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Abstract 
This paper concerns formal theories for reasoning 
about the knowledge and belief of agents. It has 
seemed attractive to researchers in artificial intelli­
gence to formalise these propositional attitudes as 
predicates of first-order predicate logic. This al­
lows the agents to express stronger introspective 
beliefs and engage in stronger meta-rcasoning than 
in the classical modal operator approach. Results 
by Montague [1963] and Thomason [1980] show, 
however, that the predicate approach is prone to in­
consistency. More recent results by des Rivieres 
& Levesque [1988] and Morreau & Kraus [1998] 
show that we can maintain the predicate approach if 
we make suitable restrictions to our set of epistemic 
axioms. Their results are proved by careful transla­
tions from corresponding modal formalisms. In the 
present paper we show that their results fit nicely 
into the framework of logic programming seman­
tics, in that we show their results to be corollar­
ies of well-known results in this field. This does 
not only allow us to demonstrate a close connec­
tion between consistency problems in the syntactic 
treatment of propositional attitudes and problems in 
semantics for logic programs, but it also allows us 
to strengthen the results of des Rivieres & Levesque 
[1988] and Morreau & Kraus [1998]. 

1 Introduction 
The approach most often used in constructing formal theo­
ries for reasoning about multiagent systems is to formalise 
the agents' beliefs and knowledge through modal opera­
tors. An alternative approach is to formalise these proposi­
tional attitudes as predicates of a first-order predicate logic. 
This has several advantages, which have been widely dis­
cussed in the literature [Davies, 1990; Attardi and Simi, 1995; 
Carlucci Aiello et al.y 1995; McCarthy, 1997; Grant et a/., 
2000]. Most importantly, it allows us to quantify over the 
propositional objects of knowledge and belief as for instance 
in "agent 1 believes that everything known by agent 2 is also 
known by agent 1", formalised by 

This formula has no counterpart in the classical modal op­
erator approach, since if A'i and K2 were modal operators, 
we would not be able to apply them directly to the variable x 
(modal operators only apply to well-formed formulas). Thus 
the predicate approach gives us more expressive power and 
the ability of agents to refer to the totality of their own and 
others beliefs, which is important in meta-reasoning. 

Unfortunately, the predicate approach easily becomes in­
consistent, since the added expressive power allows the 
agents to express self-referential beliefs that in some cases 
turn out to be paradoxical. This was proved by Montague 
[1963] and Thomason [1980]. They prove that certain axiom 
schemes describing natural properties of knowledge and be­
lief are inconsistent with formal arithmetic. Their results are 
reviewed in Section 3. Des Rivieres & Levesque [1988] and 
Morreau & Kraus [1998] have shown there to be a way out of 
these inconsistency results: to suitably restrict the set of sen­
tences that we instantiate our axiom schemes of knowledge 
and belief with. These results are reviewed in Section 3 as 
well. 

In this paper we will show that the results of des Rivieres, 
Levesque, Morreau and Kraus can be reduced to well-known 
results in logic programming semantics. This is carried out 
in Section 4. In Section 5 we give a strengthening of their 
results, using again the connection to logic programming se­
mantics. 

2 Terminology and Notation 
We will be using theories of first-order predicate logic to for­
malise propositional attitudes of agents. To prove the consis­
tency of these first-order theories, we use results from logic 
programming semantics. Below we introduce the kinds of 
logic programs and first-order languages we wil l be consider­
ing. 

2.1 Logic Programs 

Al l logic programs considered in this paper will be proposi­
tional. Thus, an atom is simply a propositional letter, and 
a literal is either a propositional letter p or its negation - p . 
We take the symbols true and false to be among our propo­
sitional letters with the obvious intended interpretation. A 
clause is a formula of propositional logic on the form 
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where H is an atom, and all Li are literals. A preposi­
tional program (or simply a program) is a (possibly infinite) 
set of clauses. Herbrand models of programs are defined in 
the usual way. We require that all models assign the truth-
value true to the propositional letter true and false to false. 

