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Abstract 

The weighted CSP (WCSP) framework is a soft 
constraint framework with a wide range of appli­
cations. In this paper, we consider the problem 
of maintaining local consistency during search for 
solving WCSP. We first refine the notions of direc­
tional arc consistency (DAC) and full directional 
arc consistency (FDAC) introduced in [Cooper, 
2003] for binary WCSP, define algorithms that en­
force these properties and study their complexities. 
We then consider algorithms that maintain either 
arc consistency (AC), DAC or FDAC during search. 
The efficiency of these algorithms is empirically 
studied. It appears that despite its high theoreti­
cal cost, the strongest FDAC property is the best 
choice. 

1 Introduction 

It is well known that arc consistency (AC) plays a preemi­
nent role in efficient constraint solving. In the last few years, 
the CSP framework has been augmented with so-called soft 
constraints with which it is possible to express preferences 
among solutions [Schiex et ai, 1995; Bistarelli et ai, 1997]. 
Soft constraint frameworks associate costs to tuples and the 
goal is to find a complete assignment with minimum com­
bined cost. Costs from different constraints are combined 
with a domain dependent operator Extending the notion 
of AC to soft constraint frameworks has been a challenge in 
the last few years. ,From previous works we can conclude 
that the extension is direct as long as the operator is idem-
potent. Then, [Schiex, 2000] proposed an extension of AC 
which can deal with non-idempotent This definition has 
three nice properties: (i) it can be enforced in polynomial 
time, (ii) the process of enforcing AC reveals infeasible val­
ues that can be pruned and (iii) it reduces to existing defini­
tions in the idempotent operator case. [Cooper, 2003] further 
introduced directional arc consistency (DAC) and full direc-
tional arc consistency for strictly monotonic 

Weighted constraint satisfaction problems (WCSP) is a 
well known soft-constraint framework with a non-idempotent 
operator It provides a very general model with several ap­
plications in domains such as resource allocation [Cabon et 
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ai, 1999], combinatorial auctions [Sandholm, 1999], bioin-
formatics and probabilistic reasoning [Pearl, 1988]. [Larrosa, 
2002] introduced AC*, a refinement of the AC definition for 
WCSP. This definition provides a stronger yet simple and el­
egant property to be maintained during search. 

In this paper, we take the definitions of DAC and FDAC, 
strengthen and extend them to binary WCSP, defining the 
DAC* and FDAC* properties. We then define correspond­
ing enforcing algorithms. As in the classical CSP case, we 
then consider the problem of maintaining AC*, DAC* and 
FDAC* during search and empirically compare these algo­
rithms. These algorithms have a wide range of applications 
and allow a nice integration of hard and soft constraints in a 
common algorithmic framework. 

2 Preliminaries 
2.1 CSP 
A binary constraint satisfaction problem (CSP) is a triple 

is a set of variables. Each 
variable has a f inite d o m a i n o f values that 
can be assigned to it. ( i ,a) denotes the assignment of value 

to variable i. A tuple t is an assignment to a set of 
variables. Actually, t is an ordered set of values assigned to 
the ordered set of variables (namely, the k-th ele­
ment of f is the value assigned to the k-th element of i For 
a subset the projection of t over B is n o t e d i s 
a set of unary and binary constraints. A unary constraint is 
a subset of containing the permitted assignments to vari­
able i. A binary constraint is a set of pairs from x 
containing the permitted simultaneous assignments to i and 
j. The set of variables affected by a constraint is called its 
scope. A tuple t is consistent if it satisfies all constraints 
whose scope is included in ^. A solution is a consistent 
complete assignment. Finding a solution in a CSP is an NP-
complete problem. The task of searching for a solution can 
be simplified by enforcing arc consistency, which may prune 
values that cannot participate to a solution. 

