
In the quest of the best form of local consistency for Weighted CSP

Javier Larrosa
Department of Software

Universitat Politecnica de Catalunya
Barcelona, Spain

larrosa@lsi.upc.es

Abstract

The weighted CSP (WCSP) framework is a soft
constraint framework with a wide range of appli­
cations. In this paper, we consider the problem
of maintaining local consistency during search for
solving WCSP. We first refine the notions of direc­
tional arc consistency (DAC) and full directional
arc consistency (FDAC) introduced in [Cooper,
2003] for binary WCSP, define algorithms that en­
force these properties and study their complexities.
We then consider algorithms that maintain either
arc consistency (AC), DAC or FDAC during search.
The efficiency of these algorithms is empirically
studied. It appears that despite its high theoreti­
cal cost, the strongest FDAC property is the best
choice.

1 Introduction

It is well known that arc consistency (AC) plays a preemi­
nent role in efficient constraint solving. In the last few years,
the CSP framework has been augmented with so-called soft
constraints with which it is possible to express preferences
among solutions [Schiex et ai, 1995; Bistarelli et ai, 1997].
Soft constraint frameworks associate costs to tuples and the
goal is to find a complete assignment with minimum com­
bined cost. Costs from different constraints are combined
with a domain dependent operator Extending the notion
of AC to soft constraint frameworks has been a challenge in
the last few years. ,From previous works we can conclude
that the extension is direct as long as the operator is idem-
potent. Then, [Schiex, 2000] proposed an extension of AC
which can deal with non-idempotent This definition has
three nice properties: (i) it can be enforced in polynomial
time, (ii) the process of enforcing AC reveals infeasible val­
ues that can be pruned and (iii) it reduces to existing defini­
tions in the idempotent operator case. [Cooper, 2003] further
introduced directional arc consistency (DAC) and full direc-
tional arc consistency for strictly monotonic

Weighted constraint satisfaction problems (WCSP) is a
well known soft-constraint framework with a non-idempotent
operator It provides a very general model with several ap­
plications in domains such as resource allocation [Cabon et

Thomas Schiex
Dept. de Biometrie et Intelligence Artificielle
Institut National de Recherche Agronomique

Toulouse, France
Thomas.Schiex@toulouse.inra.fr

ai, 1999], combinatorial auctions [Sandholm, 1999], bioin-
formatics and probabilistic reasoning [Pearl, 1988]. [Larrosa,
2002] introduced AC*, a refinement of the AC definition for
WCSP. This definition provides a stronger yet simple and el­
egant property to be maintained during search.

In this paper, we take the definitions of DAC and FDAC,
strengthen and extend them to binary WCSP, defining the
DAC* and FDAC* properties. We then define correspond­
ing enforcing algorithms. As in the classical CSP case, we
then consider the problem of maintaining AC*, DAC* and
FDAC* during search and empirically compare these algo­
rithms. These algorithms have a wide range of applications
and allow a nice integration of hard and soft constraints in a
common algorithmic framework.

2 Preliminaries
2.1 CSP
A binary constraint satisfaction problem (CSP) is a triple

is a set of variables. Each
variable has a f inite d o m a i n o f values that
can be assigned to it. (i ,a) denotes the assignment of value

to variable i. A tuple t is an assignment to a set of
variables. Actually, t is an ordered set of values assigned to
the ordered set of variables (namely, the k-th ele­
ment of f is the value assigned to the k-th element of i For
a subset the projection of t over B is n o t e d i s
a set of unary and binary constraints. A unary constraint is
a subset of containing the permitted assignments to vari­
able i. A binary constraint is a set of pairs from x
containing the permitted simultaneous assignments to i and
j. The set of variables affected by a constraint is called its
scope. A tuple t is consistent if it satisfies all constraints
whose scope is included in ^. A solution is a consistent
complete assignment. Finding a solution in a CSP is an NP-
complete problem. The task of searching for a solution can
be simplified by enforcing arc consistency, which may prune
values that cannot participate to a solution.

2.2 Weighted CSPs

Valued CSP (as well as semi-ring CSP) extend the CSP
framework by associating costs to tuples [Schiex et al, 1995;
Bistarelli et ai, 1997]. In general, costs are specified by
means of a so-called valuation structure defined as a triple

CONSTRAINTS 239

Tuple / is consistent if The usual task of inter­
est is to find a complete consistent assignment with minimum
cost, which is NP-hard. Observe that WCSP with k = 1
reduces to classical CSP. In addition, S(k) is idempotent i f f
k = 1 and strictly monotonic iff Two WCSP defined
over the same variables are said to be equivalent if they define
the same cost distribution on complete assignments.

