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Abstract 
Information extraction can be defined as the task 
of automatically extracting instances of specified 
classes or relations f rom text. We consider the case 
of using machine learning methods to induce mod­
els for extracting relation instances f rom biomedi­
cal articles. We propose and evaluate an approach 
that is based on using hierarchical hidden Markov 
models to represent the grammatical structure of 
the sentences being processed. Our approach first 
uses a shallow parser to construct a multi-level rep­
resentation of each sentence being processed. Then 
we train hierarchical H M M s to capture the regu­
larities of the parses for both positive and negative 
sentences. We evaluate our method by inducing 
models to extract binary relations in three biomedi­
cal domains. Our experiments indicate that our ap­
proach results in more accurate models than several 
baseline H M M approaches. 

1 Introduction 
In many application domains, there is the potential to greatly 
increase the uti l i ty of on-line text sources by using automated 
methods for mapping selected parts of the unstructured text 
into a structured representation. For example, the curators of 
genome databases would like to have tools that could accu­
rately extract information f rom the scientific literature about 
entities such as genes, proteins, cells, diseases, etc. For this 
reason, there has been much recent interest in developing 
methods for the task of information extraction ( IE), which 
can be defined as automatically recognizing and extracting in­
stances of specific classes of entities and relationships among 
entities f rom text sources. 

Machine learning methods often play a key role in IE sys­
tems because it is diff icult and costly to manually encode 
the necessary extraction models. Hidden Markov models 
(HMMs) [Leek, 1997; Bikel et al, 1999; Freitag and McCal -
lum, 2 0 0 0 ] , and related probabilistic sequence models [Mc-
Callum et at, 2000; Lafferty et al.y 2001], have been among 
the most accurate methods for learning information extrac­
tors. Most of the work in learning H M M s for information ex­
traction has focused on tasks wi th semi-structured and other 
text sources in which English grammar does not play a key 

Here we report the identification of an integral membrane 
ubiquitin-conjugating enzyme. This enzyme, UBC6, local­
izes to the endoplasmic reticulum, with the catalytic domain 
facing the cytosol. 

subcellular-localization(UBC6,endoplasmic reticulum) 

Figure 1: An example of the information extraction task. The top of 
the figure shows part of a document from which we wish to extract 
instances of the SUbcellular-localization relation. The bottom of 
the figure shows the extracted tuple. 

role. In contrast, the task we consider here is extracting infor­
mation f rom abstracts of biological articles [Hirschman et a/., 
2002]. In this domain, it is important that the learned models 
are able to represent regularities in the grammatical structure 
of sentences. 

In this paper, we present an approach based on using hier­
archical hidden Markov models ( H H M M s ) [Fine etal, 1998] 
to extract information f rom the scientific literature. Hierar­
chical hidden Markov models have mult iple "levels" of states 
which describe input sequences at different levels of granu­
larity. In our models, the top level of the H M M s represent 
sentences at the level of phrases, and the lower level of the 
H M M s represent sentences at the level of individual words. 
Our approach involves computing a shallow parse of each 
sentence to be processed. Dur ing training and testing, the 
hierarchical H M M s manipulate a two-level description of the 
sentence parse, instead of just processing the sentence words 
directly. We evaluate our approach by extracting instances of 
three binary relations f rom abstracts of scientific articles. Our 
experiments show that our approach results in more accurate 
models than several baseline approaches using HMMs . 

An example of a binary relation that we consider in our 
experiments is the subcel lu lar- local izat ion relation, which 
represents the location of a particular protein within a cell. 
We refer to the domains of this relation as PROTEIN and 
LOCATION. We refer to an instance of a relation as a tuple. 
Figure 1 provides an il lustration of our extraction task. The 
top of the figure shows two sentences in an abstract, and the 
bottom of the figure shows the instance of the target relation 
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subcel lular- local izat ion that we would l ike to extract f rom 
the second sentence. This tuple asserts that the protein UBC6 
is found in the subcellular compartment called the endoplas­
mic reticulum. In order to learn models to perform this task, 
we use training examples consisting of passages of text, an­
notated with the tuples that should be extracted from them. 

