obviously
is the dominant term in the computation.

DP-SLAM wil l be advantageous when
Even in the worst case where D approaches P, there will still
be a benefit. For a high resolution occupancy grid, M wil l be
quite large since it grows quadratically with the linear mea­
sure of the environment and would grow cubically if we we
consider height. Moreover, A, wil l be a tiny fraction of M.
The size of P wi l l , of course, depend upon the environ­
mental features and the sampling rate of the data. It is impor­
tant to note that since the time complexity of our algorithm
does not depend directly on the size of the map, there will
necessarily exist environments for which DP-SLAM is vastly
superior to the naive approach since the naive approach will
require block copying an amount of data wil l exceed physical
memory.

In our initial experiments, we have observed that P was
surprisingly small, suggesting that in practice the advantage
of DP-SLAM is much greater than the worst-case analysis
suggests. For some problems the point at which it is advan­
tageous to use DP-SLAM may be closer to .
This phenomenon is discussed in more detail in the subse­
quent section.

4 Empirical Results
We implemented and deployed the DP-SLAM algorithm on
a real robot using data collected from the second floor of our
computer science building. In our initial implementation our
map representation is a binary occupancy grid. When a par­
ticle detects an obstruction, the corresponding point in the
occupancy grid is marked as fully occupied and it remains
occupied for all successors of the particle. (A probabilistic
approach that updates the grid is a natural avenue for future
work.)

On a fast PC (2.4 GHz Pentium 4), the run time of DP-
SLAM is close to that of the data collection time, so the algo­
rithm could have been run in real time for our test domains.
In practice, however, we collected our data in a log file using
the relatively slow computer on our robot, and processed the
data later using a faster machine. To speed things up, we also
implemented a novel particle culling technique to avoid fully
evaluating the posterior for bad particles that are unlikely to
be resampled. This works by dividing the sensor readings for
each particle into disjoint, evenly distributed subsets. The
posterior for the particles is computed in passes, where pass
i evaluates the contribution from subset At the end of each
pass, particles with significantly lower (partially evaluated)
posterior in comparison to the others are assigned 0 proba­
bility and removed from further consideration. We also set a
hard threshold on the number of particles we allowed the al­
gorithm to keep after culling. Typically, this was set to the top
10% of the total number of particles considered. In practice,
this cutoff was almost never used since culling effectively re­
moved at least 90% of the particles that were proposed. A
value if gave us a speedup of approximately

For the results we present, it is important to emphasize that
our algorithm knows absolutely nothing about the environ­
ment or the existence of loops. No assumptions about the en­

vironment are made, and no attempt is made to smooth over
errors in the map when loops are closed. The precision in
our maps results directly from the robustness of maintaining
multiple maps.

4.1 Robot and Robot Model
The robot we used for testing DP-SLAM is an iRobot ATRV
Jr. equipped with a SICK laser range finder attached to the
front of the robot at a height of 7cm. Readings are made
across 180°, spaced one degree apart, with an effective dis­
tance of up to 8m. The error in distance readings is typically
less than 5mm.

Odometric readings from the ATRV Jr.'s shaft encoders are
unreliable, particularly when turning. Our motion model as­
sumes errors are distributed in a Gaussian manner, with a
standard deviation of 25% in lateral motion and 50% in turns.
Turns are quasi-holonomic, performed by skid steering. We
obtained our motion model using an automated calibration
procedure that worked by positioning the robot against a
smooth wall and comparing odometry data with the move­
ment inferred from the laser readings.

4.2 Test Domain(s) and Map(s)
We tested the algorithm on a loop of hallway approximately
16m by 14m. A new set of observations was recorded af­
ter each 20cm motion (approximately). The maps were con­
structed with a resolution of 3cm per grid square, providing a
very high resolution cross section of the world at a height of
7cm from the floor.

Figure 1 shows the highest probability map generated after
the completion of one such loop using 9000 particles3. In
this test, the robot began in the middle of the bottom hallway
and continued counterclockwise through the rest of the map,
returning to the starting point.

This example demonstrates the accuracy of DP-SLAM
when completing a long loop, one of the more difficult tasks
for SLAM algorithms. After traveling 60m, the robot is once
again able to observe the same section of hallway in which it
started. At that point, any accumulated error will readily be­
come apparent, as it wil l lead to obvious misalignments in the
corridor. As the figure shows, the loop was closed perfectly,
with no discernible misalignment.

To underscore the advantages of maintaining multiple
maps, we have included the results obtained when using a
single map and the same number of particles. Figure 2 shows
the result of processing the same sensor log file by generating
9000 particles at each time step, keeping the single particle
with the highest posterior, and updating the map based upon
the robot's pose in this particle. There is a considerable mis­
alignment error where the loop is closed at the top of the map.

