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Abstract 
Refinement operators for theories avoid the prob­
lems related to the myopia of many relational learn­
ing algorithms based on the operators that refine 
single clauses. However, the non-existence of ideal 
refinement operators has been proven for the stan­
dard clausal search spaces based on 0-subsumption 
or logical implication, which scales up to the spaces 
of theories. By adopting different generalization 
models constrained by the assumption of object 
identity, we extend the theoretical results on the ex­
istence of ideal refinement operators for spaces of 
clauses to the case of spaces of theories. 

1 Motivation 
In the investigation of the algorithms for relational learning, 
regarding induction as a refinement process allows to decou­
ple search from heuristics. Therefore, the choice of the gen­
eralization model for a search space plays a key role since it 
affects both its algebraic structure and the definition of refine­
ment operators for that space. 

Logical implication and 0-subsumption are the relation­
ships that are commonly employed for inducing generaliza­
tion models in relational learning (the latter turning out to 
be more tractable with respect to the former). Yet, they are 
not fully satisfactory because of the complexity issues that 
the resulting search spaces present, although subspaces have 
been found where the generalization model is more manage­
able. Indeed, the effectiveness and efficiency of learning as 
a refinement process strongly depends on the properties of 
the search space and, as a consequence, of the operators. In 
some cases the important property to be required to operators 
is flexibility [Badea, 2001], meaning that they should be ca­
pable of focussing dynamically on certain zones of the search 
space that may be more promising. Conversely, the property 
of ideality [Nienhuys-Cheng and de Wolf, 1997] has been rec­
ognized as particularly important for the efficiency of incre­
mental algorithms in search spaces with dense solutions. It 
is also possible to derive non-redundant operators from ideal 
ones, the former being more suitable for spaces with rare so­
lutions [Badea and Stanciu, 1999]. 

Most algorithms for relational learning, such as those 
employed in FOIL [Quinlan, 1990] and PROGOL [Mug-

gleton, 1995], adopt iterative covering strategies, separate-
and-conquer [Fiirnkranz, 1999], based on the refinement 
of clauses. Alternative methods are based on divide-and-
conquer strategies [Bostrom and Asker, 1999]. Although 
these refinements may turn out to be optimal with respect 
to a single clause, the result of assembling them in a theory 
is not guaranteed to be globally effective, since the interde­
pendence of the clauses with respect to covering may lead to 
better theories made up of locally non-optimal clauses. Only 
some systems, e.g. MPL [Dc Raedt et ai, 1993] or HYPER 
[Bratko, 1999], cope with the problem of learning whole the­
ories rather than constructing them clause by clause. 

This urges more complex refinement operators to be 
adopted in algorithms obeying to a different strategy that is 
able to take into account the possible interactions between 
the single clausal refinements. Hence, the new problem is 
defining operators that refine whole theories rather than single 
clauses [Midelfart, 1999; Badea, 2001]. ALEPH is a system 
where ideas on theory-level induction has been rudimentarily 
implemented [Srinivasan, 2002]. Of course, heuristics are re­
quired to cope with the combinatorial complexity of the prob­
lem. The resulting extended setting would also take into ac­
count background knowledge that may be available, and then 
it is also comparable to generalized and relative subsump-
tion [Plotkin, 1971; Buntine, 1988] or implication [Nienhuys-
Cheng and de Wolf, 1997]. 

Weakening implication by assuming object identity, an ex­
tension of the unique names assumption [Reiter, 1980], as 
a semantic bias has led to the definition of 6o1subsumption 
and Ol-implication [Esposito et al, 2001b], clausal relation­
ships which induce more manageable search spaces. The ex­
istence of ideal refinement operators in these generalization 
models is possible [Esposito et ai, 2001a], while this does 
not hold in clausal spaces ordered by 0-subsumption or impli­
cation iNienhuys-Cheng and de Wolf, 1997]. The objective 
of this work is to extend the results obtained for spaces of 
clauses and prove the existence of ideal refinement operators 
for spaces of theories in those generalization models. 

This paper is organized as follows. In Section 2, we recall 
semantics and proof-theory adopted in the framework. Sec­
tion 3 deals with refinement operators and their properties. 
Then, in Section 4, the operators for the search space consid­
ered are defined and proven to be ideal. Section 5 summarizes 
the paper outlining possible developments. 
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2 Generalization Models and Object Identity 
The representation language adopted in the proposed frame-
work concerns logic theories (whose space is denoted 2C) 
made up of clauses (space C). The background notions about 
clausal representations in Inductive Logic Programming can 
be found in [Nienhuys-Cheng and de Wolf, 1997]. 