In earlier work [Ray and Craven, 2001], we presented 
an approach that incorporates grammatical information into 
single-level H M M s . The approach described in this paper ex­
tends the earlier work by using hierarchical H M M s to provide 
a richer description of the information available f rom a sen­
tence parse. 

Hierarchical H M M s originally were developed by Fine et 
al. (1998), but the application of these models to information 
extraction is novel, and our approach incorporates several ex­
tensions to these models to tailor them to our task. Bikel el 
al. (1999) developed an approach to named enlily recognition 
that uses H M M s with a multi- level representation similar to 
a hierarchical H M M . In their models, the top level represents 
the classes of interest (e.g. person name) , and the bottom 
level represents the words in a sentence being processed. Our 
approach differs from theirs in several key respects: (i) our in­
put representation for all sentences being processed is hierar­
chical, ( i i ) our models represent the shallow phrase structure 
of sentences, ( i i i ) we focus on learning to extract relations 
rather than entities, ( iv) we use null models to represent sen­
tences that do not describe relations of interest, and (v) we 
use a discriminative training procedure. Mi l le r el al. (2000) 
developed an information-extraction approach that uses a lex-
icalized, probabilistic context-free grammar (LPCFG) to si­
multaneously do syntactic parsing and semantic information 
extraction. The genre of text that we consider here, however, 
is quite different f rom the news story corpus on which avail­
able LPCFGs have been trained. Thus it is not clear how well 
this intriguing approach would transfer to our task. 

2 Sentence Representation 
In most previous work on H M M s for natural language tasks, 
the passages of text being processed have been represented 
as sequences of tokens. A hypothesis underlying our work is 
that incorporating sentence structure into the learned models 
w i l l provide better extraction accuracy. Our approach is based 
on using syntactic parses of all sentences to be processed. 
In particular, we use the Sundance system [Riloff , 1998] to 
obtain a shallow parse of each given sentence. 

The representation we use in this paper does not incorpo­
rate all of the information provided by the Sundance parser. 
Instead our representation provides a partially "f lattened", 
two-level description of each Sundance parse tree. The top 
level represents each sentence as a sequence of phrase seg­
ments. The lower level represents individual tokens, along 
wi th their part-of-speech (POS) tags. In positive training ex­
amples, if a segment contains a word or words that belong to 
a domain in a target tuple, the segment and the words of in­
terest are annotated wi th the corresponding domain. We iefer 
to these annotations as labels. Test instances do not contain 
labels - the labels are to be predicted by the learned IE model. 

Figure 2 shows a sentence containing an instance of the 

Figure 2: Input representation for a sentence which contains a 
subcellular-localization tuple: the sentence is segmented into 
typed phrases and each phrase is segmented into words typed with 
part-of-speech tags. Phrase types and labels arc shown in column 
(a). Word part-of-speech tags and labels arc shown in column (b). 
The words of the sentence are shown in column (c). Note the group­
ing of words in phrases. The labels (PROTEIN, LOCATION) are 
present only in the training sentences. 

subcel lu lar- local izat ion relation and its annotated segments. 
The sentence is segmented into typed phrases and each phrase 
is segmented into words typed wi th part-of-speech tags. 
For example, the second phrase segment is a noun phrase 
(NP.SEGMENT) that contains the protein name UBC6 (hence 
the PROTEIN label). Note that the types are constants that 
are pre-defined by our representation of Sundance parses, 
whereas the labels are defined by the domains of the particu­
lar relation we are trying to extract. 

