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Abstract 
Whenever people move through their environments 
they do not move randomly. Instead, they usually 
follow specific trajectories or motion patterns cor­
responding to their intentions. Knowledge about 
such patterns may enable a mobile robot to robustly 
keep track of persons in its environment or to im­
prove its obstacle avoidance behavior. This paper 
proposes a technique for learning collections of tra­
jectories that characterize typical motion patterns 
of persons. Data recorded with laser-range finders 
is clustered using the expectation maximization al­
gorithm. Based on the result of the clustering pro­
cess we derive a Hidden Markov Model (HMM). 
This HMM is able to estimate the current and fu­
ture positions of multiple persons given knowledge 
about their intentions. Experimental results ob­
tained with a mobile robot using laser and vision 
data collected in a typical office building with sev­
eral persons illustrate the reliability and robustness 
of the approach. We also demonstrate that our 
model provides better estimates than an HMM di­
rectly learned from the data. 

1 Introduction 
Whenever mobile robots are designed to operate in populated 
environments, they need to be able to perceive the people in 
their neighborhood and to adapt their behavior according to 
the activities of the people. Knowledge about typical motion 
behaviors of persons can be used in several ways to improve 
the behavior of a robot since it may provide better estimates 
about current positions of persons as well as allow better pre­
diction of future locations. 

In this paper we present an approach for learning prob­
abilistic motion patterns of persons. We use the EM-
algorithm 110] to simultaneously cluster trajectories belong­
ing to the same motion behavior and to learn the characteris­
tic motions of this behavior. We apply our technique to data 
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recorded with laser-range finders. Furthermore, we demon­
strate how the learned models can be used to predict positions 
of persons. 

Recently, a variety of service robots has been developed 
that have been designed to operate in populated environ­
ments. These robots for example, have been deployed in hos­
pitals [6], museums [4], office buildings [1], and department 
stores [51 where they perform various services e.g., deliver, 
educate, entertain [141 or assist people [13, 8, 12]. A variety 
of techniques has been developed that allows a robot to track 
people in its vicinity [15, 7]. Additionally, several authors 
have used models of peopic's motions to adapt the behavior 
of a mobile platform according to predicted movements [18, 
17, 9]. These approaches, however, assume that a motion 
model is given. They provide no means to learn the parame­
ters of the motion behavior of persons. Bui et al. proposed an 
Abstract Hidden Markov Model (AHMM) to predict people's 
motion [3J. They assume that the goals and subgoals a per­
son might have (i.e. locations the person aims to approach) 
are given. Our approach, in contrast, is able to learn the in­
tentions and to automatically derive the parameters of the un­
derlying HMM. The technique described in this paper is an 
extension of the approach recently proposed by Bennewitz et 
al. [2]. We describe how to learn the intentions of persons and 
how to derive an HMM from the corresponding motion pat­
terns. This Hidden Markov Model allows the robot to main­
tain a belief about the current location of a person. 

The paper is organized as follows. The next section intro­
duces our approach to learn motion patterns from observed 
trajectories and describes how we generate Hidden Markov 
Models to predict motions of persons. In Section 3 we 
present several experiments illustrating the robustness of our 
approach for estimating the positions of single and multiple 
persons using laser and vision data with a mobile robot. We 
also give results indicating that our models provide better es­
timates than Hidden Markov Models directly learned from 
the observations. 

2 Learning Motion Patterns 
When people perform their everyday activities in their envi­
ronment they do not move permanently. They usually stop at 
several locations and stay there for a certain period of time, 
depending on what activity they are currently carrying out. 
Accordingly, we assume that the input to our algorithm is a 
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collection of trajectories between resting 
places. The output is a number of different types of motion 
patterns a person might exhibit in its nat­
ural environment. Each trajectory consists of a sequence 

of positions Accordingly, 
is the first position of the person when it starts leaving a 

resting area and is the destination. The task of the algo­
rithm described in this section is to cluster these trajectories 
into different motion behaviors and finally to derive an HMM 
from the resulting clusters. 