The framework relies essentially on the following bias pro­
posed in [Esposito et a/., 2001b]: 
Assumption (Object Identity) In a clause, terms denoted 
with different symbols must he distinct, i.e. they represent dif­

ferent entities of the domain. 
The intuition is the following: in spaces based on general­
ization models induced by _ -subsumption (or implication), 
considered the two clauses C = q(x) <— p(X,X) and 
D = q{x) <- p(X,X),p{X,Y),p(Y,Z),P(Z,X), they turn 
out to be equivalent (in fact C is the reduced clause of D): 
this is not so natural as it may appear, since more elements 
of the domain can be accounted for in D than in C (indeed 
in this framework C is more general than D). The expressive 
power is not diminished by this bias, since it is still possi­
ble to convey the same meaning of a clause, although em­
ploying more clauses, e.g. when object identity is assumed, 
q(X) <— p(X, Y) is equivalent to the pair of clauses (a thc-
oiy) {(q(X)<-p{X,X)), (q{X)<-p{X,Y))} . 

Now it has to be specified how this bias affects the seman­
tics and proof theory of a clausal representation. 

2.1 Proof Theory and Semantics 

Starting from substitutions, we recall the specification of the 
proof theory under object identity. Since a substitution can 
be regarded as a mapping from the variables to the terms of 
a language, we require these functions to satisfy additional 
properties to avoid the identification of terms: 

Definition 2.1 Given a set of terms T (omitted when ob­
vious), a substitution a is an OI-substitution w.r.t. T iff 

Based on OI-substitutions, it is possible to define related no­
tions such as ground and renaming Ol-substitutions, their 
composition and also unification: 

Definition 2.2 Given a finite set of clauses S, we say that 
i s a n O l - u n i f i c r a n d 
is an OI-substitution w.r.t. terms i. 
An Ol-unifier for S is a most general Ol-unifier/or S iff for 
each Ol-unifier o of S there exists an OI-substitution r such 
that . This is denoted with 

The following notions represent resolution and derivation 
when exclusively Ol-unifiers are used. 

Definition 2.3 Given the clauses C and D that are supposed 
standardized apart, a clause R is an OI-resolvent of C and 
D iff there exist __ and > such that 
unifiable through the and 

is the set of the OI-resolvents ofC and D. 

An OI-derivation is obtained by successively chaining 01-
resolutions. 

With respect to the model theory under object identity, 
more specific models are needed: 

Definition 2.5 Given a non-empty domain V, a pre-
interpretation J of the language C assigns each constant to 
a different element of D and each n-ary function symbol f to 
a mapping from Vn to V. 
An Ol-interpretation I based on J is a set of ground instances 
of atoms with arguments mapped in D through J. 
Given a ground OI-substitution mapping vars(C) to V, an 
instance < of an atom A is true in I iff. otherwise it 
is false in I. A negative literal is true in 1 iff A^ is not. 
otherwise it is false in I. 
I is an Ol-model for the clause C iff for all ground OI-
substitutions there exists at least a literal in that is true 
in I, otherwise the clause is false in I. 

Hence, the form of implication that is compliant with this se­
mantics has been defined [Esposito et ai, 2001b] which, in 
turn, induces a quasi-order on spaces of clauses and theories. 

Definition 2.6 Let C, D be two clauses. C implies D under 
object identity (and then C is more general than D w.r.t. OI-
implication) iff all Ol-models for C are also OI-modcls for 
D. This relationship is denoted with 
Analogously a theory T implies C under object identity, de­
noted with models for T are also OI-models 
for C. Finally, a theory T is more general than a theory T' 
w. r. t. Ol-implication 

OI-implication is a constrained form of logical implication 
biased by the object identity assumption, as shown in the fol­
lowing example: 

The proof-procedure was proven sound in [Esposito et at., 
2001b], thus bridging the gap from the proof-theory to the 
model-theoretic definition of Ol-implication. 

2.2 
A simpler syntactic relationship, that is -subsumption biased 
by the object identity assumption, has been defined based the 
notion of OI-substitution. 
Definition 2.7 Given two clauses C and D, 
D iff there exists an OI-substitution a w.r.t. terms(C) such 
that In this case, C is more general than D w.r.t. 

-subsumption, denoted If also then they 
are equivalent w. r.t. .denoted 
Analogously, given the theories T, T', T is more general than 
V w.r.t. -subsumption iff 
denoted ___ 
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This quasi-order is weaker than OI-implication as proven 
by the following result [Esposito et al., 2001b]: 

Theorem 2.1 Given a theory T and a non-tautological 
clause such that 

This result bridges the gap from model-theory to proof-
theory. It also suggests the way to decompose OI-implication 
that is exploited for defining complete refinement operators. 