For simplicity in our exposition, we assume that every con­
straint has a different scope. For the moment, we also assume
that constraints are implemented as tables and that it is pos­
sible to consult and modify entries. This is done without loss
of generality (see the proof of Theorem 3).

Example 1 Figure La shows a WCSP with valuation struc­
ture S(4) (the set of costs is [0 , . . . , 4], with and
T = 4). It has three variables with values a, b.
There are 2 binary constraints Cxz, Cyz and two non trivial
unary constraints Cx and Cz. Unary costs are depicted in-
side their domain value. Binary costs are depicted as labelled
edges connecting the corresponding pair of values (default
cost of J). Zero costs are not shown. One optimal solution is
eg. x = y = z = b, with cost 2.

Our definition of WCSP is the same as in [Larrosa, 2002].
It differs from usual definitions [Schiex etal., 1995; Bistarelli
et al., 1997] which restrict WCSP to the case, a

Figure 1: Six equivalent WCSPs (for A: = 4).

strictly monotonic valuation structure where finite costs can­
not lead to deletion. In practice, most branch and bound-
based solvers maintain an upper bound ub, the maximum ac­
ceptable cost so-far, and a lower bound lb on the optimal ex­
tension of the current assignment. Value pruning occurs as
soon as The WCSP framework makes these two ele­
ments explicit: a solver uses the valuation structure S(ub) at
every subproblem and provides the lower bound.

3 Some local consistencies in WCSP
In this Section we define node, arc, directed arc and full di­
rected arc consistencies. For node and arc consistencies, our
definitions arc equivalent to the NC* and AC* definitions
in [Larrosa, 2002]. For DAC, and FDAC, the starred (*) def­
initions refine the definitions in [Cooper, 2003] to the WCSP
case, using node consistency and C0. In the sequel, we as­
sume that the set of variables ,V is totally ordered by >.

240 CONSTRAINTS

There is a strong relation between directional arc consis­
tency and mini-buckets [Dechter, 1997J. It can easily be
shown that given a WCSP defined over the valuation struc­
ture 5(oo) and a variable ordering, the lower bound induced
by mini-buckets involving at most 2 variables is the same as
the lower bound induced by CΦ after the problem is made
directional arc consistent. However, the mini-bucket com­
putation provides only a lower bound while DAC enforcing
provides both a lower bound and a directional arc consistent
equivalent problem. Al l the work done to compute the lower
bound is captured in this problem which offers the opportu­
nity to perform incremental updates of the lower bound.

4 Enforcing Arc Consistencies
The previous node and arc consistency properties can be en­
forced by applying basic operations until the correspond­
ing property is satisfied: pruning node-inconsistent values,
forcing supports to variables (NC*), forcing (full) support to
node-consistent values (AC). As pointed out in [Schiex, 2000;
Larrosa, 2002], value (resp. variable) supports can be forced
by sending costs from binary (resp. unary) constraints to
unary constraints (resp. CΦ). Full support can be forced by
first sending costs from a unary constraint Cj to CiJ and then
sending the cost from . Let us review
these concepts before introducing basic algorithms.

be two costs such that is
the subtraction of b from a, defined as,

The projection of a cost units from Ci,j E C over value (i , a)
is a flow of a cost units from the binary constraint to the unary
cost Ci(a). It is embodied in the Procedure

1The stronger local property that would require a full support
on both sides suffers from the fact that most WCSP don't have an
equivalent WCSP that satisfies this property.

CONSTRAINTS 241

242 CONSTRAINTS

The new basic operation needed to enforce {F}DAC* con­
sists in forcing full supports for the values of a variable i on
one side of a constraint Cij. As shown in the example, this
can be done by extending unary costs from Cj to Cij and
then projecting Cij onto variable Ci. However, extending all
unary costs may destroy supports for j on Cij. Consider the
AC* Problem l.d. If we extend 2 cost units from (z,a) to
Cyz instead of 1 as in the example and then project on Cy,
we get Problem l.f where (2,a) has lost all supports on y.
In order to smoothly integrate DAC* and AC* enforcing to
obtain FDAC* enforcing, we must obtain full supports for
variable i on Cij while preserving supports for all values of
j on Cij. This is obtained by extending the minimum cost of
Cj required for the subsequent projection onto Ci. The cor­
rectness of our algorithms is based on the following theorem,