Throughout this paper we assume that all trajectories have 
the same length where is chosen as the maximum length 
of all trajectories. A trajectory of length is ex­
tended by linear interpolation. The learning algorithm de­
scribed below operates solely on this information and there­
fore does not take into account the velocities of the persons 
during the learning phase. In our experiments, we never 
found evidence that the walking speed of a person depends 
on its intention. However, one way to incorporate veloci­
ties is to introduce further dimensions to the state variables. 
The necessary changes to our clustering algorithm are then 
straightforward. 

2.1 Motion Patterns 
We begin with the description of our model of motion pat­
terns, which is subsequently estimated from data using EM. 
Within this paper we assume that a person engages in M dif­
ferent types of motion patterns. A motion pattern denoted as 

where M is represented by K probability dis­
tributions For each the probability distri­
bution is computed based on subse­
quent positions on the trajectories. Accordingly, 
specifies the probability that the person is at location alter 

steps given that it is engaged in motion 
pattern Thus, we calculate the likelihood of a trajectory 
under the motion pa t te rnas 

(1) 

2.2 Expectation Maximization 
In essence, our approach seeks to identify a model that max­
imizes the likelihood of the data. To define the likelihood of 
the data under the model it will be useful to introduce a 
set of correspondence variables denoted as Here i is the 
index of the trajectory and is the index of the motion 
pattern Each correspondence is a binary variable. It 
is 1 if and only if the th trajectory corresponds to the th 
motion pattern. If we think of a motion pattern as a specific 
motion activity a person might be engaged in, then is 1 if 
person was engaged in motion activity in trajectory 

In the sequel, we will denote the set of all correspon­
dence variables for the data item by that is, 

For any data item the fact that exactly one 
of its correspondence variable is 1 leads to 

Throughout this paper we assume that each motion pat­
tern is represented by K Gaussian distributions with a fixed 
standard deviation The goal is to find the set of motion 

patterns which has the highest data likelihood. EM is an al­
gorithm that iteratively maximizes expected data likelihood 
by optimizing a sequence of lower bounds. In particular it 
generates a sequence of models denoted as ... of 
increasing data likelihood. The standard method is to use a 
so-called function which depends on two models, and 
In accordance with [2] this function is factored as follows: 

starting with some initial model Whenever the 
function is continuous as in our case, the EM algorithm con­
verges at least to a local maximum. 

In particular, the optimization involves two steps: calculat­
ing the expectations given the current model 

, and finding the new model that has the maximum 
expected data log likelihood under these expectations. The 
first of these two steps is typically referred to as the E-step 
(short for: expectation step), and the latter as the M-step 
(short for: maximization step). 

To calculate the expectations we apply 
Bayes' rule, obeying independence assumptions between dif­
ferent data trajectories: 

where the normalization constants and ensure that the 
expectations sum up to 1 over all If we combine (1) and 
(4) utilizing the fact that the distributions are represented by 
Gaussians we obtain: 

(5) 

Finally, the M-step calculates a new model by max­
imizing the expected likelihood. Technically, this is done by 
computing for every motion pattern m and for each probabil­
ity distribution a new mean We thereby 
consider the expectations computed in the E-
step: 

(6) 
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2.3 Estimating the Number of Model Components 
Since in general the correct number of motion patterns is not 
known in advance, we need to determine this quantity during 
the learning phase. If the number of motion patterns is wrong, 
we can distinguish two different situations. First, if there are 
too few motion patterns there must be trajectories, that are 
not explained well by any of the current motion patterns. On 
the other hand, if there are too many motion patterns then 
there must be trajectories that are explained well by different 
model components. Thus, whenever the EM algorithm has 
converged, we check whether the overall data likelihood can 
be improved by increasing or decreasing the number of model 
components. To limit the model complexity, during the eval­
uation we use a penalty term that depends on the number of 
model components (see[ L2]). This avoids that our algorithm 
learns a model that overfits the data, which in the worst case is 
a model with one motion pattern for every single trajectory. If 
the maximum number of iterations is reached or if the overall 
evaluation cannot be improved after increasing and decreas­
ing the model complexity our algorithms stops and returns 
the model with the best value found so far. In most of the 
experiments carried out with different data sets our approach 
correctly clustered the trajectories into the corresponding cat­
egories. 