Similarly to standard implication, it is nearly straightfor­
ward to demonstrate some consequences of Theorem 2.1 
originally due to Gottlob [1987]. Given a clause C, let C1+ 

and C~ denote, respectively, the sets of its positive and neg­
ative literals. Then, it holds: 

Proposition 2.1 Let C and D be clauses. If 
-subsumes 

Since OI-substitutions map different literals of the sub­
suming clause onto different literals of the subsumed clause, 
equivalent clauses under -subsumption have the same num­
ber of literals. Thus, a space ordered by is 
made up of non-redundant clauses. Indeed, it holds: 

Proposition 2.2 Let C and D be two clauses. If C 
subsumes D then , Moreover, iff they are 
alphabetic variants. 

As a consequence of the propositions above, it is possi­
ble to prove the following results giving lower bounds for the 
depth and cardinality of clauses in the generalization model 
based on OI-implication [Fanizzi and Ferilli, 2002]. 

Definition 2.8 The depth of a term t is 1 when 1 is a vari­
able or a constant. If then dcpth(t) — 

. The depth of a clause C, denoted 
depth\C), is the maximum depth among its terms. 

Proposition 2.3 Given the clauses C and D, then 
it holds that depth 

3 Theory Refinement and Object Identity 
A learning problem can be cast as a search problem [Mitchell, 
1982] where theory refinement is triggered when new evi­
dence made available is to be assimilated. The canonical in­
ductive paradigm requires the fulfillment of the properties of 
completeness and consistency for the synthesized theory with 
respect to a set of input examples. When an inconsistent (re­
spectively, incomplete) hypothesis is detected, a specializa­
tion (resp., generalization) of the hypothesis is required in 
order to restore this property of the theory. In the former case 
the refinement operators must search the space looking for 
more specific theories (downward refinements); in the latter, 
more general theories (upward refinements) arc required. 

The formal definition of the refinement operators for 
generic search spaces, is based on the algebraic notion of a 
quasi-ordered set S that is a set endowed with an ordering 
relationship that is reflexive and transitive. 

Definition 3.1 Given a quasi-ordered set , a refine­
ment operator is a mapping from S to 2s such that: 

(downward refinement operator) 

(upward refinement operator) 
A notion of closure upon refinement operators is required 

when proving the completeness of the operators. 

Ultimately, refinement operators should construct chains of 
refinements, i.e. a sequence of elements of 5 
such that going from the starting 
elements to target ones. 

3.1 Properties of the Refinement Operators 
As mentioned above, the properties of the refinement opera­
tors depend on the algebraic structure of the search space. A 
refinement operator traverses a refinement graph in the search 
space, that is a directed graph containing an edge from T to 
T' in S in case the operator r is such that 

A major source of inefficiency may come from refinements 
that turn out to be equivalent to the starting ones. Depend­
ing on the search algorithm adopted, computing refinements 
that are equivalent to some element that has been already dis­
carded may introduce a lot of useless computation. As to the 
effectiveness of the search, a refinement operator should be 
able to find a path between any two comparable elements of 
the search space (or their equivalent representatives). It is de­
sirable that at least one path in the graph can lead to target el­
ements. This means that a complete refinement operator can 
derive any comparable clement in a finite number of steps. 
The following properties formally define these concepts: 

Definition 3.3 In a quasi-ordered set " a refinement 
operator r is locally finite iff is finite and 
computable. 
A downward (resp. upward) refinement operator p (resp. 
is proper iff' implies ' (resp. 

A downward (resp. upward) refinement operator 
is complete iff 

Let us observe that local finiteness and completeness en­
sure the existence of a computable refinement chain to a tar­
get element, and properness ensure a more efficient refine­
ment process, by avoiding the search of equivalent clauses. 
Then, the combination of these properties confers more ef­
fectiveness and efficiency to an operator: 

Definition 3.4 In a quasi-ordered set a refinement 
operator is ideal iff it is locally finite, proper and complete. 

As mentioned in the introduction, other important proper­
ties of refinement operators have been defined, yet they go 
beyond the scope of this paper which focusses on ideality. 

3.2 M i n i m a l Refinements of Clauses 
The existence of maximal specializations and minimal gener­
alizations of clauses was proven for both the ^,-subsumption 
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and the 01-implication generalization model [Fanizzi and 
Ferilli, 2002]. These results arc briefly recalled here for be­
ing used in the construction of ideal refinement operators pre­
sented in the following section. 

