
Complex Information Processing
Working Paper #227
January 2, 1973

Problem Solving and Rule Induction:

A Unified View

by

Herbert A. Simon and Glenn Lea
Carnegie-Mellon University

Discussions in the psychological literature of cognitive processes

generally treat separately a category of behavior called "problem solving,"

on the one hand, and a category called sometimes "concept attainment," some­

times "pattern induction," and sometimes "rule discovery," on the other. We

will use the phrase "rule induction" to refer to any of the diverse tasks

in the second category. We find this division already in the 1938 edition of

Woodworth's Experimental Psychology, where the penultimate chapter is devoted

to problem solving behavior, and the final chapter primarily to rule induction.

In explanation of this organization, Woodworth comments (1938, p. 746):

Two chapters will not be too many for the large topic
of thinking, and we may make the division according to the
historical sources of two streams of experimentation, which
do indeed merge in the more recent work. One stream arose
in the study of animal behavior and went on to human problem
solving; the other started with human thinking of the more
verbal sort.

Far from merging, the two streams are still treated as quite distinct

in more recent works. For example, in his 1968 Annual Review survey of artici-

cial intelligence studies and their relevance to psychology, Earl Hunt devotes
<

separate sections to "deductive problem solving" and "inductive problem solving,"

his categories corresponding closely to those introduced above. Similar cate­

gories appear in the principal contemporary textbooks.

Simon & Lea -2-

This dichotomization cannot be regarded as satisfactory, for it frag-

ments theories of thinking into subtheories with no apparent relation between

them. In proposing information processes to account for problem solving,

the theorist then assumes no responsibility for the relevance of these

processes to concept attainment or other rule induction tasks, and vice versa.

It is of course possible that these two kinds of thinking activity are entirely

separate and independent, but possibility is not plausibility. It would be

much better if we could show just how they are related; or, if they are not re­

lated, if we could provide a common framework within which the two classes of

activities could be viewed.
-o

Hunt's (1968) dichotomy of "deductive" and "inductive" will not do,

for it is easy to show that from a logical standpoint the processes involved
may have been

in problem solving are inductive, not deductive. Hunt ^ misled by the fact

 ^ that the earliest artificial intelligence systems for problem solving (e.g.,

the Logic Theorist) dealt with the task environment of theorem proving. Clearly,

the proof of a theorem in a formal mathematical or logical system is a deductive

object; that is to say, the theorem stands in a deductive relation to its pre­

mises. But the problem solving task is to discover this deduction, this proof;

and the discovery process, which is the problem solving process, is wholly induc­

tive in nature. Hence, both a theory of problem solving and a theory of rule

induction must explain inductive processes a further reason for believing that

these theories should have something in common.

Recent developments in the theory of problem solving (Newell, 1968;

Newell & Simon, 1972; Simon, 1972) give us a clue as to how to go about building

a common theory that will embrace both problem solving and concept attainment.

It is the aim of this paper to outline such a theory. In order to attach the

Simon & Lea -3-

discussion firmly to empirical data, certain specific tasks, belonging to each

class of behavior, that have been much studied in the laboratory will be examined

as typical of their respective classes. For problem solving, we will pay spec­

ial attention to two tasks analysed at length in Newell & Simon (1972): crypt-

arithmetic, and discovering proofs for theorems in logic. For rule induction,

we will use as examples the standard concept attainment paradigms (Bruner,

Goodnow, & Austin, 1956; Hunt, 1962; Gregg & Simon, 1967), extrapolation of
Feldman, Tonge & Kanter, 1963;

serial patterns 0\Simon & Kotovsky, 1963; Simon, 1972), and induction of the

rules of grammar (Solomonoff, 1959; Klein & Kuppin, 1970; Siklossy, 1972).

Our undertaking is a little more ambitious than we have indicated. For,

not only have distinct bodies of theory grown up to deal with problem solving

and rule induction, respectively, but there has been relatively little unity in

theorizing across the whole of the latter domain. In particular, theoretical

treatments of concept attainment do not discuss extrapolation of patterned se-

quences as an analogous activity, and theories of sequence extrapolation do not

encompass the standard experimental paradigms for studying concept attainment.

Hence, we will aim at a unified treatment of the whole range of things we have

here been calling "rule induction," and a unification of these, in turn, with

the activities called "problem solving."

We will begin by outlining the developments in the theory of problem

solving to which we referred above, and then use these developments to construct

the broader theory.

Problem Solving

The general structure of the information processing theory of problem

solving is embedded in four broad propositions (Newell & Simon, 1972, pp. 788-

789):

Simon & Lea -4-

1. A few, and only a few, gross characteristics
of the human information processing system (IPS)
are invariant over task and problem solver.

2. These characteristics are sufficient to determine
that a task environment is represented (in the IPS)
as a problem space, and that problem solving takes
place in a problem space.