Given a program P, comp(P) denotes its Clark comple­
tion. Since we work only with propositional programs, the 
Clark completion is particularly simple. The Clark comple­
tion of P is the following set of equivalences in infinitary 
propositional logic: for each atom A in P, 

• if A does not appear as head of any clause in P, then 
A <~> false comp(P). 

• otherwise we have comp(P), where 
is the set of clauses in P with head 

A. 

Let P be a propositional program. The dependency graph 
of P is the directed graph with signed edges defined as fol­
lows. The nodes of the graph are the atoms (propositional 
letters) occurring in P excluding the special atoms true and 
false. There is a positive edge from A to B, denoted by 
(A, B, - f ) , if and only if there is a clause Ln 

in P such that LL -■= B for some . If Lt — -*B 
then there is a negative edge from A to B, denoted (A, B,-). 
We say that A depends on B, denoted by A < B, if there is a 
proper path from A to B in the graph. We say that A depends 
negatively on B, denoted by if there is a path from 
A to B containing at least one negative edge. A program P is 
called locally stratified if the relation in the dependency 
graph of P is well-founded. 

2.2 F i rs t -Order Languages 

We use L to range over languages of first-order predicate 
logic. We take the connectives of first-order logic to be ->, A 
and When using in formulas, these formu­
las are simply abbreviations of formulas containing only ->, A 
and We require all languages L to contain the one-place 
predicate symbols T and P. P wil l be used as a predicate 
that picks out a set of (codes of) formulas in L. T wil l , de­
pending on the context, be used to express one of our syntac­
tic attitudes belief or knowledge. By L - {T} we denote the 
language L with the predicate symbol T removed. We wil l 
assume that all considered languages contain a parametrised 
coding. By a parametrised coding in L we understand an 
injective map r _ 1 from the formulas of L into the terms of L 
satisfying: 

(i) For any formula in L, the term has the same free 
variables as (but f is not itself a variable). 

(ii) For any formula in L and any term r which is free 
for x in ~ is term obtained by substitut­
ing T for all free occurrences of x in 

(iii) The coding is well-founded, that is, there is no infinite 
sequence o f f o r m u l a s s u c h that - n i s 
a term in for all 

We refer to [Feferman, 1984] for the construction of a 
parametrised coding. Feferman's coding does not satisfy (ii), 
but a simple variant of it wil l . is called the code of 

The intended interpretation of a formula is that 
is known" or 'V 's believed". We assume all first-order 

languages L to contain the language of Peano arithmetic. 
Throughout the paper, by formal arithmetic we mean Robin­
son's arithmetic, though any other standard formalisation of 
arithmetic could have been used in its place. We identify first-
order languages L with their sets of sentences. By a sentence 
in L we understand a closed formula, that is, a formula with­
out any occurrences of free variables. The set of ground terms 
of L is denoted Tcrms(L). 

To avoid confusion between formulas of propositional pro­
grams and formulas of first-order languages we will use Latin 
letters for the former and Greek letters for the latter. 

2.3 Regular Formulas and RPQ Formulas 
Wc now define the sets of first-order sentences which we in­
tend to prove that our axiom schemes of knowledge and belief 
can consistently be instantiated with. 
Definition 1. Let L be a first-order language. The set of reg­
ular formulas ofL is the least set satisfying: 

(i) Any atomic formula of is a regular formula. 
( i i ) a r e regular formulas and x is a variable, then 

and : • are regular formulas. 
(iii) If is a regular formula then is a regular for­

mula. 
Our definition differs slightly from the one given by Mor-

reau and Kraus [1998]. Instead of using a parametrised cod­
ing, they have an (n + l)-place predicate symbol for 
each n, such that instead of writing , . . . , . r n ) n ) , 
w h e r e a r e the free variables o f they would 
be writing where is then a stan­
dard (non-parametrised) Godel coding. To simplify matters, 
we have chosen to take care of the free variables by using 
a parametrised coding rather than by introducing infinitely 
many predicate symbols of different arities. 