Procedure DAC*() has been designed to be used alone to en­
force DAC* or in conjunction with AC*() to enforce FDAC*.
Therefore, whenever a value is pruned, DAC*() inserts its vari­
able in Q to inform AC*() of the deletion. DAC* further uses
a priority queue R that contains those variables such that a
unary cost has been increased from _L: in this case, some
values in lower variables may have lost full support and new
supports need to be found. The main loop iterates while R is
not empty. At each iteration, the highest variable j is fetched
from R. Node inconsistent values (due to unary cost and
lower bound increments) are removed using PruneVar() and
pruned variables are inserted in Q. Then new full supports
are sought for every lower variable connected to j. Finally,
all variables are processed to enforce NC* which can be lost
during the process, due to lower bound increments. Pruned
variables are inserted in Q. FDAC*() simply enforces AC*
and DAC* simultaneously: the enforcement of AC* empties
Q but may add variables to R, and the enforcement of DAC*
empties R but may add variables to Q. FDAC* is achieved
when both R. and Q are simultaneously empty. Correction of
both algorithms follows from theorem 2.

Proof: Regarding space, there is no difference with DAC*()
and the same proof applies. Regarding time, a variable j
enters Q only if a value has been deleted. Therefore, each
variable j is added to Q at most d + 1 times (once at initial­
ization and then upon value deletion at lines 5, 6 or 4). There-

5 Experimental results
In this Section we perform an empirical evaluation of the ef­
fect of maintaining various forms of arc consistency during
search. We consider a depth-first search maintaining either
NC*, AC*, DAC* or FDAC* which yields the algorithms
MNC*, MAC*, MDAC* and MFDAC*. For comparison,
we include results obtained with PFC-RDAC [Larrosa et al.,
1999], which is normally considered as a reference algorithm.

For variable selection we use the dom/deg heuristic which
for each variable computes the ratio of the domain-size di­
vided by the future degree (i.e., degree considering future
variables only) and selects the variable with the smallest
value. For value selection we consider values in increasing
order of unary cost Ci. The variable ordering used for direc­
tional arc consistencies is lexicographic.

We consider the Max-CSP problem, where the goal is
to find a complete assignment with a maximum number
of satisfied constraints in an overconstrained CSR It can
easily be formulated as a WCSR We experiment with bi­
nary random problems using the well-known four-parameters
model [Smith, 1994]. A random CSP class is defined by
(n,d,e, t) where n is the number of variables, d is the do­
main size, e is the number of binary constraints (i.e, graph
connectivity), and t the number of forbidden tuples in each
constraint (i.e, tightness). Pairs of constrained variables and
their forbidden tuples are randomly selected using a uniform
distribution. Samples have 50 instances and we report aver­
age values. The experiments were performed on a 800 MHz
Pentium III computer.

For fixed values of n, d and c and increasing tightness t,
most problems are solved almost instantly until the cross-over
point is reached. Then, problems become overconstrained
and much harder to solve. We denote t° the lowest tightness
where every instance in our sample is overconstrained. Based
on this, we define different categories of problems:

Combining the different types, we obtain 4 different classes,
each being denoted by a pair of characters (SL,ST,DL and
DT). In each class, the domain size is set to 10 and the num­
ber of variables n is used as a varying parameter. Figure 2
shows the average cpu time used with SL, ST, DL and DT
from left to right. In each plot, the five algorithms are listed
in increasing order of efficiency, from top to bottom. In all
cases, the search effort seems to grow exponentially with n.

CONSTRAINTS 243

priority queue, when a variable j is extracted from R, all the
variables before j in R have already been processed. Since
FindFullSupportAC*() can only increase non zero unary costs
of variables strictly lower than j, j will never be reintroduced
in R and therefore each variable j is added to the queue R at
most once. The queue is implemented as an array of booleans
and a pointer to the highest true element. Adding new el­
ements to R means updating the pointer, the pop operation
consists on returning the value of the pointer and searching

Figure 2: Cpu-time in seconds for an increasing number of variable on our 4 classes of problems. In each case, the 4 algorithms
arc listed in increasing order of efficiency from top to bottom.