3. The structure of the task environment determines
the possible structures of the problem space.

4. The structure of the problem space determines
the possible programs that can be used for prob­
lem solving.

Thus, knowledge of the task environment permits us to set broad bounds

for the behavior of an appropriately motivated problem solver placed in that

environment. Knowing the problem space he adopts for his attempts at finding

a solution greatly narrows the bounds. The specific behaviors that occur with­

in these narrower bounds flow from the interactions between the task and the

particular problem solving program he employs.

A problem space is a set of points, each of which represents a knowledge

state. A knowledge state is the set of things the problem solver knows at a

particular point in his search for a solution. For example, at a certain point

in his attempt to solve the cryptarithmetic problem, DONALEH-GERALD=ROBERT, the

subject may know that the number 5 must be assigned to the letter D, the number

0 to T, and the number 9 to E; and may know also that R is odd and greater than

5.

Insert Figure 1 about here

Simon & Lea -5-

Problem solving activity can be described as a search through the

space, or maze, of knowledge states until a state is reached that provides

the solution to the problem. Thus, in the cryptarithmetic problem, the solu­

tion state is one in which each letter has been assigned a digit, and in which

it has been verified that these assignments provide a correct translation of

the addition problem. In the cryptarithmetic task the problem solver moves

from one state to another by inferences and by visual searches of the prob­

lem display. For example, knowing that E=9 and that R is odd and greater than

5, he may infer that R=7. Or, knowing that E=9, he may discover, by scanning,

the E in ROBERT, and replace this by a 9, obtaining: A-tA=9 (apart from carries)

for the third column from the right.

Similarly, in discovering the proof for a theorem, a problem solver

organized like the General Problem Solver (GPS) starts with some initial ex-

pressions (premises) and the goal expression (the theorem to be proved), and

applies rules of inference to generate new expressions that are derivable

from the premises, until an expression is generated thajt is identical with

the desired theorem. In this case, the knowledge states of which the problem

Insert Figure 2 about: here

space is composed are sets of expressions that have been derived along particu­

lar inference paths.

The search through such a, problem space is guided by the information

that becomes available at each successive knowledge state. Given that the prob­

lem solver has already visited a certain number of points in the problem space,

he can determine the direction in which he will continue to search by two kinds

Simon & Lea -6-

of decisions: selection, from among those already visited, of a particular

knowledge state from which to continue his search; and selection of a particu­

lar operator (inference rule, or "move") to apply at that point in order to

reach a new knowledge state.

Means-ends analysis, used extensively by human subjects in many prob­

lem environments, is a particular kind of scheme for making the choice of oper­

ator. It is the key selection mechanism incorporated in GPS. For means-ends

Insert Figure 3 about here

analysis, the information in a particular knowledge state that has already been

reached in the problem space is compared with the specification of the solution

to discover one or more differences between them. Corresponding to one of these

differences, an operator is selected that is known, from previous experience,

often to eliminate differences of that kind. The operator is applied to reach

a new knowledge state.

In searching for the proof of a theorem, for example, an expression al­

ready derived is compared with the theorem to be proved. A difference detected

between them cues a rule of inference to be applied. If, for instance, the ex­

pression already derived is of the form AB and the theorem of the form BA, then

this difference (in the order of the terms) may cue the application of a com­

mutation operator, if one is available among the rules of inference.

We may formalize and generalize this description of problem solving as

follows: there is a problem space whose elements are knowledge states; there

are one or more generative processes (operators) that take a knowledge state

as input and produce a new knowledge state as output; there are one or more

test processes for comparing a knowledge state with the specification of the

Simon & Lea -7-

problem state, and for comparing pairs of knowledge states and producing dif­

ferences between them; there are processes for selecting these generative and

test processes on the basis of the information contained in the knowledge

states.

The crucial point in this characterization is that information contained

in the knowledge state can be used to guide the generation of new knowledge

states, so that the search through the problem space can be selective rather

than random. This formulation shifts the emphasis from the search for a prob­

lem solution to a search for information that will reveal the problem solution.

A trivial example will show that these two searches for a solution,

or for information leading to a solution--can be quite different processes.

Suppose that I have mislaid on my desk the piece of paper on which I have

written the combination of a safe. If I wish to open the safe, I can proceed

in either of two ways: I can search through the space of combinations by turn-

ing the dial until I find the correct sequence of settings; or I can search my

desk for the missing piece of paper that contains the information about the com­

bination. Depending on how elaborate the combination is, and how much clutter

there is on my desk, the one space or the other may be the larger and more dif­

ficult to search. In any case, there is no fixed relation between the sizes

of the two problem spaces.

We wish now to pursue the idea that characterizing problem solving as

information gathering rather than as searching for a problem solution gives us

the broad framework we need to deal with the whole range of tasks in which we

are interested--that the fundamental processes for information gathering in

problem solving tasks are essentially the same as the fundamental processes

for information gathering in rule induction tasks.

Simon & Lea -8-

This formulation will also yield some valuable byproducts for the theory

of problem solving in its narrower connotation. For it has often been observed

that one important technique of problem solving particularly crucial for the

solution of certain "trick" problems is to change the problem representation,

moving from the space in which the problem is initially formulated into some

alternative problem space. Planning processes that have been observed in human

problem solving also involve shift from an original problem space to another,

more abstract, problem space. Hence, it appears necessary, in the theory of

problem solving, to accommodate more than a single problem space, and to char­

acterize the processes that exchange information between these spaces. Viewing

problem solving as information gathering facilitates this kind of analysis,

and permits us to consider a multiplicity of problem spaces.