As an example of a regular formula we have, for a suitable 
choice of L, 

expressing that the agent knows Mike's telephone number. If 
we have more than one agent, we can of course introduce a 
predicate symbol Ti for each agent i. In that case the follow­
ing sentence also becomes regular: 

expressing that agent 1 believes agent 2 to have correct beliefs 
about the departure time of the train. As an example of a non-
regular formula we have 

expressing that the user believes that the system only utters 
what it believes to be the case. It is non-regular because 
System is applied directly to a variable and not to the code of 
a formula. To allow expressing beliefs such as this one, Mor-
reau and Kraus [1998] extended the set of regular formulas to 
a more inclusive class called the RPQ formulas. 
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Definition 2. Let L be a first-order language. The set of RPQ 
formulas of L is the least set satisfying: 

(i) Any atomic formula of is an RPQ formula. 

( i i ) a r e RPQ formulas and x is a variable, then 
and are RPQ formulas. 

(iii) If ψ is an RPQ formula then is an RPQ formula. 

(iv) If ψ is any formula in L, then is an RPQ 
formula. 

This definition also differs from the one given by Morreau 
and Kraus [1998]. It defines a slightly more inclusive set of 
formulas, and at the same time it is simpler, since it avoids 
Morreau and Kraus' use of two distinct collections of vari­
ables. 

By regular sentence we understand a closed regular for­
mula, and by RPQ sentence a closed RPQ formula. 

3 Review of Previous Results 
Consider the following axiom schemes in a first-order lan­
guage L: 

A l . 

A2. 

A3. 

A4. is a theorem in formal arithmetic. 

A5. 

A6. 

As already mentioned, is intended to denote either 
'ψ is known" or is believed". Thus, for instance, the first 
axiom scheme expresses that everything known (believed) is 
true. It seems reasonable to characterise knowledge by the ax­
iom schemes A1-A4 and belief by A2-A6. But the following 
theorem shows that this is not always possible. 

Theorem 3 (Montague |1963|, Thomason [1980]). Let L 
be a first-order language. Formal arithmetic extended with 
any of the following sets of axioms is inconsistent. 

(a) The axiom schemes of knowledge, AT A4, instantiated 
over the sentences of L. 

(b) The axiom schemes of belief, A2-A6, instantiated over 
the sentences of L. 

The inconsistency of (a) is Montague's result, and the in­
consistency of (b) is Thomason's result. A way out of these 
inconsistency results is to restrict the set of sentences that we 
instantiate A1-A6 with. This strategy gives us the following 
positive results. 

Theorem 4 (des Rivieres and Levesque [19881). Let L be a 
first-order language. Formal arithmetic extended with any of 
the following sets of axioms is consistent. 

(a) The axiom schemes of knowledge, A1-A4, instantiated 
over the regular sentences of L. 

(b) The axiom schemes of belief A2-A6, instantiated over 
the regular sentences of L. 

Theorem 5 (Morreau and Kraus |1998|). Theorem 4 still 
holds when we replace "regular sentences " with "RPQ sen­
tences ". 

Theorem 4 is proved in Ides Rivieres and Levesque, 1988] 
by a careful translation from a corresponding first-order 
modal logic. Theorem 5 is proved in [Morreau and Kraus, 
1998] by a similar translation from a corresponding second-
order modal logic. In the following section we give proofs 
of their results taking a completely different route. We show 
that the problems can be reduced to problems of consistency 
of particular logic programs. 

Instead of working directly with the axiom schemes A l -
A6, we will most of the time be working with the truth 
scheme which is the following axiom scheme: 

This is often sufficient since, as the following lemma shows, 
instances of axiom schemes A1-A6 are logical consequences 
of corresponding instances of the truth scheme. To prove that 
the axiom schemes A1-A6 instantiated over a set of sentences 
S are consistent, it thus suffices to prove the consistency of 
the truth schema instantiated over that same set. 

Lemma 6. Let L be a first-order language, and let S be a set 
of sentences in L satisfying: 

if and are in S then are in S. 