2.4 Laser-based Data Acquisition 
The EM-based learning procedure has been implemented for 
data acquired with laser-range finders. To acquire the data 
we used several laser-range scanners which were installed in 
the environment so that the relevant parts of the environment 
were covered. First, to identify persons in the laser data our 
system extracts features which are local minima in the range 
scans that come from the legs of persons. Additionally, it 
considers changes in consecutive scans to more reliably iden­
tify the moving people. To keep track of a person, we use a 
Kalman filter. The state of a person at time step is repre­
sented by a vector . Whereas x and represent 
the position of the person, the terms and represent the 
velocity of the person in and -direction. Accordingly, the 
prediction is carried out by the equation: 

where is the time elapsed between the measurement 
and Usually, sensors only give the position of an object. 
Since the laser range sensor does not provide the velocities 

and which are also part of our state space, the mea­
surement matrix projects onto the first two components of the 
state space. Accordingly, the predicted measurement at step 

is: 

In a second step we identify the resting places and perform 
a segmentation of the data into different slices in which the 
person moves. Finally, we compute the trajectories, i.e. the 
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3 Experimental Results 
The technique described above has been implemented and 
evaluated using data acquired in an unmodified office envi­
ronment. The experiments described in this section are de-
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2.6 An Application Example 
To see how our EM-based learning procedure works in prac­
tice please consider Figure 1. In this example, a model 
for nine trajectories with three different intentions has to be 
learned. The leftmost image shows the initial model (the 
means of the three model components are indicated by cir­
cles). In the next two images one can see the evolution of 
the model components. The fourth image shows the model 
components after convergence of the EM algorithm. As can 
be seen, the trajectories are approximated quite well by the 
corresponding motion patterns. Finally, the rightmost picture 
shows the HMM derived from these motion patterns. The dif­
ferent resting places are indicated by rectangles and numbers. 

Here is the value of the Gaussian 
with mean and standard deviation at posi­
tion The transition probabilities for the resting places are 
computed based on a statistics about the average time period 
which elapses before the person starts this particular motion 
behavior after staying in the corresponding resting area. 

Please note that the resulting model can be regarded as a 
two-level Abstract Hidden Markov Model [3]. Whereas the 
higher-level goals of this AHMM correspond to the resting 
places of the person, the lower-level goals are the nodes along 
the paths to the high-level goals. 

sequence of positions covered by the person during that mo­
tion. When computing these trajectories, we ignore positions 
which lie closer than 15cm to each other. 

2.5 Deriving Hidden Markov Models from 
Learned Intentions 

Once the intentions of the persons have been learned, we can 
easily derive Hidden Markov Models to estimate their posi­
tions. To achieve this, we distinguish two types of nodes. The 
first class are the initial and final nodes that correspond to the 
resting places. To connect these nodes we introduce so-called 
intermediate nodes which lie on the learned motion patterns. 
In our current system we use a sequence of intermediate 
nodes for each intention . The intermediate 
nodes are distributed over such that the distance between 
two consecutive nodes is 50cm . Given this equidis­
tant distribution of the sub-nodes and assuming a constant 
speed with standard deviation of the person, the transi­
tion probabilities of this HMM depend on the length of 
the time interval between consecutive updates of the HMM 
as well as on and In our current system, this value is set 
to 5secs. Accordingly, we compute the probability 
that the person will be in node given it is currently in 
and given that the time has elapsed as: 



Figure 2: Hidden Markov Model derived from learned inten­
tions. 

signed to illustrate that the approach can learn complex mo­
tion behaviors in a typical office environment. We further­
more demonstrate that the resulting models can be used to 
robustly estimate the positions of persons. Additionally, we 
compare the performance of the models learned by our al­
gorithm to that of a standard HMM. Finally, we present an 
extension which allows the system to deal with multiple per­
sons. 