3 Hierarchical HMMs for Information 
Extraction 

A schematic of one of our hierarchical H M M s is shown in 
Figure 3. The top of the figure shows the positive model, 
which is trained to represent sentences that contain instances 
of the target relation. The bottom of the figure shows the null 
model, which is trained to represent sentences that do not 
contain relation instances (e.g. off-topic sentences). At the 
"coarse" level, our hierarchical H M M s represent sentences 
as sequences of phrases. Thus, we can think of the top level 
as an H M M whose states emit phrases. We refer to this H M M 
as the phrase HMM, and its states phrase states. At the " f ine" 
level, each phrase is represented as a sequence of words. This 
is achieved by embedding an H M M wi th in each phrase state. 
We refer to these embedded H M M s as word HMMs and their 
states as word states. The phrase states in Figure 3 are de­
picted wi th rounded rectangles and word states are depicted 
wi th ovals. To explain a sentence, the H M M would f irst fo l ­
low a transition f rom the START state to some phrase state qi, 
use the word H M M of qi to emit the first phrase of the sen­
tence, then transition to another phrase state qj, emit another 
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Figure 3: Schematic of the architecture of* a hierarchical HMM for 
the subcellular-localization relation. The top part of the figure 
shows the positive model and the bottom part the null model. Phrase 
states are depicted as rounded rectangles and word states as ovals. 
The types and labels of the phrase states are shown within rectangles 
at the bottom right of each state. Labels are shown in bold and states 
associated with non-empty label sets are depicted with bold borders. 
The labels of word states are abbreviated for compactness. 

phrase using the word H M M of q3 and so on unti l it moves 
to the END state of the phrase H M M . Note that only the word 
states have direct emissions. 

Like the phrases in our input representation, each phrase 
state in the H M M has a type and may have one or more labels. 
Each phrase state is constrained to emit only phrases whose 
type agrees wi th the state's type. We refer to states that have 
labels associated wi th them as extraction states, since they 
are used to predict which test sentences should have tuples 
extracted f rom them. 

The architectures of the word H M M s are shown in Fig­
ure 4. We use three different architectures depending on the 
labels associated wi th the phrase state in which the word 
H M M is embedded. The word H M M s for the phrase states 
wi th empty label sets (Figure 4(a)) consist of a single emit­
ting state wi th a self-transition. For the extraction states of 
the phrase H M M , the word H M M s have a specialized archi­
tecture wi th different states for the domain instances, and for 
the words that come before, between and after the domain 
instances (Figures 4(b) and 4(c)). A l l the states of the word 
H M M s can emit words of any type (part-of-speech). That is, 
they are untyped, in contrast to the typed phrase states. The 
word states are annotated wi th label sets, and are trained to 
emit words wi th identical label sets. For example, the word 

Figure 4: Architectures of the word HMMs for the subcellular-
localization relation. Bold text within states denotes domain labels. 
For states with implicit empty labels, italicized text within paren­
theses denotes the position of the state's emissions relative to the 
domain words. The figure shows (a) the structure of the embedded 
HMMs for phrase states without labels, (b), phrase states with one 
label and (c) phrase states with two labels. 

H M M shown in Figure 4(b) can explain the phrase "the endo­
plasmic reticulum " by fo l lowing a transition f rom the START 
state to the (before) state, emitt ing the word "the", transition­
ing to the LOCATION state, emitt ing the words "endoplas-
mic" and "reticulum" wi th the LOCATION label and then 
transitioning to the END state. In order for a phrase state to 
emit a whole phrase, as given by the input representation, 
and not sequences of words that are shorter or longer than 
a phrase, we require that the embedded word H M M transi­
tion to the end state exactly when it has emitted all the words 
of a given phrase. Thus word H M M s wi l l always emit se­
quences of words that constitute whole phrases and transi­
tions between phrase states occur only at phrase boundaries. 

The standard dynamic programming algorithms that are 
used for learning and inference in H M M s - Forward, Back­
ward and Viterbi [Rabiner, 1989] - need to be slightly mod­
ified for our hierarchical H M M s . In particular, they need to 
(i) handle the multiple-levels of the input representation, en­
forcing the constraint that word H M M s must emit sequences 
of words that constitute phrases, and (ii) support the use of 
typed phrase states by enforcing agreement between state and 
phrase types. 