Let M be a model of L in which holds for all 
in S. Then all of AI-A 6 hold in M for all 

Proof That Al holds in M when ψ is in S is a trivial con­
sequence of the fact that holds in M. To 
see that A2 holds in M, we first note that if is in S then 

is in S as well, by assumption on S. This 
sentence is an abbreviation of so we get that 
the following instance of the truth schema holds in M: 

Using this together with the fact that Al holds in M, we get 
that T{rT(ψ) -> ψ) holds in M. That is, A2 holds in M. 
A3-A6 are proved to hold in M in a similar manner. 

4 From LP Semantics to Consistent 
Treatments of Knowledge and Belief 

The results of this paper are based on the following lemma. 

Lemma 7 (Przymusinski [19871, Sato [1990]). /f a pro­
gram P is locally stratified then c:omp(P) has a Herbrand 
model. 

Our formulation is taken from [Sato, 1990]. It should be 
noted that Sato is not considering infinite programs in his pa­
per, but his proof carries over without modification to this 
more general framework. This is because Sato is consider­
ing the set of ground instances of non-propositional programs 
rather than these programs themselves. The set of ground in­
stances of a finite non-propositional program is in general an 
infinite propositional program, that is, the kind of logic pro­
gram we are considering in this paper. 
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Definition 8. Let L be a first-order language, and let S be 
a set of sentences in L. We define an infinite program PL,S 
as follows. For every sentence in L, the program PL,S 
contains a propositional atom denoted The clauses of 
PL,S are given by: 

The relation between models of the program P L , S and 
models of the first-order language L is given by the following 
lemma. 
Lemma 9. Let L and S be as above, /f comp has a 
Herbrand model M then L has a Herbrand model N satisfy­
ing: 

(i) For every sentence in L, 

(1) 

(ii) 
Proof Assume M is a model of COHIP(PL.?) . comp (PL,S) 
is the following set of equivalences: 

(2) 
(3) 
(4) 

(5) 

Let N be the following Herbrand model of L: 

is an atom and . 

(i) is proved by induction on the syntactic complexity of If 
ψ is an atom then (1) holds by definition of N. To prove (1) 
for sentences of the form we simply 
use (2), (3) and (4), respectively. For the case of the proof 
is: 

where the first equivalence is by (3) and the third is by induc­
tion hypothesis. The two remaining cases are proved simi­
larly. Thus (i) holds. Furthermore, using (i) and (5), we get 
for all 

and thus proving (ii). □ 

Lemma 10. Let L be a first-order language and let R be the 
set of regular sentences in L. The propositional program PL,R 
is locally stratified. 

Proof To simplify matters we wil l throughout this proof be 
identifying every propositional letter with the correspond­
ing first-order sentence in L. It should always be clear from 
the context whether is used to denote the first-order sen­
tence or the corresponding propositional letter. Thus, by the 
identification, the nodes of the dependency grapl of PL,R are 
all sentences in L. The edges are: 

Edges of the first type are called , edges of the second 
type are called edges of the third type are called 
edges and edges of the last type T-edges. 

We have to prove that is locally stratified. Actually, 
we wil l be proving something slightly stronger. We will prove 
that the relation in the dependency graph of is well-
founded. That is, we wil l prove that there does not exist any 
path of infinite length in the graph. Assume the opposite, that 
is, assume the existence of an infinite path 
Claim, o contains infinitely many T-edges. 
Proof of claim. Assume the opposite. Then there will be 
an infinite subpath of containing no T-edges. Thus all 
edges on o' must be But note that for any 
such edge, the start node wil l have higher syntactic complex­
ity than the end node. Thus, along the syntactic complexity 
wil l be strictly decreasing, which contradicts being infinite. 
This proves the claim. 
With every formula p in L we now associate a natural num­
ber , called the T-degree of The T-degree is defined 
recursively by 

• , other­
wise. 