Larger, annotated versions of the maps shown here, as well
as maps generated from different sensor logs, will be avail­
able at http://www.es.duke.edu/~parr/dpslam/.

3In an earlier version of this paper, we presented a map produced
with 1000 particles based upon a different sensor log file. The run
shown here covers the same area, but has less reliable odometry,
probably due to weaker battery, and is more illustrative of the bene­
fits of DP-SLAM.

ROBOTICS 1139

Figure 3: Depth of coalescence as a function of time.

4.3 Coalescence

In our sample domain (the second floor of the Duke Univer­
sity Department of Computer Science), we have found that
DP-SLAM produces very shallow ancestry trees due to a phe­
nomenon we refer to as coalescence. Over a number itera­
tions of the particle filter, nearly all of the particles will have
a common ancestor particle in the not-too-distant past. This
point of coalescence, or common ancestry, varies over time,
and is sensitive to the environment. Observations made on
our empirical results indicate that while this number peaked
during events of higher uncertainty, coalescence was often
as recent as 20 generations in the past, and never exceeded
90. This means that beyond about 20 steps in the past, ev­
ery particle has an identical map. The fact that we can close
loops so precisely while maintaining relatively shallow coa­
lescence points suggests that we are able to maintain distri­
butions over map regions long enough to resolve ambiguities,
but not longer than is needed. While the phenomenon de­
serves more careful study, our initial impression is that by the
time a region has passed outside of the robot's field of view, it
has been scanned enough times by the laser that there is only
a single hypothesis that is consistent with the accumulated
observations.

Additional experiments were run to show the relationship
between coalescence and uncertainty, as well as the ability of
DP-SLAM to automatically preserve more information when
required. We considered two different scenarios: the origi­
nal DP-SLAM algorithm with the same sensor data used to
generate Figure 1, and a handicapped version of DP-SLAM
run on the same sensor log, but with three out of every four
laser casts ignored at each iteration. The handicapped version
required 30,000 particles to produce good maps.

To study the effects of uncertainty on coalescence, we ran
both algorithms with the same number of particles and then
compared the coalescence points. The results in Figure 3
show how the two versions of DP-SLAM performed on the
same sensor log with the same number of particles. The de­
crease in observational information for the handicapped ver­
sion of DP- SLAM makes it more difficult for the robot to be

certain about its position. This is reflected in the higher peaks
in the graph, and the less recent point of coalescence overall.

In both cases, strong correlation can be seen between the
higher peaks in this graph and the turns that the robot took in
the map. (Note the iteration number annotations at the turns
in Figure 1.) This is because odometry is particularly unreli­
able during skid turns and the robot has greater difficulty lo­
calizing. The points at which our turns occur in our office en­
vironment also tend to produce more ambiguous sensor data
since turns are typically in open areas where the laser scans
wil l be more widely spaced. Other peaks can be mapped to
areas of clutter in the map, such as the recycling bins.

Figure 4 was created from the same two experiments, and
tracks the amount of memory used over time, as measured
by the total number of leaves in the balanced trees stored in
our occupancy grid. Since no leaves are stored for empty
space and our maps are essentially two one-dimensional sur­
faces, the amount of memory required for leaves should grow
roughly linearly over time. The peaks corresponding to the
turns in the map are even more pronounced for the handi­
capped version of DP-SLAM in this graph, indicating that un­
der conditions of greater uncertainty, the ancestry tree grows
in width as well as depth.

Of course, shallow coalescence may not occur and may
not even be desirable in all environments, but it has signifi­
cant implications for the efficiency of the algorithm when it
does occur. It implies making our O
bound closer to in practice. Moreover, we get
maximum benefit from the compactness of our map repre­
sentation. As the particles coalesce, irrelevant entries are re­
moved. Thus all areas in the map that were observed before
the point of coalescence contain only one entry in their list.
Similarly, those areas which have not been observed by any
particle yet have no entries in their list. If we can assume that
the depth of coalescence is bounded by some reasonable con­
stant C, then all map squares but those that have been altered
prior the point of coalescence can be thought of as requiring
a constant amount of storage. This means that the total space
required to store the map tends to be close to
in practice, not the theoretical worst case of O(MP).

A sceptic may wonder if coalescence is indeed a desirable
thing since it may imply a loss of information. If the algo­
rithm maintains only a limited window of uncertainty, how
can it be expected to close large loops, which would seem
to require maintaining uncertainty over map entries for arbi­
trarily long durations? The simple answer is that coalescence
is desirable when it is warranted by the data and undesirable
when the accumulation of sensor data is insufficient to re­
solve ambiguities. In fact, coalescence is a direct product of
the amount of uncertainty still present in the observations.
Our algorithm is both able to maintain ambiguity for arbi­
trary time periods and benefit from coalescence when it is
warranted, so there is nothing negative about the fact that we
have observed this phenomenon in our experiments.