The Forward algorithm for our hierarchical H M M s is de­
fined by the recurrence relationships shown in Table 1. The 
first three equations of the recurrence relation provide a 
phrase-level description of the algori thm, and the last three 
equations provide a word-level description. Notice that the 
third equation describes the linkage between the phrase level 
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Tabic 1: The left side of the table shows the Forward-algorithm recurrence relation for our hierarchical HMMs. The right side of the table 
defines the notation used in the recurrence relation. 

and the word level. The Backward and Viterbi algorithms re­
quire similar modifications, but we do not show them due to 
space limitations. 

As illustrated in Figure 2, each training instance for our 
HMMs consists of a sequence of words, segmented into 
phrases, and an associated sequence of labels. For a test in­
stance, we would like our trained model to accurately pre­
dict a sequence of labels given only the observable part of the 
sentence (i.e. the words and phrases). We use a discrimina­
tive training algorithm [Krogh, 1994] that tries to find model 
parameters, 0, to maximize the conditional likelihood of the 
labels given the observable part of the sentences: 

(1) 

Here sl is the sequence of words/phrases for the Zth instance, 
and c1 is the sequence of labels for the instance. This training 
algorithm wil l converge to a local maximum of the objective 
function. We initialize the parameters of our models by first 
doing standard generative training. We then apply Krogh's 
algorithm which involves iterative updates to the HMM pa­
rameters. To avoid overfitting, we stop training when the ac­
curacy on a held-aside tuning set is maximized. 

In order for this algorithm to be able to adjust the param­
eters of the positive model in response to negative instances 
and vice-versa, we join our positive and null models as shown 
in Figure 5. This combined model includes the positive and 

Figure 5: Architecture of the combined model. The positive and null 
models refer to the models in Figure 3. 

the null models (shown in Figure 3) as its two submodels, 
with shared START and END states. 

Once a model has been trained, we can use the Viterbi al­
gorithm to predict tuples in test sentences. We extract a tuple 
from a given sentence if the Viterbi path goes through states 
with labels for all the domains of the relation. For example, 
for the SUbcellular-localization relation, the Viterbi path for 
a sentence must pass through a state with the PROTEIN la­
bel and a state with the LOCATION label. This process is 
illustrated in Figure 6. 

4 Hierarchical HMMs with Context Features 
In this section we describe an extension to the hierarchical 
HMMs presented in the previous section that enables them to 
represent additional information about the structure of sen­
tences within phrases. We refer to these extended HMMs 
as Context hierarchical HMMs (CHHMMs). Whereas the 
hierarchical HMMs presented earlier partition a sentence s 
into disjoint observations where each is a word, a 
CHHMM represents s as a sequence of overlapping obser­
vations . Each observation consists of a window of 
three words, centered around together with the part-
of-speech tags of these words. Formally, is a vector 

where is the 
part-of-speech tag of word 8ij. Note that and 
share although these features 
are located in different positions in the two vectors. Figure 7 
shows the vectors emitted for the phrase "the endoplasmic 
reticulum" by a word H M M in the CHHMM. 

Using features that represent the previous and next words 
allows the models to capture regularities about pairs or triplets 
of words. For instance, a CHHMM is potentially able to 
learn that the word "membrane " is part of a subcellular loca­
tion when found in "plasma membrane" while it is not when 
found in "a membrane". Furthermore, by using features that 
represent the part-of-speech of words, the models are able to 
learn regularities about groups of words with the same part 
of speech in addition to regularities about individual words. 

430 INFORMATION EXTRACTION 



Extracted tuples: subcellular-localization(MAS20, mitochondria) 
subcellular-localization(MAS22, mitochondria) 

Figure 6: Example of the procedure for extracting tuples of the subcellular-localization relation from the sentence fragment "...MAS20 
and MAS22 are found in the mitochondria...". The top of the figure shows how the most likely path explains the sentence fragment. Bold 
transitions between states denote the most likely path. Dashed lines connect each state with the words that it emits. The table shows the label 
sets that are assigned to the phrases and the words of the sentence. The extracted tuples arc shown at the bottom of the figure. 