3.1 Learning Intentions in an Office Environment 

To evaluate our approach, we applied it to data recorded over 
two hours in our office environment. During the acquisition 
phase the average speed of the person was cm/sec with 
a standard deviation cm/sec. From the resulting data 
our system extracted 129 trajectories which were successfully 
clustered into 49 different intentions. The resulting Hidden 
Markov Model is shown in Figure 2. 

3.2 Tracking a Single Person 

To analyze the applicability of the learned HMM for the pre­
diction of the locations of a person, we used our mobile robot 
Albert, which is a B21r platform equipped with a laser range 
scanner. While the robot was moving along the corridor of 
our department with speed up to 40cm/sec, its task was to 
maintain a belief about the position of the person. 

To incorporate observations into the HMM we apply the 
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Figure 3: Evolution of the probability for a person of being in 
different resting areas over the time. 

recursive Bayesian update scheme: 

Thereby the likelihood of an observation given 
the state is computed using a Gaussian distribution which 
depends on both, the variance in the current estimate of the 
tracking system and the variance used during the learning 
of the intentions. 

Figure 3 plots for different resting areas the probability that 
the person stays in this particular place. Whereas the x-axis 
represents the individual time steps, the y-axis indicates the 
probability. The graph also includes the ground truth, which 
is indicated by the corresponding horizontal line-pattern at 
the .9 level. As can be seen from the figure, the system can 
reliably determine the current position of the person. During 
this experiment it predicted the correct place of the person in 
93% of the time. 

3.3 A Comparison to Standard HMMs 
The second experiment is designed to demonstrate that an 
HMM that takes into account the people's intentions allows 
a better prediction than a standard HMM that is directly gen­
erated from the observed trajectories of the persons and that 
does not take into a account the clustered trajectories. To 
evaluate the performance of the two different approaches we 
chose two motion patterns from those depicted in Figure 2. 
The first pattern is the one leading from resting place 7 via 
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the office containing resting place 6 to the staying area 2. 
The second one is the motion pattern between the places 6 
and 5. We defined a standard HMM over the possible states 
of the person in the space where and were 
discretized in 15cm patches; and encode 9 possible in­
cremental moves per cell. The transition probabilities were 
learned from the trajectories corresponding to both motion 
patterns by counting. We randomly chose a position along 
the trajectories of both patterns as the observed position of the 
person. The states of the HMM were initialized according to 
the observation model (see Section 3.2). After convergence 
of the HMM we measured the likelihood of the final destina­
tion. We compared this value to those obtained by the HMM 
generated by our algorithm for the trajectories correspond­
ing to these two intentions. We repeated this experiment for 
different locations along the trajectories of both patterns and 
determined the average probability of the true goal location. 
Whereas we obtained an average of .74 with our model, the 
corresponding value of the standard HMM is .56. This il­
lustrates that our model leads to better results and that the 
standard independence assumption of HMMs is generally not 
justified in this application domain. Please note that similar 
observations have been reported by Murphy 111]. In contrast 
to a standard HMM our model automatically chooses the tran­
sitions that correspond to the actual intention of the person. 

3.4 Estimating the Locations of Multiple Persons 
The final experiment described in this section is designed to 
illustrate that our models can also be used to maintain beliefs 
about multiple persons. The major difference to the situation 
with a single person is that we have to be able to represent 
the beliefs for the individual persons and to detect multiple 
persons in the observations. In our current system we learn 
an individual HMM for every person. 

To track multiple persons in the range scans, we apply in­
dependent Kalman filters, one for each feature. To solve the 
data association problem, we apply a nearest neighbor ap­
proach, i.e. we update a filter using the observation that 
is closest to New filters are introduced for observations 
from which all predictions arc too far away. Furthermore, fil­
ters are removed if no corresponding feature can be found for 
one second. 

