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Abstract 
Inconsistencies frequently occur in knowledge 
about the real-world. Some of these inconsis­
tencies may be more significant than others, and 
some knowledgebases (sets of formulae) may con­
tain more inconsistencies than others. This creates 
problems of deciding whether to act on these in­
consistencies, and if so how. To address this, we 
provide a general characterization of inconsistency, 
based on quasi-classical logic (a form of paracon-
sistent logic with a more expressive semantics than 
Belnap's four-valued logic, and unlike other para-
consistent logics, allows the connectives to appear 
to behave as classical connectives). We analyse in­
consistent knowledge by considering the conflicts 
arising in the minimal quasi-classical models for 
that knowledge. This is used for a measure of co­
herence for each knowledgebase, and for a measure 
of significance of inconsistencies in each knowl­
edgebase. In this paper, we formalize this frame-
work, and consider applications in managing het­
erogeneous sources of knowledge. 

1 Introduction 
An approach to measuring inconsistency is to use proposi­
tional quasi-classical (QC) logic [Hunter, 2002]. In this, each 
inconsistent set of formulae is reflected in the QC models for 
the set, and then the inconsistency is measured in the models. 
Obviously, this is not possible in classical logic, or indeed 
many non-classical logics, because there is no model of an 
inconsistent set of formulae. QC logic, a form of paraconsis-
tent logic, can model inconsistent sets of formulae. There are 
other paraconsistent logics that we could consider, for exam­
ple Belnap's four-valued logic [Belnap, 1977], or Levesque's 
3-interpretations iLevesque, 1984], or Grant's generalizations 
of classical satisfaction [Grant, 1978], but these, as we will i l­
lustrate, involve the consideration of too many models. This 
increases the number of models that need to be analysed and 
it underspecifies the nature of the conflicts. 

However, the original proposal for measuring inconsis­
tency based on QC logic does not provide an evaluation of 
the significance of inconsistencies. As an illustration of the 
need to evaluate significance, consider two news reports on a 

World Cup match, where the first report says that Brazil beat 
Germany 2-0, and the second report says that Germany beat 
Brazil 2-0. This is clearly a significant inconsistency. Now 
consider two news reports on the same football match, where 
the first report says that the referee was Pierluigi Collina and 
the second report says that the referee was Ubaldo Aquino. 
This inconsistency would normally be regarded as relatively 
insignificant. 

In this paper, we extend the idea of measuring inconsis­
tency via QC models by giving a new framework for measur­
ing the significance of inconsistencies in a knowledgebase. 
To do this, we review aspects of QC logic and a measurement 
of inconsistency based on it. We then present our frame-
work for evaluating the significance of inconsistencies. We 
show this leads to a generalization of a four-valued seman­
tics where instead of a single truth value to denote inconsis­
tency, we have an infinite sequence of inconsistent truth val­
ues Dx where . We then discuss how we can use QC 
logic together with significance functions for reasoning and 
analysing with heterogeneously sourced information such as 
news from different newsfeeds. 

2 Review of QC Logic 
We review the propositional version of quasi-classical logic 
(QC Logic) [Besnard and Hunter, 1995; Hunter, 2000]. 
Definition 1 The language of QC logic is that of classical 
propositional logic. We let C denote a set of formulae formed 
in the usual way from a set of atom symbols A, and the con­
nectives , then Atoms(r) returns the 
set of atom symbols used in T. 
Definition 2 Let a be an atom, and let be a complementa­
tion operation such that The 
operator is not part of the object language, but it makes some 
definitions clearer. 
Definition 3 Let be a clause that includes a 
d i s j u n c t T h e focus o f 
d e n o t e d ) , is defined as the clause obtained 
by removing a%from 
Example 1 Let be a clause where are 
literals. Hence, 

Focus is used to capture a form of resolution in the seman­
tics of QC logic. A model in QC logic is a form of Herbrand 
model. 
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Definition 4 Let A be a set of atoms. Let O be the set of 
objects defined as follows, where is a positive object, and 
—a is a negative object. 

