
Probabilistically Survivable MASs *

Sarit Kraus
Dept. of Computer Science

Bar-Ilan University
Ramat-Gan, 52900 Israel

sarit@cs.biu.ac.il

V.S. Subrahmanian and N. Cihan Tas
Dept. of Computer Science

University of Maryland
College Park, MD 20742

(vs, etas }@cs. umd.edu

Abstract

Muhiagent systems (MAS) can "go down" for a
large number of reasons, ranging from system mal­
functions and power failures to malicious attacks.
The placement of agents on nodes is called a de­
ployment of the MAS. We develop a probabilis­
tic model of survivability of a deployed MAS and
provide two algorithms to compute the probability
of survival of a deployed MAS. Our probabilistic
model docs not make independence assumptions
though such assumptions can be added if so de­
sired. An optimal deployment of a MAS is one that
maximizes its survival probability. We provide a
mathematical answerto this question, an algorithm
that computes an exact solution to this problem,
as well as several algorithms that quickly compute
approximate solutions to the problem. We have
implemented our algorithms - our implementation
demonstrates that computing deployments can be
done scalably.

1 Introduction

As muhiagent systems (MASs) are increasing used for crit­
ical applications, the ability of these MASs to survive intact
when various external events occur (e.g. power failures, OS
crashes, etc.) becomes increasingly important. However, one
never knows when and if a system wi l l crash or be compro­
mised, and hence, any model of MAS survivability must take
this uncertainty into account.

We provide for the first time, a formal model for reasoning
about survivability of MASs which includes both a declar­
ative theory of survivability, as well as implemented algo­
rithms to compute optimal ways of deploying MASs across
a network.

A MAS-deployment specifies a placement of agents on
various network nodes. Based on probabilistic information
about the survivability of a given node, we develop a formal

"The first tuthor is also affiliated with UMIACS. This work was
supported in part by the Army Research Lab under contract DAAL
0197K0135, the CTA on Advanced Decision Architectures, by ARO
contract DAAD190010484, by NS1J grant 11S0222914 and an NSF
ITR award 0205 489.

MULTIAGENT SYSTEMS

theory describing the probability that a given deployment will
survive. This probability reflects the best guarantee we have
of the MAS surviving. Our model does not assume that node
failures are independent, though independence information
can be easily added if so desired. The technical problem we
need to grapple with is that of finding a MAS-deployment of
the agents having the highest probability of survival. As we
do not make unrealistic independence assumptions, this prob­
lem turns out to be intractable. As a consequence, heuristics
are required to find a deployment (even if it is sub-optimal).
We develop algorithms for the following tasks:

1.

2.

3.

Given a MAS-deployment, how do we compute its prob­
ability of survival?

Find a MAS-deployment with the highest probability of
survival - this algorithm is infeasible to implement in
practice due to the above mentioned complexity results.

We develop a suite of heuristic algorithms to find (sub-
optimal) MAS-deployments.

We have conducted detailed experiments with our algo­
rithms - for space reasons, only some of them are described
here. The experiments show that our heuristic algorithms can
find deployments very fast.

2 Preliminaries
Agents. The only assumptions we make about agents is that
they provide one or more services. We further assume that
all host computers on which agents are located have a fi­
nite amount of memory resources, and that each (copy of
an) agent a requires some amount of memory, denoted by
mem(a). A multiagent application MAS is a finite set of
agents - we make the assumption that all agents in a multi-
agent application are needed for it to function.
Networks. A network is a triple (N, edges, mem) where
is a set of called nodes, edges specifies which
nodes can communicate with which other nodes, and mem :

specifies the total memory1 available at node n for
use by agents situated at n. A network is fully connected iff
edges =

Note that the symbol mem is used to both denote the memory
requirements of an agent, as well as the memory available at a node.
It is easy to determine the intended meaning of this expression from
context.

789

Def in i t ion 2.1 Suppose MAS is a multiagent application and
, edges, mem) is a network. A deployment for MAS

on Ne is a mapping , : specifying which agents
are located at a given node. (As usual if X is a set, is the
power set ofX). u must satisfy the following condition:

This condition says
that every agent must be deployed somewhere.

mem mem(a). This condition
says that the agents deployed at a node cannot use more
memory than that node makes available.