As a consequence of Theorem 2.1, some limitations are 
provable as concerns depth and cardinality for a clause that 
implies (subsumes) another clause under object identity. This 
yields a bound to the proliferation of possible generalizations: 

Proposition 3.1 Let C and D be two clauses. The set of gen­
eralizations ofC and D w.r.t. 01-implication is finite. 

The proof is straightforward since the depths and cardinalities 
of the generalizations are limited as a consequence of Propo­
sition 2.3. Now, given two clauses C and D, let G be the set 
of generalizations of w.r.t. OI-implication. Observe 
that , Proposition 3.1 yields that G is 
finite. Thus, since the test of Ol-implication between clauses 
is decidable [Fanizzi and Ferilli, 2002], it is theoretically pos­
sible to determine the minimal elements of G by comparing 
the clauses in G and eliminating those that are overly general. 

For computing theories that are proper generalizations of 
the starting ones, an operator for inverting Ol-resolutions is 
needed which is similar to the V-operator for the inversion of 
resolution [Muggleton, 1995]: 

Definition 3.5 Given a theory T, the operator for the inver­
sion of the Ol-resolution is defined: 

Note that there is a lot of indeterminacy in this definition. Yet 
it suffices for our theoretical purposes. In fact, the specifi­
cation of an actual operator to be implemented in a learning 
system should consider also other information (such as exam­
ples, background knowledge, etc.), to define the underlying 
heuristic component. 

With respect to maximal specializations, the major diffi­
culty comes from the fact that under standard implication, 
C U D is a clause that preserves the models of either clause, 
hence turning out to be a maximal specialization. In this set­
ting, as expected, more clauses are needed than a single one; 
indeed the following operator has been defined: 

Definition 3.6 Let C1 and C2 be two clauses such that C\ 
and C2 are standardized apart and K a set of new constants 
such t h a t : A new set o f clauses i s 
defined 
where and are Skolem substitutions for, respectively, 
C\ and C2 with K as their term set1. 

It is easy to see that, clauses are 
equivalent to those in Besides, the 
clauses in preserve the OI-models of C and D: 

lThe term set of a set of clauses T by the Skolem substitution 
is the set of all terms occurring in 

Proposition 3.2 Let C, D and E be clauses such that C and 
D are standardized apart. If then VF € 

This result implies that contains maximal special­
izations of the two clauses w.r.t. Ol-implication. For the proof 
of ideality given in the next section, it is important to point out 
that this set of specializations is finite. Moreover, the defini­
tion of u01 and also Proposition 3.2 can be extended to the 
case of multiple clauses [Fanizzi and Ferilli, 2002]. 

4 Ideal Operators for Theories 
Nonexistence conditions for ideal refinement operators for 
generic spaces are given in [Nienhuys-Cheng and de Wolf, 
1997]. A close relationship has been recognized between ide­
ality and the covers of elements in , a downward cover 
of C being a D such that and 
(resp. and for the upward case). 
A necessary condition for the ideality of refinement operators 
is that they return supersets of the sets of covers. 

Theorem 4.1 In the quasi-ordered space2 an ideal 
refinement operator does not exist. 

The non-existence of ideal refinement operators for spaces 
of clauses ordered by implication can be proven as a conse­
quence of this result [Nienhuys-Cheng and de Wolf, 1997], 
since 0-subsumption is weaker than logical implication. Be­
sides, this can be extended, proving the non-existence of 
refinement operators for search spaces of theories endowed 
with the ordering relationship induced by 0-subsumption 
[Midelfart, 1999] and the one induced by logical implication 
[Nienhuys-Cheng and de Wolf, 1997]. Conversely, within the 
framework we present, it is possible to exploit the definition 
of the refinement operators for clausal spaces for demonstrat­
ing the existence of ideal operators on spaces of theories. 

4.1 Ideal Operators for 00 isubsumption 
With respect to the spaces of clauses in the generalization 
model induced by ^ rsubsumption, we exploit the ideality of 
the operators for clausal spaces [Esposito et al, 2001a]. 