2.2 Weighted CSPs 

Valued CSP (as well as semi-ring CSP) extend the CSP 
framework by associating costs to tuples [Schiex et al, 1995; 
Bistarelli et ai, 1997]. In general, costs are specified by 
means of a so-called valuation structure defined as a triple 
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Tuple / is consistent if The usual task of inter­
est is to find a complete consistent assignment with minimum 
cost, which is NP-hard. Observe that WCSP with k = 1 
reduces to classical CSP. In addition, S(k) is idempotent i f f 
k = 1 and strictly monotonic iff Two WCSP defined 
over the same variables are said to be equivalent if they define 
the same cost distribution on complete assignments. 

For simplicity in our exposition, we assume that every con­
straint has a different scope. For the moment, we also assume 
that constraints are implemented as tables and that it is pos­
sible to consult and modify entries. This is done without loss 
of generality (see the proof of Theorem 3). 

Example 1 Figure La shows a WCSP with valuation struc­
ture S(4) (the set of costs is [ 0 , . . . , 4], with and 
T = 4). It has three variables with values a, b. 
There are 2 binary constraints Cxz, Cyz and two non trivial 
unary constraints Cx and Cz. Unary costs are depicted in-
side their domain value. Binary costs are depicted as labelled 
edges connecting the corresponding pair of values (default 
cost of J). Zero costs are not shown. One optimal solution is 
eg. x = y = z = b, with cost 2. 

Our definition of WCSP is the same as in [Larrosa, 2002]. 
It differs from usual definitions [Schiex etal., 1995; Bistarelli 
et al., 1997] which restrict WCSP to the case, a 

Figure 1: Six equivalent WCSPs (for A: = 4). 

strictly monotonic valuation structure where finite costs can­
not lead to deletion. In practice, most branch and bound-
based solvers maintain an upper bound ub, the maximum ac­
ceptable cost so-far, and a lower bound lb on the optimal ex­
tension of the current assignment. Value pruning occurs as 
soon as The WCSP framework makes these two ele­
ments explicit: a solver uses the valuation structure S(ub) at 
every subproblem and provides the lower bound. 

3 Some local consistencies in WCSP 
In this Section we define node, arc, directed arc and full di­
rected arc consistencies. For node and arc consistencies, our 
definitions arc equivalent to the NC* and AC* definitions 
in [Larrosa, 2002]. For DAC, and FDAC, the starred (*) def­
initions refine the definitions in [Cooper, 2003] to the WCSP 
case, using node consistency and C0. In the sequel, we as­
sume that the set of variables ,V is totally ordered by >. 
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There is a strong relation between directional arc consis­
tency and mini-buckets [Dechter, 1997J. It can easily be 
shown that given a WCSP defined over the valuation struc­
ture 5(oo) and a variable ordering, the lower bound induced 
by mini-buckets involving at most 2 variables is the same as 
the lower bound induced by CΦ after the problem is made 
directional arc consistent. However, the mini-bucket com­
putation provides only a lower bound while DAC enforcing 
provides both a lower bound and a directional arc consistent 
equivalent problem. Al l the work done to compute the lower 
bound is captured in this problem which offers the opportu­
nity to perform incremental updates of the lower bound. 

4 Enforcing Arc Consistencies 
The previous node and arc consistency properties can be en­
forced by applying basic operations until the correspond­
ing property is satisfied: pruning node-inconsistent values, 
forcing supports to variables (NC*), forcing (full) support to 
node-consistent values (AC). As pointed out in [Schiex, 2000; 
Larrosa, 2002], value (resp. variable) supports can be forced 
by sending costs from binary (resp. unary) constraints to 
unary constraints (resp. CΦ). Full support can be forced by 
first sending costs from a unary constraint Cj to CiJ and then 
sending the cost from . Let us review 
these concepts before introducing basic algorithms. 

be two costs such that is 
the subtraction of b from a, defined as, 

The projection of a cost units from Ci,j E C over value ( i , a) 
is a flow of a cost units from the binary constraint to the unary 
cost Ci(a). It is embodied in the Procedure 