Intuitively, says that agents a i . a 2 are de-
ployed at node n1.

Examp le2 .1 Supposed/ = {n1,n2,n3,n4 }and MAS =
{a.b.Cyd}. An example deployment is given by: —

and ' v ~
{d}. This example will be used throughout this paper.

3 Related Work
To our knowledge, there are no probabil istic models of sur­
vivabi l i ty of a M A S . However, there are many works that are
in related areas.

[Shehory et a/., 1998] use agent-cloning and agent-
merging techniques to mitigate agent over-loading and pro­
mote system load balancing. Fan [Fan, 2001] proposes a BDI
mechanism to formal ly model agent cloning to balance agent
workload.

[Fedoruk and Deters, 2002] propose transparent agent
replication technique - though an agentis represented by mu l ­
tiple copies, this is an internal detail hidden from other agents.
Several other frameworks also support this k ind of agent fault
tolerance [Mishra,2001].

[Marin et ex/., 2001] develop adaptive fault tolerance tech­
niques for MASs . They use simulations to assess migrat ion
and replication costs. However, [Mar in et ai% 2001] con­
cludes by saying that they do not address the questions of
which of the agents to replicate, how many replicas should be
made, where those replicas should be allocated. These ques­
tions are addressed in the currentpaper, but we do not propose
a mechanism to synchronize agent replications.

[Kumar £/ a/., 2000] focus on the problem of broker agents
that are inaccessible due to system failures. They use the the­
ory of teamwork to specify robust brokered architectures that
can recover f rom broker fai lure. We, on the other hand, con­
sider the possible fai lure of any agent in the multi-agent sys­
tems.

The problem of network rel iabi l i ty has been studied exten­
s ive ly— [Gartner* 1999] provide an excellent survey. In this
paper we bui ld on top of these studies and assume, as dis­
cussed below, that there is a disconnect probabil i ty function
for a network specifying the rel iabil i ty of each node of the
network.

The problem of fault-tolerant software systems has some
similarities to our agent survivabil i ty problem. An exten­
sive study was performed to solve this problem using the X-
Version Problem (N VP) approach. The N VP is denned as the
"independent generation of functionally equivalent
programs f rom the same in i t ia l specification** [Lyu and He,
1993]. In this approach, the rel iabi l i ty of a software system is

790

increased by developing several versions of special modules
and incorporating them into a fault-tolerant system [Gutjahr,
1998]. However, these works (i) make unnecessary or unwar­
ranted independence assumptions, (i i) provide only a measure
of expected survivabil i ty rather than guaranteed survivability,
(i i i) do not consider repl ication.

4 A Probabil istic Model of Survivabil i ty
Multiagent applications can "go down11 because nodes on
which agents are located can crash. Alternatively, agents are
on a mobi le node (e.g. a vehicle) may wander beyond com­
munications range, thus dropping out of the network.

Def in i t ion 4.1 A disconnect probability function for a net­
work edges, mem) is a mapping dp : where
C[0,1] is the set of all closed subintervals of'[0,1].

Intuit ively, if dp = [0.2,0.3] , then this says that there is
a 20 - 30% probabi l i ty that node N w i l l get disconnected
f rom the network. Note that this model supports the situa­
t ion where we do not know the probabil i ty of node n get­
ting disconnected - in this case, we can set dp(A r) = [0.1].
Likewise, if we know that a node w i l l get disconnected wi th
80% probabi l i ty w i th margin of error, then we can set
dp(n) = [0.77,0.83]. One possibi l i ty to compute dp in a spe­
cific setting is by collecting statistical data on the past failures
of each node. This would give us both a mean probability of
failure for a given node as wel l as a standard deviation which
would jo in t ly result in a probabi l i ty interval. In other applica­
tions (e.g. where statistics are not available) expert opinions
can be used.

Given a network (A/*, edges, mem) and a disconnect prob­
abil i ty funct ion dp, there is a space of possible networks that
may arise in the future.

Def in i t ion 4.2 Suppose [J\f, edges, mem) is a network and
Then , edges', mem) is a possible future net­

work where edges' = edges and

We use edges, mem) to denote the set of
all possible future networks associated with a network
(N, edges, mem) and a disconnect probabil i ty function dp.
Note that we can infer probabil it ies of possible future net­
works f rom such disconnect probabil i t ies on nodes. Even
though many future networks are possible at a given time
t only one of them w i l l in fact occur at t ime t So at
t ime , edges, mem) represents the space of pos­
sible network configurations. Given a network . ~

) edges', mem) we wri te '. Fur­
thermore, since in this paper we do not discuss the failure
of edges, for space reasons, we w i l l omit them from the net­
works in the rest of the paper.