We call any a QC model. So X can contain both 
for some atom 

For each atom and e a c h X 
means that in X there is a reason for the belief and that 
in X there is a reason against the belief Similarly, 

means that in X there is a reason against the be­
lief a and that in X there is a reason for the belief This 
effectively gives us a four-valued semantics. Though for non-
atomic formulae the semantics, defined next, is significantly 
different to [Belnap, 1977]. 

Definition 5 Let be a satisfiability relation called strong 
satisfaction. For a model X, we define as follows, where 

are literals in , and is a literal in C. 

iff there is a reason for the belief a in X 

Strong satisfaction is used to define a notion of entail­
ment for QC logic. There is also a natural deduction proof 
theory for propositional QC logic [Hunter, 2000] and a 
semantic tableau version for first-order QC logic [Hunter, 
2001]. Entailment for QC logic for propositional CNF for­
mulae is coNP-complete, and via a linear time transformation 
these formulae can be handled using classical logic theorem 
provers [Marquis and Porquet, 2001]. 

The definitions for QC models and for strong satisfaction 
provide us with the basic concepts for measuring inconsis­
tency. QC logic exhibits the nice feature that no attention 
needs to be paid to a special form that the formulae in a set 
of premises should have. This is in contrast with other para-
consistent logics where two formulae identical by definition 

of a connective in classical logic may not yield the same set 
of conclusions. For example, in QC logic, is entailed by 

and and is entailed by 
. QC logic is much better behaved in 

this respect than other paraconsistent logics such as [da 
Costa, 1974], and consistency-based logics such as [Benfer-
hat et al., 1993]. Furthermore, the semantics of QC logic 
directly models inconsistent sets of formulae. 

Example 3 Consider the following sets of formulae. 

Whilst four-valued logic [Belnap, 1977] also directly mod­
els inconsistent sets of formulae, there are too many Bel-
nap models in many situations. Consider for example 

. There is one minimal QC model , but 
there are a number of Belnap models that satisfy this set. 
QC logic has a reduced number of models because of the 
constraint in the definition of strong satisfaction for disjunc­
tion that ensures that if the complement of a disjunct holds in 
the model, then the resolvent should also hold in the model. 
This strong constraint means that various other proposals for 
many-valued logic will tend to have more models for any 
given knowledgebase than QC logic. In particular, the short­
comings of Belnap's four-valued logic also apply to three-
valued logics such as 3-interpretations by [Levesque, 1984], 
and a similar proposal by [Grant, 1978]. 

3 Measuring coherence of QC models 
We now consider a measure of inconsistency called coher­
ence [Hunter, 2002]. The opinionbase of a QC model A" is 
the set of atomic beliefs (atoms) for which there are reasons 
for or against in X, and the conflictbase of A" is the set of 
atomic beliefs with reasons for and against in X. 

Definition 8 Let 

Conflictbase(X) = 
Opinionbase(Ar) — 

In finding the minimal QC models for a set of formu­
lae, minimization of each model forces minimization of 
the conflictbase of each model. As a result of this min­
imization, if , then 
(1) Conflictbase(X) = Conflictbase(r) and (2) either 
Opinionbase(X) = Opinionbase(y) or Opinionbase(A) is 
not a subset of Opinionbase(Y). 

Increasing the size of the conflictbase, with respect to the 
size of the opinionbase, decreases the degree of coherence, as 
defined below. 
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Definition 9 The Coherence function from into [0,1], 
is given below when X is non-empty, and Coherence i = 1. 

If Coherence(X) = 1, then X is a totally coherent, and if 
Coherence(AT) = 0, then X is totally incoherent, otherwise, 
A" is partially coherent/incoherent. 

4 Significance functions 
We now present a new framework for measuring the signif­
icance of inconsistencies arising in QC models, and thereby 
in sets of formulae. The approach is based on specifying the 
relative significance of incoherent models using the notion of 
a mass assignment which is defined below. 