Figure 7: Generation of the phrase "the endoplasmic reticulum" by 
a word HMM in a CHHMM. The bold arcs represent the path that 
generates the phrase. The vector observations oi,J emitted by each 
state are shown in the rectangles above the model and are connected 
with dotted arcs with the emitting state. The word that would be 
emitted by each state of the equivalent HHMM is shown in boldface. 

The advantages of this representation are especially realized 
when dealing wi th an out-of-vocabulary word; in this case 
part-of-speech tags and neighboring words may be quite in­
formative about the meaning and use of the out-of-vocabulary 
word. For example, an out-of-vocabulary adjective w i l l rarely 
be a protein, since proteins are usually nouns. 

Because the number of possible observations for a given 
word state in a C H H M M is very large (all possible vectors 
representing sequences of three words and their POS tags), to 
model the probabil i ty of an observation our C H H M M s 
assume that the features are conditionally independent given 
the state. Under this assumption, the probabil ity of the obser-

where Ek(oijkIqa,b) is the probabil i ty of word state qa,b 
emitt ing an observation whose A;-th feature is Oij^-

Note that the features employed by the representation of 
Equation 2 are clearly not condit ionally independent. Con­
secutive words are not independent of one another and cer­
tainly the part-of-speech tag of a word is not independent of 
the word itself. However, we argue that the discriminative 
training algorithm we use [Krogh, 1994] can compensate in 
part for this violation of the independence assumption. 

5 Empirical Evaluation 
In this section we present experiments testing the hypothesis 
that our hierarchical H M M s are able to provide more accurate 
models than H M M s that incorporate less grammatical infor­
mation. In particular we empirically compare two types of 
hierarchical H M M s with three baseline H M M s . 

• Context H H M M s : hierarchical H M M s wi th context 
features, as described in the previous section. 

• H H M M s : hierarchical H M M s without context features. 

• Phrase H M M s : single-level H M M s in which states are 
typed (as in the phrase level of an H H M M ) and emit 
whole phrases. These H M M s were introduced by Ray 
and Craven (2001). Unlike hierarchical H M M s , the 
states of Phrase H M M s do not have embedded H M M s 
which emit words. Instead each state has a single mul t i ­
nomial distribution to represent its emissions, and each 
emitted phrase is treated as a bag of words. 
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• POS HMMs: single-level HMMs in which states emit 
words, but are typed with part-of-speech tags so that a 
given state can emit words with only a single POS. 

• Token HMMs: single-level HMMs in which untyped 
states emit words. 

We evaluate our hypotheses on three data sets that we have 
assembled from the biomedical literature.1 The data sets are 
composed of abstracts gathered from the MEDLINE database 
[National Library of Medicine, 2003]. The first set contains 
instances of the subcellular-localization relation. It is com­
posed of 769 positive and 6,360 negative sentences. The pos­
itive sentences contain 949 total tuple instances. The number 
of actual tuples is 404 since some tuples occur multiple times 
either in the same sentence or in multiple sentences. The 
second, which we refer to as the disorder-association data 
set, characterizes a binary relation between genes and disor­
ders. It contains 829 positive and 11,771 negative sentences. 
The positive sentences represent 878 instances of 145 tuples. 
The third, which we refer to as the protein-interaction data 
set, characterizes physical interactions between pairs of pro­
teins. It is composed of 5,457 positive and 42,015 negative 
sentences. It contains 8,088 instances of 8 i9 tuples. 