Suppose p r o b denotes the probabil i ty of a possible
future network Ne. For any we can write the con­
straint:

This constraint says that the sum of the probabilities of all
future networks in which node N survives must be between

We take all such constraints

MULTIAGENT SYSTEMS

(one for each node) and add a constraint which says that the
only possible future networks are those in mem).
Last, but not least, w e know that the probabil i ty of each future
network is at least 0. This gives us:

For any Nef mem), p r o b
If mem), then CONS(dp,Ne) denotes the set

of all such constraints.2 We can use CON S{dp. Ne) to de­
termine Lhe survival probabil i ty of a given deployment.

Def in i t ion 4.3 Givena network Ne, a disconnect probability
function dp, and a deployment fi, we say that the probability
ofsurvival of // is given by the following linear program:
min im ize is a deployment P r o b

subject to

The solutions of CONS(dp.Ne) are possible probabilities
of possible future networks arising. Clearly, any of these
probabil ity assignments is possible. The objective function
above adds the probabilit ies of all possible future networks
where at least one copy of each agent in MAS survives. This
expression must be min imized because different solutions of
CONS(dp.Ne) assign different values to this sum - as any
of these solutions is possible, the only guarantee we can give
about survivabil i ty of // is that it exceeds the min imal such
value.
Compu t i ng O p t i m a l Deployment (COD) Prob lem. Given
a network AY, and a d isconnect probabil i ty function dp,
f ind a dep loyment whose probabil i ty of survival is maxi ­
mal .

This is the key problem that we w i l l solve.

5 Computing the Survival Probabil i ty of a
Deployment

A naive way to find the probabil i ty of survival of a given /i is
to solve the linear program of Definit ion 4.3 using classical
linear programming algorithms [H i l le rand Licberman, 1974;
Karmarkar, 1984]. However, the size of the linear program
involved in enormous. Our Compute Deployment Probability
(CDP) algorithm w i l l avoid this problem. CDP uses a func­
tion called hoc which takes an agent a, a network (A^, mem),
and a deployment /i as input, and returns the set of all nodes

such that as output. One way of pruning
the search is to use the fo l lowing results.

Proposi t ion 5.1 Suppose MAS is a multiagent application
and Ne is a network and suppose there is at least one multi-
agent application deployment for MAS on Ne. Further sup­
pose that for all agents a, mem . Then there exists an
optimal multiagent deployment (i.e. /i has maximal prob­
ability of survival) such that for all agents aj ,32, the set of
locations of agent ai according to is not a strict subset of
the set of locations of agent a2 according to

2 I t is important to note that if, for example, we know that the dis­
connect probabil it ies of ni and n2 are independent, then we can ex­
pand CONS(dpyNc) to include the constraint p r o b

, For space reasons, we do not go into this in
further detail.

MULTIAGENT SYSTEMS

The above result says that when try ing to find an optimal mul ­
tiagent deployment /x, we must ensure that no agent is located
in a set of nodes that is a strict subset of the set of nodes that
another agent is located in . As we shall see, this property al­
lows us to prune our search a fair amount. Before describing
our algori thm, we need to introduce some notation,

An agent a is relevant w.r.t. and if there is no
other agent which is deployed at a strict subset of nodes
at which a is deployed, ra denotes the set of
relevant agents w.r.t. . Ne.

The necessary nodes of Ne w.r.t is —
. Nodes in

which no relevant agents are deployed are not important.

The fo l lowing theorem says that survivabil i ty is unaffected if
we get r id of unnecessary nodes.

Theorem 5.1 Suppose MAS is a multiagent application,
mem) is a network, dp is a disconnect proba­

bility function and ft is a feasible multiagent application de­
ployment for MAS on Ne. mem) where

is the restriction of to . then
surv(/i) — surv(/ i ') .