We also need to be able to identify a person in order to ap­
propriately update the belief about the location of that person. 
To achieve this we additionally employ the vision system of 
our robot. To identify a person, we proceed as follows: Ev­
ery time the laser-based people tracker detects a person in the 
field of view of the camera, an image is collected and follow­
ing three steps are applied: 

1. Segmentation: The size of a rectangular area of the im­
age containing the person is determined. 

2. Feature extraction: We compute a color histogram for 
the area selected in the previous step. 

3. Database matching: To determine the likelihood of a 
particular person, we compare the histogram computed 
in step 2 to all prototypes existing in the database. 

To determine the area in the image corresponding to a feature 
detected by the laser tracking system, we rely on an accu-
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Figure 4: Typical scene with two persons walking along the 
corridor (left image) and corresponding estimate of the laser-
based people tracking system (right image). 

rate calibration between the camera and the laser and we use 
a perspective projection to map the 3D position of the per­
son in world coordinates to 2D image coordinates. Whereas 
color histograms arc robust with respect to translation, ro­
tation, scale and to any kind of geometric distortions they 
are sensitive to varying lighting conditions. To handle this 
problem we consider the HSV (Hue-Saturation-Value) color 
space. In this color model the intensity factor can be sepa­
rated so that its influence is reduced. In our current system 
we simply ignore this factor. Throughout all our experiments 
we could not find any evidence that this factor negatively af­
fected the performance of the system. The image database 
is created beforehand. For each person it contains one his­
togram which is built from 20 images. 

To compare a given query histogram 7 with a prototype 
M in the database we use normalized intersection norm 
H(I, M) [161. This quantity can be computed as: 

(11) 

where / and M are color histograms both having n. bins. One 
advantage of this norm is that it also allows to compare partial 
views, i.e. when the person is close to the camera and only a 
part of it is visible. 

Figure 5: Segmentation of the two persons from the image 
grabbed with the camera of the robot (left image) and sim­
ilarity of these segments to the data base prototypes (right 
image). 

To incorporate the similarity measure provided by the vi­
sion system into the HMM of the person we simply multi­
ply the likelihoods provided by the laser tracking system with 
the similarity measure H of the query histogram Is 
for the segment s and the data base prototype for person 
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Figure 6: Resulting posterior after incorporating the two seg­
ments shown in Figure 5 into the belief over Wolfram's posi­
tion. 

7r. If the current estimate of the laser tracker is not in the field 
of view of the camera we simply update the HMM for all per­
sons as we do in the case in which we track a single person 
only. 

As an application example consider the situation depicted 
in the left image of Figure 4. In this particular situation two 
persons (Wolfram and Greg) are walking along the corridor 
within the perceptual field of the robot. The right image of 
Figure 4 shows the estimate of the laser-based people tracking 
system at the same point in time. The corresponding image 
obtained with the robot's camera is shown in the left image of 
Figure 5. Also shown there are the two segments of the im­
age that correspond to the two persons detected with the laser. 
The right image of this figure plots the similarities of the two 
segments to the individual prototypes stored in the data base. 
Finally, Figure 6 depicts the HMM for Wolfram (who is the 
left person in Figure 5). As can be seen, the probabilities in­
dicated by the size of the rectangles are slightly higher for the 
states that correspond to Wolfram's true location. Through­
out this experiment the robot was able to predict the correct 
location of the persons in 79% of all cases. 

4 Conclusions 
In this paper we have presented a method for learning and 
utilizing motion behaviors of persons. Our approach applies 
the EM-algorithm to cluster trajectories recorded with laser 
range sensors into a collection of motion patterns, each cor­
responding to a possible intention of a person. From these 
motion patterns we automatically derive an HMM that can be 
used to predict the positions of persons in their environment. 

Our approach has been implemented and applied success­
fully to trajectories recorded in a typical office environment. 
Practical experiments demonstrate that our method is able to 
learn typical motion behaviors of persons and to reliably use 
them for state estimation. The experiments have been carried 
out using a mobile robot equipped with a laser-range sensor 
and a vision system. We have furthermore presented exper­
iments indicating that standard HMMs directly learned from 
the same input data are less predictive than our models. 
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