1The stronger local property that would require a full support 
on both sides suffers from the fact that most WCSP don't have an 
equivalent WCSP that satisfies this property. 
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The new basic operation needed to enforce {F}DAC* con­
sists in forcing full supports for the values of a variable i on 
one side of a constraint Cij. As shown in the example, this 
can be done by extending unary costs from Cj to Cij and 
then projecting Cij onto variable Ci. However, extending all 
unary costs may destroy supports for j on Cij. Consider the 
AC* Problem l.d. If we extend 2 cost units from (z,a) to 
Cyz instead of 1 as in the example and then project on Cy, 
we get Problem l.f where (2,a) has lost all supports on y. 
In order to smoothly integrate DAC* and AC* enforcing to 
obtain FDAC* enforcing, we must obtain full supports for 
variable i on Cij while preserving supports for all values of 
j on Cij. This is obtained by extending the minimum cost of 
Cj required for the subsequent projection onto Ci. The cor­
rectness of our algorithms is based on the following theorem, 

Procedure DAC*() has been designed to be used alone to en­
force DAC* or in conjunction with AC*() to enforce FDAC*. 
Therefore, whenever a value is pruned, DAC*() inserts its vari­
able in Q to inform AC*() of the deletion. DAC* further uses 
a priority queue R that contains those variables such that a 
unary cost has been increased from _L: in this case, some 
values in lower variables may have lost full support and new 
supports need to be found. The main loop iterates while R is 
not empty. At each iteration, the highest variable j is fetched 
from R. Node inconsistent values (due to unary cost and 
lower bound increments) are removed using PruneVar() and 
pruned variables are inserted in Q. Then new full supports 
are sought for every lower variable connected to j. Finally, 
all variables are processed to enforce NC* which can be lost 
during the process, due to lower bound increments. Pruned 
variables are inserted in Q. FDAC*() simply enforces AC* 
and DAC* simultaneously: the enforcement of AC* empties 
Q but may add variables to R, and the enforcement of DAC* 
empties R but may add variables to Q. FDAC* is achieved 
when both R. and Q are simultaneously empty. Correction of 
both algorithms follows from theorem 2. 



Proof: Regarding space, there is no difference with DAC*() 
and the same proof applies. Regarding time, a variable j 
enters Q only if a value has been deleted. Therefore, each 
variable j is added to Q at most d + 1 times (once at initial­
ization and then upon value deletion at lines 5, 6 or 4). There-

5 Experimental results 
In this Section we perform an empirical evaluation of the ef­
fect of maintaining various forms of arc consistency during 
search. We consider a depth-first search maintaining either 
NC*, AC*, DAC* or FDAC* which yields the algorithms 
MNC*, MAC*, MDAC* and MFDAC*. For comparison, 
we include results obtained with PFC-RDAC [Larrosa et al., 
1999], which is normally considered as a reference algorithm. 

For variable selection we use the dom/deg heuristic which 
for each variable computes the ratio of the domain-size di­
vided by the future degree (i.e., degree considering future 
variables only) and selects the variable with the smallest 
value. For value selection we consider values in increasing 
order of unary cost Ci. The variable ordering used for direc­
tional arc consistencies is lexicographic. 

We consider the Max-CSP problem, where the goal is 
to find a complete assignment with a maximum number 
of satisfied constraints in an overconstrained CSR It can 
easily be formulated as a WCSR We experiment with bi­
nary random problems using the well-known four-parameters 
model [Smith, 1994]. A random CSP class is defined by 
(n,d,e, t) where n is the number of variables, d is the do­
main size, e is the number of binary constraints (i.e, graph 
connectivity), and t the number of forbidden tuples in each 
constraint (i.e, tightness). Pairs of constrained variables and 
their forbidden tuples are randomly selected using a uniform 
distribution. Samples have 50 instances and we report aver­
age values. The experiments were performed on a 800 MHz 
Pentium III computer. 