P roo f Sketch. It is easy to see that it is enough to show the
claim for the case that only one node is removed from ,
when constructing Ne'. Without loss of generality, let us as­
sume that, . We make the fo l lowing observa­
tions:

It can be shown that , is feasible w.r.t i f f
is also feasible w.r.t

Let consists of n equations,
one for each node. C()NS(dp.Ne') docs not include
an equation for N\ and thus includes n - 1 equations.

We use p r o b (resp. p r o b) to denote the probability
function in CONS(dp,Ne) (resp. CONS(dp,Ne')).
Consider the equations w.r.t. For
both Afeand i W , both equations have the same left side,
viz. . The right side of the relevant equa­
tion in consists of elements of
the form p r o b In
CONS(dp,Ne') the corresponding equation consists
of elements of the form p r o b '

. Thus for each element in an equa­
tion of CONS{dp: Ne') of the form p r o b ' there
are exactly two terms in the corresponding equation in
CONS{dp:Ne): one of the form prob(N'') and the
other of the form p r o b

Similarly, if the min imizat ion expression with respect to
Ner is of length (i.e. number of terms) k, then the min­
imization expression wi th respect to Ne is 2A;. In par­
ticular, for each p r o b ^ A f ") there are two terms in the
minimizat ion expression of the form p robXA/ 7 ') and
prob'

We are now ready to prove our c la im. Suppose the min­
imization problem is solved wi th respect to Ne, We set
p r o b ' = p r o b + p r o b . It is easy
to see that based on our observations that CONS(dp<Nef)

791

wi l l be satisfied and the values w i l l minimize the relevant ex­
pression.

Suppose the minimizat ion problem is solved wi th re­
spect to Ne'. In this case, we add the fo l lowing equa­
tions to CONS(dp,Ne): (i) p r o b ' i = p r o b +
p r o b (i i) We replace each expression in
the minimizat ion expression of the form prob(A/* ") -f
p rob (A^ ; / U {Ni}) by p r o b ' It is easy to see that
the minimizat ion expression is identical to the one associated
with Ne' and all the constraints of CONS{dp,Nt) except
the first one are identical to those of CONS(dp,Nef) and
are satisfied. Hence, it is left to show that the constraint asso­
ciated wi th N\ is satisfied.

This constraint is of the fo rm: 1 - dp(JVi) =

The net impact of this theorem is that only necessary nodes
need to be considered. We demonstrate this using Exam-
pie 2 . 1 .

Examp le5 .1 Consider the deployment of Example 2.1.
Agent d is deployed at nodes {ri2, n3, n 4 } and c is deployed
at nodes {ri2) n3}. Clearly, c is deployed at a strict subset of
nodes at which d is deployed. In order for the deployment to
survive in a given possible future networkone of the nodes on
which c is located, n<i or n$ must stay connected. But then
d will also be deployed in the new network. However, if n4

stays connected in a future network, but neither ri2 nor n3

stay connected, the deployment will not survive. Thus, based
on theorem 5.1 when computing the survivability of the de-
ployment, there is no need to consider d and n^.

We are now ready to use the above theorem to formulate our
algorithm CDP to compute probabi l i ty of survival of a de­
ployment. Our CDP algorithm w i l l use the wel l known no­
t ion of a hitting set.

Def in i t ion 5.1 Suppose is a set of sets. A
hitting set for S is any set such that: (1) for
all there is no strict subset

h satisfying condition (1) above. HitSet(S) denotes the
set of all hitting sets ofS.

H i t S e t can be implemented in any number of standard ways
prevalent in the literature. We w i l l focus on the fo l lowing
hit t ing sets with respect to a given network.

Def in i t ion 5.2 Suppose MAS is a multiagent application,
Ne = (ff, mem) is a network and, is a feasible multiagent
application deployment for MAS on Nt. The set of hitting
sets with respect to MAS, Ne and is hs =
Hl tSet (

Intuit ively, the hi t t ing sets above describe min imal sets of
nodes that must be present in a possible future network in
order for the multiagent application to survive. We w i l l use
hit t ing sets to determine whether a deployment w.r.t. Ne can

792

be a deployment w.r.t. a possible future network. This intu­
i t ion leads to the fo l lowing algorithm CDP.

A lgo r i t hm 5.1 (CDP(ATe,dp,MAS,)

lnput:(l)A network Nc = (,V, mem)
(2) a disconnect probability function dp
(3) a multiagent application MAS
(4) a feasible deployment ; and

Output; the survivability of

1.