The well-foundedness of the parametrised coding ensures that 
d is well-defined. By the above claim, contains an infinite 
number of T-edges. Let t be the end node of such an edge. 
Then ψ is regular. Let be the infinite subpath of having 
ψ as its start node. Then every node on must be a regular 
formula (c.f. the definition of a regular formula). This implies 
that every edge on is 

(i) either a 

(ii) or of type does not con­
tain T(x) as a subformula. 

Item (ii) follows from that fact that when x is a variable then 
T(x) is not a regular formula, and therefore no formula hav­
ing T(x) as a subformula can be regular either. Now note 
that on any edge of type (i) or (ii), the T-degree of the end 
node will be less than or equal to the T-degree of the start 
node. Thus the T-degree wil l be monotonically decreasing 
along a' and must therefore be constant from some point. But 
then from this point it can not contain any T-edges, since the 
T-degree of the end node of such an edge is always one less 
than the T-degree of the start node. This contradicts the claim 
above. 

Lemma 11. Let L be a first-order language and let S be a 
set of sentences in L. If PL,S locally stratified then any 
Herbrand model of. can be expanded into a Herbrand 
model of L in which holds for all in S. 
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Proof. Let M denote a Herbrand model of L - {T}. Let P 
be the program extended with the following clauses: 

true, if is an atom in 
false, if is an atom in 

PL,S is assumed to be locally stratified, and since P has 
the same dependency graph as then P must be lo­
cally stratified as well. Therefore comp(P) has a Herbrand 
model M', by Lemma 7. Finally, Lemma 9 gives us the exis­
tence of a Herbrand model N of L in which the equivalences 

hold for all in S. To see that ,V expands M 
we just have to note that if is an atom in L - {T} then 

and 

where the last implications are by (i) in Lemma 9. 

Theorem 12. Let L be a first-order language and let U be a 
theory in L - {T} containing formal arithmetic. If U has a 
Herbrand model then U extended with any of the following 
sets of axioms has a Herbrand model. 

(i) The axiom scheme instantiated over the 
regular sentences of L. 

(ii) The axiom schemes of knowledge, A1-A4, instantiated 
over the regular sentences of L. 

(iii) The axiom schemes of belief A2-A6, instantiated over 
the regular sentences of L. 

Proof Assume U has a Herbrand model M. Let R denote 
the set of regular sentences in L. By Lemma 10, PL,R is 
locally stratified. So by Lemma 11, M can be expanded into 
a Herbrand model N in which holds for all 
regular This proves (i). (ii) and (iii) then immediately 
follow, using Lemma 6. □ 

Theorem 4 is an immediate consequence of Theorem 12, 
when taking U to be formal arithmetic. The machinery we 
have introduced can also be applied to prove Theorem 5. It is 
an immediate consequence of the following corollary to The­
orem 12. 
Corollary 13. Theorem 12 still holds when we replace "reg­
ular sentences" with "RPQ sentences". Furthermore, the ex­
tension of V in the Herbrand model constructed will be the 
set of codes of regular sentences. 

Proof Let S denote the set of RPQ sentences of L. Modify 
the program by removing every clause of the form 

where r is not the code of any regular sentence. Call the new 
program QL,S- It is easy to see that QL,S is locally strat­
ified, using the argument given in the proof of Lemma 10. 
Lemma 11 still holds when we use QL,S instead of PL,s so 
any Herbrand model of U can be expanded into a model of 
L in which holds for all RPQ sentences. This 
proves (i) in Theorem 12 with "regular sentences" replaced 
by "RPQ sentences", (ii) and (iii) then follows from Lemma 
6. D 

5 Strengthening the Results 
We now strengthen the results obtained above. We want to 
define a set of formulas more inclusive than the RPQ formulas 
that the truth scheme can safely be instantiated 
with. For this we need a couple of new definitions. 