For fixed values of n, d and c and increasing tightness t, 
most problems are solved almost instantly until the cross-over 
point is reached. Then, problems become overconstrained 
and much harder to solve. We denote t° the lowest tightness 
where every instance in our sample is overconstrained. Based 
on this, we define different categories of problems: 

Combining the different types, we obtain 4 different classes, 
each being denoted by a pair of characters (SL,ST,DL and 
DT). In each class, the domain size is set to 10 and the num­
ber of variables n is used as a varying parameter. Figure 2 
shows the average cpu time used with SL, ST, DL and DT 
from left to right. In each plot, the five algorithms are listed 
in increasing order of efficiency, from top to bottom. In all 
cases, the search effort seems to grow exponentially with n. 
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priority queue, when a variable j is extracted from R, all the 
variables before j in R have already been processed. Since 
FindFullSupportAC*() can only increase non zero unary costs 
of variables strictly lower than j, j will never be reintroduced 
in R and therefore each variable j is added to the queue R at 
most once. The queue is implemented as an array of booleans 
and a pointer to the highest true element. Adding new el­
ements to R means updating the pointer, the pop operation 
consists on returning the value of the pointer and searching 



Figure 2: Cpu-time in seconds for an increasing number of variable on our 4 classes of problems. In each case, the 4 algorithms 
arc listed in increasing order of efficiency from top to bottom. 

For all classes except the DL class, MFDAC* is the most 
efficient algorithm, with only minor differences with MDAC* 
(sometimes they are so closed that the two lines can hardly 
be distinguished). The best performance of MFDAC* is ob­
tained in the ST problems, where it is up to 5 times faster than 
PFC-RDAC, 20 times faster than MAC* and 50 times faster 
than MNC*. For the DL class, however, MNC* is the most 
efficient algorithm, followed by PFC-RDAC, MAC*, MF­
DAC* and MDAC*. The differences between the algorithms 
are however more limited than in previous classes (MNC* is 
twice faster than MFDAC*). 

The ability of directional arc consistency to collect costs 
along the constraints in order to bring them together in the 
same variable allows to build stronger lower bounds. This is 
confirmed by the analysis of the number of nodes expanded 
by each algorithm (not reported here for lack of space) where 
MDAC* and MFDAC* always expand less nodes that PFC-
RDAC, MNC* or MAC*, with a ratio that can reach 300 be­
tween the extreme algorithms on eg. ST problems. On the 
DL problems however, this ratio is much more limited, typi­
cally bounded by 4. With loose constraints, the upper bound 
reaches low values early in the search which allows pruning 
at high levels of the search tree and makes sophisticated lower 
bounds less significant. 

It is worth to mention at this point that PFC-RDAC heuris-
tically assigns a direction to every constraint in each sub-
problem and this has a strong influence on the efficiency on 
random Max-CSP. Similarly, the behavior of AC, DAC and 
FDAC based algorithms depends on the order in which vari­
ables are fetched from Q and R (i.e., on the variable order­
ing used to define DAC) and on the order in which values 
are considered for projection. In our current implementation, 
Q is implemented as a stack, values are considered in lexi­
cographic ordering and the DAC variable ordering is lexico­
graphic. This leaves room for further improvement. 

6 Conclusion and Future Work 
In this paper we have refined two local consistency properties 
and adapted them to WCSP. We have developed enforcing 
algorithms and have studied their complexity. 

As in classical CSP, we observe that the choice of the right 
level of local consistency to maintain during search is impor­
tant. Despite its theoretical cost, the strongest local consis­
tency we considered (FDAC*) appears to be the best level for 
solving WCSP. In the future, we want to extend these algo­
rithms to non binary constraints, apply them to other prob­

lems and take into account heuristics for the variable and 
value ordering used in AC, DAC and FDAC enforcing. 
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