2.

3.

4. Return the result of the following linear program.
minimize
subject to Cons(dp,Ncf).

CDP works by first focusing on the necessary nodes. Then,
for each agent a MAS ' , al l nodes where that agent is lo­
cated are identi f ied. It then computes all hitt ing sets of these
nodes. For any possible future network it checks whether one
of the hit t ing sets is a subset of the nodes of the network. It is
easy to see that CDP is exponential in the number of the nec­
essary nodes. The fo l lowing example illustrates the working
of this algori thm.

Examp le 5.3 In example 5.2, there were no constraints on
the dependencies of the disconnect probabilities of the nodes.
Suppose we know, in addition, that the probability that both

MULTIAGENT SYSTEMS

nodes n\, n^ get disconnected is 0.05, i.e. dp =
0.05. In this case we should consider all possible future net-
works whose set of nodes is not a superset of Those
sets are M2 and N8 of example 5.2. Thus, the new constraint
isp2 + P 8 = 0 . 0 5 .

If we run the linear program ofexample 5.2 again with the
additional constraint, the results are as follows: />4 = 0.05,
PQ = 0.05, ;>7 = 0.65, pi = 0,2,p<i = 0.05, p5 = pa = P& =
0 which yields the minimum value of 0.75 for the objective
function.

6 Computing Optimal Deployments
We are now ready to develop algorithms to find an optimal
multiagent deployment. We f i rst present the C O D algorithm
to compute optimal deployments. We also prcsenttwo heuris­
tic algorithms, H A D l and H A D 2 , which may find subopti-
mal deployments (but do so very fast).

6.1 T h e C O D A l g o r i t h m

One may wonder if C O D can be solved via a classical prob­
lem such as faci l i ty location problem (FLP)IShmoys et ai,
1997]. In FLP, there are a set of faci l i ty locations and a set of
consumers. The task is to determine which facilities should
be used and which customers should be served f rom which
faci l i ty so as to min imize some objective function (e.g. sum
of travel times for customers to their assigned faci l i ty) . One
may think that we can directly use FLP algorithms to solve
C O D - unfortunately, this is not true.

Theorem 6.1 The problem of checking if a MAD-deployment
p is optimal is NPNP-hard.

This theorem says that even if we have a polynomial or­
acle to solve NP-complete problems, checking if a M A D -
deployment is opt imal is sti l l NP-hard I In fact, it is easy
to reduce the faci l i ty location problem to that of f inding an
opt imal deployment. Even if we have an oracle for faci l i ty
location, the MAD-dep loyment problem is sti l l NTP-hard.

Computing an opt imal MAD-deployment involves two
sources of complexity. The first is the exponential space of
possible deployments. The second is that even if we have a
given deployment, finding its probabi l i ty of survival is expo­
nential.

Thus, to solve C O D exactly, we do a state space search
where the ini t ia l state places all agents in a multiagent appl i­
cation MAS on all nodes of the network Ne. If this placement
is a deployment, then we are done. Otherwise, there are many
ways of removing agents f rom nodes and each such way leads
to a possible deployment. The value of a state is the surviv­
abil i ty of the state, wh ich can be computed using the CDP
algori thm. As soon as a deployment is found, we can bound
the search using the value of that deployment. The reason
is that given any state in the search, all states obtained f rom
that state by removing one or more agent has a lower surviv­
abi l i ty than the original state. Before presenting the C O D
algori thm, we first present the SEARCH routine used by it.

Algorithm 6.1 SEARCH
lnput:(I)A network Ne == (, , mem)

(2) a disconnect probability function, dp

MULTIAGENT SYSTEMS

(3)
(4)
(5)

(6)

a multiagent application, MAS
a deployment,
best deployment found so far,
best (global variable)
best survivability value found thus far,
bestval (global variable)
The procedure changes the global variables
best and best

Output.

We are now ready to present the C O D algorithm.

A l g o r i t h m 6.2 COD(7Ve ,dp ,MASj

Input : (I)
(2)
(3)

A network Ne = (A/\ mem)
a disconnect probability function dp,
a multiagent application MAS

Output: an optimal deployment

J.

2.

3.

A.