Of course, since we are representing a complicated distri­
bution with a finite number of samples, there is always a dan­
ger that the low probability "tails" of the distribution will be
lost if too few particles are used. This would result in pre­
mature coalescence due to failure to resample a potentially

ROBOTICS 1141

Figure 4: Total map entries used over time.

to one part of the model to compensation for unmodeled noise
in other parts. Nevertheless, in future work we would like to
develop a more comprehensive error model and a principled
scheme for updating the map that handles partially or tran­
siently occupied grid squares. Naturally, we would like to
consider other map representation methods too.

The most important future direction for this work is to in­
corporate less reliable sensors as such video or sonar to con­
struct a more comprehensive, three-dimensional view of the
environment.

Acknowledgments
We are very grateful to Sebastian Thrun for crit ical feedback
and encouragement for this line of research.We also thank
Tammy Bailey, Dieter Fox, Carlos Guestrin, D i rk Haehnel,
Mark Paskin, and Carlo Tomasi for helpful feedback and
comments.

useful and correct map. There w i l l certainly be some envi­
ronments, typically those with very sparse sensor data, where
it w i l l be diff icult to avoid premature coalescence without
an excessive number of particles. In situations with sparse
data, a parametric representation of uncertainty over land­
marks may be more tractable and more appropriate.

5 Conclusion and Future Work
We have presented a novel particle-filter based algorithm for
simultaneous localization and mapping. Using very efficient
data structures, this algorithm is able to maintain thousands of
maps in real t ime, providing robust and highly accurate map­
ping. The algorithm does not assume the presence of pre­
determined landmarks or assume away the data association
problem created by the use of landmarks. Our algorithm has
been deployed on a real robot, where it has produced highly
detailed maps of an office environment.

We believe that this is the first t ime this level of accuracy
has been achieved for the type of data we consider using an
algorithm that does not expl ici t ly attempt to close loops and
that has no domain specific knowledge. Nevertheless, our al­
gori thm does have some limitations. Most reasonably priced
laser range finders scan at a fixed height, giv ing us an incom­
plete view of the environment. Our current map representa­
tion is very simplistic - a grid where each cell is presumed to
be completely clear or completely opaque to the laser. This
obviously creates discretization errors at the edges of objects
and confusion for very small objects. Our small cell size re­
duces this problem, but does not eliminate it entirely. For
example, power cords hanging o f f of the edge of desks tend
to introduce localization errors and increase the number of
particles needed to get robust performance.

There is a logical inconsistency in the way we treat the
laser data. When we add new information to the map, we
treat the laser l ike a deterministic device, but when we local­
ize, we treat it l ike a noisy device wi th a standard deviation in
measurement that can span several gr id squares. Exaggerated
error models l ike this are common in many real-world appli­
cations of statistical models, where additional noise is added

References
[Burgard et al, 1999] W. Burgard, D. Fox, H. Jans, C. Matenar, and

S. Thrun. Sonar-based mapping with mobile robots using EM.
In Proc. of the International Conference on Machine Learning,
1999.

[Doucct et al., 2001] Arnaud Doucet, Nando de Frcitas, and Neil
Gordon. Sequential Monte Carlo Methods in Practice. Springer-
Verlag, Berlin, 2001.

[Fox etal, 1999] Dieter Fox, Wolfram Burgard, Frank Dellaert,
and Sebastian Thrun. Monte carlo localization: Efficient posi
tion estimation for mobile robots. In AAA1-99, 1999.

[Gutmann and Konolige, 2000] J. Gutmann and K. Konoligc. In­
cremental mapping of large cyclic environments, 2000.

[Lu and Milios, 1997] F. Lu and E. Milios. Globally consistent
range scan alignment for environment mapping, 1997.

[Montemerlo and Thrun, 2002] M. Montemerlo and S. Thrun. Si­
multaneous localization and mapping with unknown data asso­
ciation using FastSLAM. In IEEE International Conference on
Robotics and Automation (ICRA), 2002.

[Montemerlo et al., 2002] M. Montemerlo, S. Thrun, D. Roller, and
B. Wegbreit. FastSLAM: A factored solution to the simultane­
ous localization and mapping problem. In AAA1-02, Edmonton,
Canada, 2002. AAAI .

I Murphy, 1999] K. Murphy. Baycsian map learning in dynamic en­
vironments. In Advances in Neural Information Processing Sxs-
tems II. MIT Press, 1999.

[Thrun, 2000] S. Thrun. Probabilistic algorithms in robotics. AI
Magazine, 21(4):93-109, 2000.

[Thrun, 2001] S. Thrun. A probabilistic online mapping algorithm
for teams of mobile robots. International Journal of Robotics
Research, 20(5):335-363, 2001.

1142 ROBOTICS