For all classes except the DL class, MFDAC* is the most
efficient algorithm, with only minor differences with MDAC*
(sometimes they are so closed that the two lines can hardly
be distinguished). The best performance of MFDAC* is ob­
tained in the ST problems, where it is up to 5 times faster than
PFC-RDAC, 20 times faster than MAC* and 50 times faster
than MNC*. For the DL class, however, MNC* is the most
efficient algorithm, followed by PFC-RDAC, MAC*, MF­
DAC* and MDAC*. The differences between the algorithms
are however more limited than in previous classes (MNC* is
twice faster than MFDAC*).

The ability of directional arc consistency to collect costs
along the constraints in order to bring them together in the
same variable allows to build stronger lower bounds. This is
confirmed by the analysis of the number of nodes expanded
by each algorithm (not reported here for lack of space) where
MDAC* and MFDAC* always expand less nodes that PFC-
RDAC, MNC* or MAC*, with a ratio that can reach 300 be­
tween the extreme algorithms on eg. ST problems. On the
DL problems however, this ratio is much more limited, typi­
cally bounded by 4. With loose constraints, the upper bound
reaches low values early in the search which allows pruning
at high levels of the search tree and makes sophisticated lower
bounds less significant.

It is worth to mention at this point that PFC-RDAC heuris-
tically assigns a direction to every constraint in each sub-
problem and this has a strong influence on the efficiency on
random Max-CSP. Similarly, the behavior of AC, DAC and
FDAC based algorithms depends on the order in which vari­
ables are fetched from Q and R (i.e., on the variable order­
ing used to define DAC) and on the order in which values
are considered for projection. In our current implementation,
Q is implemented as a stack, values are considered in lexi­
cographic ordering and the DAC variable ordering is lexico­
graphic. This leaves room for further improvement.

6 Conclusion and Future Work
In this paper we have refined two local consistency properties
and adapted them to WCSP. We have developed enforcing
algorithms and have studied their complexity.

As in classical CSP, we observe that the choice of the right
level of local consistency to maintain during search is impor­
tant. Despite its theoretical cost, the strongest local consis­
tency we considered (FDAC*) appears to be the best level for
solving WCSP. In the future, we want to extend these algo­
rithms to non binary constraints, apply them to other prob­

lems and take into account heuristics for the variable and
value ordering used in AC, DAC and FDAC enforcing.

References
[Bessiere and Regin, 2001] C. Bessiere and J-C. Regin. Re­

fining the basic constraint propagation algorithm. In Proc.
of the 14th IJCAI, pages 309-315, 2001.

[Bistarelli etal, 1997] S. Bistarelli, U. Montanari, and
F. Rossi. Semiring based constraint solving and optimiza­
tion. Journal of the ACM, 44(2):201-236, 1997.

[Cdbon et al, 1999] B. Cabon, S. de Givry, L. Lobjois,
T Schiex, and J.P. Warners. Radio link frequency assign­
ment. Constraints Journal, 4:79-89, 1999.

[Cooper, 2003] Martin C. Cooper. Reduction operations in
fuzzy or valued constraint satisfaction. Fuzzy Sets and Sys­
tems, 134(3), 2003.

[Dechter, 1997] R. Dechter. Mini-buckets: A general
scheme for generating approximations in automated rea­
soning. In Proc. of IJCAI'97, Nagoya, Japan, 1997.

[Larrosa et al., 1999] J. Larrosa, P. Meseguer, and T. Schiex.
Maintaining reversible DAC for Max-CSP. Artificial In-
telligence, 107(1):149-163, 1999.

[Larrosa, 2002] Javier Larrosa. On arc and node consistency
in weighted CSP. In Proc. AAAI'02, 2002.

[Pearl, 1988] Judea Pearl. Probabilistic Reasoning in Intel­
ligent Systems, Networks of Plausible Inference. Morgan
Kaufmann, Palo Alto, 1988.

[Sandholm, 1999] T. Sandholm. An algorithm for optimal
winner determination in combinatorial auctions. In Proc.
of IJCAI'99, pages 542-547, 1999.

[Schiex et al, 1995] T. Schiex, H. Fargier, and G. Verfail-
lie. Valued constraint satisfaction problems: hard and easy
problems. In Proc. of IJCAI'95, pages 631-637, 1995.

[Schiex, 2000] T. Schiex. Arc consistency for soft con­
straints. In CP'2000, volume 1894 of LNCS, pages 411-
424, 2000.

[Smith, 1994] B. Smith. Phase transition and the mushy re­
gion in constraint satisfaction. In Proc. of the 11st ECAI,
pages 100-104, 1994.

244 CONSTRAINTS