The correctness of C O D depends on the correctness of
bounding the search in step 2 of algorithm 6.1 . We present
the correctness result below.

Theorem 6.2 Suppose MAS is a multiagent application,
Ne = (A/\ mem) is a network and dp is a disconnect proba­
bility function. Then C O D (7 V e , dp. MAS) returns an opti­
mal deployment of M AS on Ne.

The astute reader may notice that CDP is computed for
every placement. Many of these placements are very similar
to each other. Hence, one may wonder whether it is possible
to use the results of computing CDP applied to a previous
placement to a placement that is very similar to the previous
placement. The two propositions below show that this can be
done.

Propos i t ion 6.1 Suppose MAS is a multiagent application,
Ne = (JV/*, mem) is a network and dp is a disconnect proba­
bility function. Suppose the placement was obtained from
the placement fi in step2(b)iA of algorithm 6.1 and suppose
Ne' = [JsP, mem), such that N* = nn(7Ve, . Then the
set of hitting sets with respect to and Ne' is a subset of
the set of hitting sets with respect to and Ne. That is,
hs

The fo l lowing example demonstrate a situation where
hs

793

Examp le6 .1 Supposed = {'/*i,y*2»'*3}/ MAS = {a ,6 , c }
and the deployment }i is as follows:

Thus,
. The hit­

ting sets are, hi — {ni.712}, h-z — { ^ 1 . ^ 3 } . If we remove
agent a from node rii, then the set I12 is no longer a hitting
set.

Proposit ion 6.2 Suppose MAS is a multiagent application,
mem) is a network and dp is a disconnect proba­

bility function Suppose the placement t was obtained from
the placement in step2(b)iA of algorithm 6.1 and suppose

j mem), such that Suppose
there is such that but.
Then,

We use the above propositions to give a new version. C D P l ,
of the CDP algorithm.

Def in i t ion 6.1 Suppose MAS is a multiagent application,
Me = (ftf. mem) and // is a deployment. A set
supports an agent a MAS if there is Ar It such that
a

5. Assign to p the result of the following linear program:
minimize
subject to Cons (dp, Ne).

6. Return p and H;

The SEARCH and C O D algorithms need to be modified in a
straightforward way to use C D P l - we do not go through the
details for space reasons.

6.2 H e u r i s t i c A l g o r i t h m s

In this section, we describe two fast heuristic algorithms,
H A D l , H A D 2 . H A D 1 iteratively solves knapsack prob­
lems [Cormen et a/., 1990] by try ing to pack nodes wi th low
disconnect probability first.

794

A lgo r i t hm 6.4 H A D l (We,dp, MAS;

Input. As in algorithm COD (6.2).
Output: a deployment

The I I A D 2 algorithm is based on the intuit ion that we
should first locate agents wi th high resource requirements,
and then deal w i th agents wi th low resource requirements.
Thus, we sort agents in ascending orderaccording to resource
requirements, place them, then go to agents with the sec­
ond highest resource requirements, and so on. If at the end
resources are st i l l available, then we make replicas of the
agents.

A lgo r i t hm 6.5 H A D 2 (N e ; , d p , M A S)

(* Input and Output as in node-based-heuristic (HADl) *)

1 Experiments

We have implemented all the algorithms described in this pa­
per. For space reasons, we only present experimental results
on the heuristics for computing optimal deployments.

In our experiments, we varied the number of agents and the
number of nodes. For each combination of agents and nodes,
we ran several trials. In each t r ia l , we randomly generated
the memory available on each node, the node's disconnect
probabil ity, and the memory required for one copy of each
agent. The experiments were conducted on a Linux box, us­
ing Red Hat 7.2 (Enigma). In all the experiments the number
of nodes4- agents varied between 1 and 500. We randomly

MULTIAGENT SYSTEMS

Figure 1: Heuristic comparision: Top figurc:-Computation
time (in miliseconds) as the function of the sum of the num­
ber of nodes and agents. Bottom figure: survivabil ity as a
function of the sum of nodes and agents, agents. The lighter
line and the darker line refer to the nodes-based and agent-
based heuristics, respectively.

generated numbers between 0 and 0.5 as the disconnect prob­
abil i ty of each node. The sizes of the agents were uni formly
distributed between 3 and 9 (units o fmemory)and the sizes of
the nodes were uni formly distributed between 5 and 30 (units
of memory).