We have the constraint = 0 to ensure that 
for all Condition 1 
ensures mass is only assigned to models that contain conflicts 
and condition 2 ensures the total mass distributed sums to 1. 
Given some , a mass assignment can be localized 
on small subsets of , spread over many subsets of , or lim­
ited to large subsets of . A mass assignment can be regarded 
as a form of metaknowledge, and so it needs to be specified 
for a domain, where the domain is characterized by , and so 
the possible models of the domain are subsets of 

A focal mass assignment puts the mass onto the totally in­
coherent models, and a solo mass assignment puts the mass 
on the smallest totally incoherent models. 
Proposition 3Ifm is a solo mass assignment for then m 
is focal mass assignment for 

Significance is additive for totally incoherent models when 
the mass assignment is solo. 

Proposition 4 Let m be a solo mass assignment for Let 
S be a mass-based significance function for m and let X 

So mass-based significance is not additive. Also the re­
maining significance need not be for the complement of X 
(ie, Xc). Some may be assigned to models not disjoint from 
X. We now consider some constraints on mass assignments 
that give useful properties for mass-based significance. 

Given that simple cumulativity holds, we see that specify­
ing significance in terms of mass assignment is more efficient 
than directly specifying the significance. 

The definitions for mass assignment and mass-based sig­
nificance correspond to mass assignment and belief functions 
(respectively) in Demspter-Shafer theory fShafer, 1976]. 
However, here they are used to formalise significance rather 
than uncertainty. To ease reading in the following, we drop 
the superscript and subscript for significance functions. 

A significance function gives an evaluation of the signifi­
cance of the conflicts in a QC model. This evaluation is in the 
range [0,1] with 0 as least significant and 1 as most signifi­
cant. 

Different minimal QC models for the same knowledgebase 
are not necessarily equally coherent. 

Proposition 1 Let m be a mass assignment for If S is 
a significance function for m, then the following property 
of simple cumulativity holds for all X, Y 
Y implies 



5 Semantics for mass-based significance 
A mass assignment can be regarded as transforming the four-
valued semantics of QC logic into a many-valued logic. 

The knowledge lattice is illustrated in Figure 1. It is a dis­
tributive lattice. The key difference between Belnap's lattice 
and ours is the value Doth has been split into a chain of truth 
values b0, •-. B1. If we equate the truth values {N, T, F, B 0 } 
with the Belnap truth values {Neither, True, False, Both}, 
respectively, then Belnap's four-valued lattice is a sublattice 
of the knowledge lattice. 

Definition 17 A many-valued model is a tuple (K,^,t) 
where is the knowledge lattice and t is a truth as­
signment function from the set of atoms A to K. 

In the following, we restrict consideration to solo mass as­
signments, though this restriction can be relaxed with slightly 
more complex definitions. 

Definition 18 Let m be a solo mass assignment for and 
let he many-valued model. We describe (X, M) and 
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Since the conflictbase is common for all minimal QC mod­
els for a knowledgebase, we obtain the following. 

The next two results capture notions of monotonicity for 
mass-based significance. 

In this section, we have augmented the measurement of in­
consistency in QC models with an evaluation of significance. 
In the next section, we provide a semantics. 

A useful feature of a focal mass-based significance func­
tion is that as the number of conflicts rises in a model, then 
the significance of the model rises. This is formalized by the 
following notion of conflict cumulativity. It does not hold in 
general (see Example 9). 

Some knowledgebases have zero significance. 

We now extend the significance functions to knowledge-

each of those models as equally acceptable, or equivalently 
we regard each of those models as equally representative of 

This is illustrated in the next example 

b is a significance function for in, then the following prop-



Figure 1: The Knowledge Lattice 

as being isomorphic models when and the 
following conditions hold: 

We can define a valuation function that extends a truth as­
signment to any formula by an inductive definition on the 
structure of a. However, for brevity, we will adopt a shortcut 
based on the relation. 
Definition 19 Let (X,m) and be isomorphic mod­
els. A valuation function, denoted Vt,from to K is defined 
so that when a is an atom, and as follows when 
a is non-atomic. 

Since we could have defined the valuation function equiv-
alently in an inductive definition on the structure of the for­
mulae, we can obtain propositions such as the following that 
relate the valuation function applied to a formula and applied 
to its subformulae. 