Definition 14. Let L be a first-order language and let ψ be a 
formula in L. The set of formulas occurring in ψ is defined 
as the least set containing and satisfying: 

• I f a subformula of a formulaoccuring in then 
is occuring in 

• is occurring inthen is occurring in 

Assume is a formula occurring in , The occurrence is said 
to be negative if occurs in a formula a where occurs in 

. Otherwise the occurrence is called positive. An occurence 
of in is said to be protected if occurs in a formula a 
where occurs in 

Thus, for instance, occurs in formulas such as A 
and but not in ) when A = 

T. has positive occurrence in but negative 
occurrence in 

Definition 15. Let L be a first-order language. A formula 
in L is said to be weakly RPQ if for any variable x, the 

formula T(x) only occurs positively or protected in 

Note that in an RPQ formula, every occurrence of T(x) for 
some variable x is protected, so every RPQ formula is also 
weakly RPQ. Thus the set of RPQ formulas is a subset of 
the set of weakly RPQ formulas. It is furthermore a proper 
subset, since among the weakly RPQ formulas we have e.g. 

which is not RPQ. The previously 
obtained results can be extended to the weakly RPQ formulas. 

Theorem 16. Let L be a first-order language and let U be 
a theory in If U has a Herbrand model, then U 
extended with the axiom scheme 

instantiated over the set of weakly RPQ sentences has a Her­
brand model. 

Proof Let S denote the set of weakly RPQ formulas. Us­
ing Lemma 11, it suffices to prove that PL,S is locally strat­
ified. As in the proof of Corollary 13, we can consider the 
modified program QL,S instead. To obtain a contradiction, 
assume QL,S is not locally stratified. Then in the depen­
dency graph of is not well-founded, that is, there must 
exist an infinite path containing infinitely many negative 
edges. As in the proof of Lemma 10, we get that must con­
tain infinitely many T-edges. Let be the end node of such 
an edge. Then is weakly RPQ. Let be the infinite sub-
path of having this node as its start node. Then every node 
on must be weakly RPQ. As noted in the proof of Lemma 
10, if every edge on is 

(i) either a 

(ii) or of type where a(x) does not con­
tain T(x) as a subformula, 
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then can not be infinite. Thus, every node on _ must have 
an occurrence of T(x) for some variable x. Since all nodes 
arc weakly RPQ, in each of these T(x) is either positive or 
protected. But if T(x) occurs protected in there can be no 
infinite path starting at . Thus, in every formula 
T(x) must occur positively (for some variable x). But this 
implies that all edges in the path are positive, which contra­
dicts our assumption. 

The above theorem also relates to a result by Perlis [1985]. 
Perl is showed that a modified truth scheme 
is consistent with arithmetic. It is easily seen that the set of 
instances of the (unmodified) truth scheme shown to be con­
sistent by Perlis' result is contained in the set of instances 
shown to be consistent by Theorem 16. 

In view of the results by Montague and Thomason (Theo­
rem 3), there is a limit to how many instances of our axiom 
schemes we can add while still retaining consistency. The 
set of weakly RPQ sentences is quite close to this limit, as is 
made clear by the following example. 
Example. Let L be a first-order language containing three 
one-place predicate symbols A, V and T. One of the simplest 
examples of a formula which is not weakly RPQ in L is the 
formula . Let us call this formula In 
ψ, T(x) occurs negatively and unprotected (since 
Let U be the theory consisting of the following axioms 

(6) 
(7) 

U obviously has a Herbrand model M, but we will show that 
U extended with the single axiom 

(8) 

does not have a Herbrand model. This shows that Theorem 
16 no longer holds if we to the weakly RPQ sentences add a 
sentence such as Assume, to obtain a contradiction, that 
there exists a Herbrand model N in which all of (6), (7) and 
(8) holds. Then we obtain the following contradiction: 

6 Conclusion 
We have been showing that results on the consistency of the 
predicate approach to knowledge and belief can be proved 
through the use of well-known results from logic program­
ming semantics. This connects the two research fields in a 
new and interesting way, and have furthermore allowed us to 
strengthen the previously known results on the consistency of 
the predicate approach. It is expected that the connection be­
tween the two fields can be pursued further to get even better 
consistency results. This might be done by using some of the 
results from the literature on logic programming semantics 
that strengthen Lemma 7. 
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