Definition 4.1 In the quasi-ordered space given a 
theory T, let be a non redundant theory equivalent to T 
The downward refinement operator pot, is defined as follows: 

The upward refinement operator is defined as follows: 

The ideality of these operators is proven as follows: 

Theorem 4.2 In the search space the refinement 
operators poi and §01 are ideal. 
Proof: 

denotes the order induced by 0-subsumption and the 
language is supposed to contain at least a binary predicate. 
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poi (locally finite) obvious. 
(proper) by the properness of poi for clauses, 
(complete) Suppose 

The theories can be 
supposed to be non redundant, otherwise the reduced 
equivalent theory can be computed by removing clauses 
by means of the second item of the operator. 
By definition means that i G 

By the completeness of the operator , for clauses, it 
holds that 
Starting from T1 = T, the first component of the op­
erator is iterated, obtaining for each a refinement 

by choosing Sj as the subset of made up of 
the clauses that are not in the target theory T' while 
being strictly more general than clauses in t1, that is 

Eventually it holds that for some k < 

Tk vnay be larger than T'. Thus the second component 
of Poi for theories can be employed for deleting the ex­
ceeding clauses from TK yielding T'. 
Finally we have that 

: Analogously. 

4.2 Ideal Operators for O.l-implication 
These operators above will be embedded in the definition of 
the refinement operators for spaces of theories in the stronger 
order induced by Ol-implication. Besides, notions and re­
sults given in Section 3.2 are also exploited. In particular, 
these operators should be able to compute specializations and 
generalizations that are able to reach those clauses involved 
in OI-resolution steps (and their inverse). 

Definition 4.2 In the quasi-ordered space , the 
downward refinement operator fa is defined as follows, given 
any 

where and fa' denotes the downward refinement 
operator for clauses wrt 

• 
where fa" denotes the downward refinement operator 
for theories wrt 

The upward refinement operator S. is defined as follows: 

i 

where and denotes the upward refinement 
operator for clauses wrt 

• 
where Soi' denotes the upward refinement operator for 
theories wrt 

The ideality of these operators is stated by the following 
result (Figure 1 depicts the related refinement graph): 

Figure 1: The Refinement Graph 

Theorem 4.3 In the search space , the refinement 
operators are ideal. 
Proof: 

Poi • (locally finite) by definition of the various operators and 
the finiteness of the theories. 
(proper) by the properness of the refinement operators 
employed in the various items. 
(complete) Suppose with n — 

Since redundancy can be eliminated by remov­
ing redundant clauses (and tautologies) through the last 
item of the operator, we will consider the theories as non 
redundant. 

Observe that, by using the first item of the refinement op­
erator, it is possible to produce the theory TS containing 
the maximal specializations of the clauses in 
employed in the Ol-derivation the of Di 's (by the ex­
tension of Lemma 3.2 to the case of multiple clauses 
where each maximal specialization is more general wrt 
Ol-implication than an Ol-resolvent ~ 
Observe that Now, it is possible 
to iterate (at most n times for the Dt that are properly 
by some F) the second item of the operator, in order to 
compute the theory thus we 
can write: 
By construction , then we 
can exploit the ideal operator for theories wrt 0oi 
subsumption (third item of the operator for theories wrt 
OI~implication) writing: 
Finally, by chaining these steps, it is possible to con­
clude that: T' 

In the same hypotheses the previous proof it is possi­
ble to invert the of using 
the last item of the definition of S01 for theories wrt OI-
implication: 
Then, a number of Ol-resolutions are to be inverted by-
using the first item of This number is finite due to 
Proposition 2.3 and then can be done tentatively in afi-
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nite number of steps. 
Finally, by chaining these steps, it is possible to con-
clude that: 

Differently from the standard generalization models, in this 
framework the number of OI-resolution steps is bounded be­
cause, during OI-implication or steps, the 
sizes of the clauses increase (decrease) monotonically, as a 
consequence of Propositions 2.2 and 2.3. 

5 Conclusions 
In this work the existence of ideal refinement operators was 
proved in the search space of theories ordered by general­
ization models based on object identity. Coupled with some 
heuristics, this allows for the definition of efficient refinement 
algorithms that avoid the myopia of the traditional relational 
learning approaches. 

We focussed on the effectiveness of the refinement opera­
tors, that is related to their static properties. In general this 
is not sufficient for defining a learning algorithm: efficiency 
plays a key role when dealing with first order logics. The suc­
cessive step is to investigate the dynamic properties of these 
operators when they are to be guided by means of heuristics 
based on the available examples and/or other criteria. 

We have also mentioned that in spaces with rare solutions it 
is more suitable to have an operator that is non redundant, be­
cause almost all of the paths that could be constructed would 
not lead to a target theory. It should be investigated how to 
define non redundant operators in this framework. 

The object identity framework is currently implemented in 
the system 1NTHELEX [Esposito et ai, 2000], with a totally 
incremental strategy based on clause-level induction. We plan 
to investigate how to upgrade the system to theory-level, ex­
ploiting the theoretical operators presented in this paper to­
gether with suitable evaluation functions to mitigate the com­
binatorial complexity of the problem. 
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