This semantics relates to QC logic strong satisfaction rela­
tion with the mass-based significance function as follows. 
Proposition 10 Let m be a solo mass assignment for Also 
let _ and t be a truth assignment where (X, in) and 

are isomorphic models. If < T 
if 
Proposition 11 Let , Let where 
Coherence(A') = 0, and let m be a solo mass assignment 
for Let be a many-valued model where 
and (A", in) and are isomorphic models. Let S be a 
significance function for m. 

The semantics therefore extends QC logic so that in case 
of inconsistency, the Bi truth value reflects the significance 
of the inconsistency, where B0 is the least significant and B1 
is the most significant. It is straightforward to extend this 
semantics to focal mass assignments. 

6 Significance of inconsistencies in news 
In this section, we consider news reports. Having some un­
derstanding of the "degree of inconsistency" of a news report 
can help in deciding how to act on it. Moreover, inconsisten­
cies between information in a news report and domain knowl­
edge can tell us important things about the news report. For 
this we use a significance function to give a value for each 
possible inconsistency that can arise in a news report in a 
given domain. We may also use significance in the follow­
ing ways: (1) to reject reports that are too inconsistent; (2) to 
highlight unexpected news; (3) to focus on repairing signifi­
cant inconsistencies; and (4) to monitor sources of informa­
tion to identify sources that are unreliable. 

How we use the significance function depends on the ap­
plication. In our simple example below, we assume a news 
report is a set of ground predicates. Each term is used to rep­
resent a piece of information in a news report and may be 
equivalent to a word, or number, or a simple phrase. The 
predicate symbol is used to tag or categorise each piece of 
information. 

A potential inconsistency that can arise in a news report is 
any set of literals that may be rebutted by the domain knowl­
edge. 
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Definition 20 Let Φ be a news report and let be domain 
knowledge. For is rebutted by 

Example 16 Domain knowledge for weather reports may in­
clude: 

So with the report T1 in Example 15, we get that 
{temp(30C),pptn(snow)} is rebutted by clause I, and that 
{po l len(h igh) , pptn(snow)} is rebutted by clause 3. 

Example 17 Continuing Example 15, we adopt the mass as­
signment as follows: 

So the reports T1 to T5 in Example 15, together with the do­
main knowledge in Example 16, denoted here by gives 
the following significance evaluations.— 0.7, 

= 0.6, - 0.4, - 0.3, 
= 0.1. If we set the threshold of acceptability for 

a news report t1 at a significance evaluation of 0.3, then only 
T4 and T5 would be acceptable, the others would be rejected. 

This small example illustrates how we may find some in­
consistencies acceptable and others unacceptable, thereby se­
lect some news reports in preference to others. For larger 
examples, it may be necessary to specify a mass assignment 
for many possible incoherent models. One solution for this 
is to generate a mass assignment from a partially specified 
mass assignment. Mass is assigned to particular models and 
then mass for further models is obtained by interpolation. In 
particular, domains with some numerical data, such as sport 
reports or weather reports, can be addressed with this ap-
proach. For example, if we are only interested in inconsisten­
cies about temperature, and we have a range of possibilities 
from rain(lcm),..., to rain(50cm), then the mass could be 
assigned to two models such as {+ ra in( lcm), - ra in( lcm)} 
and {-f-rain(50cm), - ra in (50cm)} , and then the remaining 
mass assigned by interpolation. 

7 Discussion 
Whilst a number of approaches to handling inconsistent in­
formation touch on the issue of measurement of inconsis­
tency, the topic is underdeveloped. Information theory can be 
used to measure the information content of sets of inconsis­
tent formulae [Lozinskii, 1994]. This increases with additions 
of consistent information and decreases with additions of in­
consistent information. However, it does not provide a direct 
measure of inconsistency since for example, the value for 
is the same as for . Another approach to handling 
inconsistent information is that of possibility theory [Dubois 
et al, 19941. Let be a weighted formula where is a 

classical formula and A possibilistic knowledge­
base B is a set of weighted formulae. An a-cut of a possibilis­
tic knowledgebase, denoted 
The inconsistency degree of B, denoted Inc(B), is the max­
imum value of a such that the is inconsistent. How­
ever, this approach does not discriminate between different 
inconsistencies. For this, there is a need for an underlying 
paraconsistent logic such as QC logic. 
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