The top graph of figure 7 demonstrates the t ime efficiency
of both heuristics: they can find a deployment for 500 agents
and sites in under a second.

When comparing H A D 1 and H A D 2 , we noticed that
(see bottom graph of figure 7): (I) as the sum of the number
of agents and nodes increases, the survivabil i ty decreases. (2)
The node based heuristic almost always finds better deploy­
ments than the agent-based heuristic. In addition, (3) When
there are more agents than nodes, the node based heuristic
w i l l require less t ime, whi le when there are more nodes than
agents the agent based heuristic w i l l take less t ime.

The intui t ion behind observation (1) is as fol lows. As
the number of agents increases, it becomes more diff icult to
maintain the feasibi l i ty of the system, and thus survivability
decreases. In addit ion, when the number of nodes increases,
there are more possible future networks and thus, the prob­
abil i ty that there w i l l be one network wi th a low probabil i ty
increases. Since, the survivabil i ty depends on the worst case,
its value decreases.

8 Conclusions
As more and more agents are deployed in mission crit ical
commercial, telecommunications, business, and financial ap-

MULTIAGENT SYSTEMS

plications, there is a growing need for guarantees that such
multiagent applications w i l l survive various kinds of catastro­
phes. The scope of the problem is so vast that any one paper
can only make a small dent in this very important problem.

In this paper, we have carved out such a small piece of the
problem. Specifically, we study the problem of how to deploy
mult iple copies of agents in a M A S on nodes so that the prob­
abil ity of survivabil i ty of the M A S is maximized. We provide
a formal, mathematical model for probabilistic MAS surviv­
ability, and develop an opt imal algorithm for this purpose a*
wel l as some heuristic algorithms. We have conducted exper­
iments showing the effectiveness of the approach.

References
[Gormen et a/,, 1990] T. H. Cormen, C. E. Leiserson, and

R. L. Rivest. Introduction to Algorithms. M I T Press, Cam­
bridge, M A , 1990.

[Fan,2001] X. Fan. On spli t t ing and cloning agents, 2001.
Turku Center for Computer Science, Tech. Reports 407.

[Fedoruk and Deters, 2002] A. Fedoruk and R. Deters. Im­
proving fault-tolerance by replicating agents. In Proceed-
ingsAAMAS-02, pages 737-744, Bologna, Italy, 2002.

[Gartner, 1999] F. C. Gartner. Fundamentals of fault-
tolerant distributed computing in asynchronous environ­
ments. A C M Computing Surveys, 31(1): 1-26,1999.

[Gutjahr, 1998] W. J. Gutjahr. Reliabi l i ty optimization of
redundant software w i th correlate failures. In The 9th
fnt. Symp. on Software Reliability Engineering, Germany.
1998.

[H i l le rand Lieberman, 1974] F. S. Hi l ler and G. J. Lieber-
man. Operations Research. Holden-Day, San Francisco.
1974.

[Karmarkar, 1984] N. Karmarkar. A new polynomial-time
algorithm for linear programming. Combinatorica, 4:373-
396,1984.

[Kumar * / ai,2000] S. Kumar, P.R. Cohen, and H.J.
Levesque. The adaptive agent architecture: achieving
fault-tolerance using persistent broker teams. In Proc. of
ICMAS. 2000.

[L y u a n d H e , 1993] M. Lyu and Y. He. Improving the n-
version programming process through the evolution of a
design paradigm. IEEE Trans. Reliability, 42(2), 1993.

[Marin et ai, 2001] O. Mar in , P. Sens, J. Briot, and Z. Gues-
soum. Towards adaptive fault tolerance for distributed
multi-agent systems. In Proceedings of ERSADS. 2001.

[Mishra.2001] S. Mishra. Agent fault tolerance using group
communication. In Proc. of PDPTA-Ol.NV,2001.

[Shehory et a l . ,1998] O. Shehory, K. P. Sycara, P. Cha-
lasani, and S. Jha. Increasing resource util ization and task
performance by agent cloning. In Proc. of ATAL-98, pp
413-426,1998.

[Shmoys et al., 1997] D. B. Shmoys, E. Tardos, and
K. Aardal. Approximation algorithms for faci l i ty location
problems. In Proc. of STOC-97, pages 265-274,1997.

795