We use five-fold cross-validation to measure the accuracy 
of each approach. Before processing all sentences, we ob­
tain parses from Sundance, and then stem words with Porter's 
stemmer [Porter, 1980]. We map all numbers to a special 
NUMBER token and all words that occur only once in a train­
ing set to an OUT-OF-VOCAB token. Also, we discard all 
punctuation. The same preprocessing is done on test sen­
tences, with the exception that words that were not encoun­
tered in the training set are mapped to the OUT-OF-VOCAB 
token. The vocabulary is the same for all emitting states in the 
models, and all parameters are smoothed using m-estimates 
[Cestnik, 1990J. We train all models using the discriminative 
training procedure referred to in Section 3 [Krogh, 1994]. 

To evaluate our models we construct precision-recall 
graphs. Precision is defined as the fraction of correct tu­
ple instances among those instances that are extracted by the 
model. Recall is defined as the fraction of correct tuple in­
stances extracted by the model over the total number of tuple 
instances that exist in the data set. For each tuple extracted 
from sentence s, we calculate a confidence measure as: 

Here qn refers to the END state of the combined model, 
<5n(|s|) is the probability of the most likely path, given by the 
Viterbi algorithm, and a n ( N ) is the total probability of the 
sequence, calculated with the Forward algorithm. We con­
struct precision-recall curves by varying a threshold on these 
confidences. 

Figures 8, 9 and 10 show the precision-recall curves for the 
three data sets. Each figure shows curves for the five types of 

Earlier versions of two of these data sets were used in our pre­
vious work [Ray and Craven, 2001]. Various aspects of the data sets 
have been cleaned up, however, and thus the versions used here are 
somewhat different. All three data sets arc available from 
h t t p : / / w w w . b i o s t a t . w i s e . e d u / " c r a v e n / i e / . 

HMMs described at the beginning of this section. We show 
error bars for the Context HHMM precision values for the 
subcellular-localization and protein-interaction data sets. 
For these two data sets, the hierarchical HMM models clearly 
have superior precision-recall curves to the baseline models. 
At nearly every level of recall, the hierarchical HMMs ex­
hibit higher precision than the baselines. Additionally, the 
HHMMs achieve higher endpoint recall values. The results 
are not as definitive for the disorder-association data set. 
Here, the POS HMMs and the Token HMMs achieve preci­
sion levels that are comparable to, and in some cases slightly 
better than, the Context HHMMs. There is not a clear winner 
for this data set, but the Context HHMMs are competitive. 

Comparing the Context HHMMs to the ordinary HHMMs, 
we see that the former results in superior precision-recall 
curves for all three data sets. This result demonstrates that 
clearly there is value in including the context features in hi­
erarchical HMMs for this type of task. In summary, our em­
pirical results support the hypothesis that the ability our hier­
archical HMM approach to capture grammatical information 
about sentences results in more accurate learned models. 
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6 Conclusion 
We have presented an approach to learning models for infor­
mation extraction that is based on using hierarchical H M M s 
to represent the grammatical structure of the sentences being 
processed. We employ a shallow parser to obtain parse trees 
for sentences and then use these trees to construct the input 
representation for the hierarchical H M M s 

Our approach builds on previous work on hierarchi­
cal H M M s and incorporating grammatical knowledge into 
information-extraction models. The application of H H M M s 
to IE is novel and has required us to modify H H M M learn­
ing algorithms to operate on a hierarchical input representa­
tion. In particular our methods take into account that phrases 
and states must have matching types, and that phrase states 
must emit complete phrases. We have also introduced a novel 
modification of H H M M s in which observations can be fea­
ture vectors. With respect to previous work on incorporating 
grammatical knowledge into IE models, our main contribu­
tion is an approach that takes advantage of grammatical infor­
mation represented at mult iple scales. An appealing property 
of our approach is that it generalizes to additional levels of 
description of the input text. 

We have evaluated our approach in the context of learning 
IE models to extract instances of three biomedical relations 
from the abstracts of scientific articles. These experiments 
demonstrate that incorporating a hierarchical representation 
of grammatical structure improves extraction accuracy in h id­
den Markov models. 
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