Information Gathering in Theorem Proving

Consider the following GPS-like system for discovering proofs for theo-

rems in symbolic logic. The knowledge states are sets of logic expressions

that have been derived from the initial premises. Two kinds of information are

used to discover the solution: the degree of similarity or difference of the

expressions contained in a given knowledge state from the goal expression, and

the specific character of the differences between particular expressions in the

knowledge state and the goal expression. The first kind of information measures

the progress that has been made in reaching a knowledge state if it contains

an expression that is highly similar to the goal expression, then it can be

taken as a likely starting point for further search. The second kind of in­

formation suggests how a closer approximation to the goal expression can be ob­

tained the specific differences that are detected suggest specific operators

to remove them.

Simon & Lea -9-

To extract this information from knowledge states requires a process

for matching pairs of logic expressions until a pair of subexpressions is

detected that are not identical. The output of the match process is a symbol

naming the particular difference that has been detected and, possibly, its

location in the expressions. The system may contain a number of different typ es

of differences that can be detected, and these differences may be parameterized.

For example, the symbol E(A) might denote that the first of the pairs

of expressions being matched contains a symbol not contained in the second, and

further, that this extra symbol is "A". Notice that the parameter value does

not have to be supplied by the matching process, but is extracted directly

from the expressions being matched. Thus, the knowledge state provides in­

formation both about types of differences, and about the specific character

of the differences belonging to these types. If we denote by E(X) the whole

class of differences of this type (extra symbol in first expression), then the

specific difference, E(A), is obtained by substitution of the constant A for

the variable X. No search through a set of possible substituends is required,

for the necessary information is available and explicit in the knowledge state.

Information Gathering in Cryptarithmetic

The information gathering process in solving cryptarithmetic problems

could be described in a manner very similar to our description of information

gathering in theorem proving. It is more instructive, however, to look at mat­

ters in a slightly different way. Let us consider the knowledge states in
f

cryptarithmetic to be made up of two components: the problem display in which

digits have replaced those letters to which assignments have already been made;

and the list of assignments themselves. The problem solving goal can then be

Simon & Lea -10-

described in two ways: (1) to replace all letters in the display by digits in

such a way that the resulting problem in arithmetic is correct; or (2) to com­

plete the list of assignments of digits to letters so that each letter has a

distinct digit assigned to it. Of course, both conditions must be satisfied

Insert Figure 4 about here

to solve the problem, but if appropriate consistency checks are made when the

display is modified and when a new assignment is added to the list, reaching

either goal will guarantee achievement of the other.

How is information extracted from knowledge states in the course of

solving the problem? Whenever sufficient information has been accumulated in

any column in the display, one or more new assignments of digits can be infer-

red from It. For example, in DONALD+GERALD=ROBERT, if D=5 has been assigned,

so that the display becomes: 50NA.L5+GERA.L5=ROBERT, it can be inferred that the

last T is 0, so that T=0 can be added to the list of assignments. The infer­

ence is made by a "Process Column" (PC) operator that takes the column of the

display (together with information about carries) as input, and produces the

assignment as output.

Conversely, whenever a new assignment is added to the list, the display
i

can be changed by substituting the appropriate digit for the corresponding let­

ter wherever the latter occurs in the display. For example, suppose we have

the display 50NAL5+G9RAL5=ROB9RO and the list of assignments: (D=5, T=0, E=9)

Suppose we now add to the list the new assignment, R=7. We can now alter the

display to read: 50NAL5+G97AL5=70B970. Here, the input is an assignment from

the list of assignments, the output is a modified display. The modification

Simon & Lea -Il­

ls made by a "Substitution" operator that searches the columns of the display

for instances of the letter in question, and substitutes the digit for it wher­

ever it is found.

Other inferential processes for producing new information may operate

internally to the list of assignments or to the display, respectively. As an

example of the former, suppose that the list of assignments includes the in­

formation: E=9 and R=7v9. Then, if there is a process for examining the con­

sistency of assignments, that process can draw the inference that R=7, and

replace R=7v9 on the list by this more precise assignment. Similary, processing

column 1 of the problem with the information that D=5, leads both to the in­

ference that T=0, and that a 1 is carried into the second column. The latter

piece of information can be entered directly on the display.

The situation can now be redescribed in the following way. We consider
(rules for substituting digits for letters in the display) ,

two problem spaces: a space of assignment rulesA and a space of instances (col­

umns of the display). The goal is to complete the list of rules, so that there

will be a distinct assignment rule for each letter. The proposed rules are

tested against the instances. Each column of the display, which we are now

interpreting as an instance, provides a partial test of the consistency of the

rules. The situation so described differs from the usual concept attainment

paradigm only in the fact that the instances are not completely independent,

but interact through the carries from one column to the next (Figure 5) In

every other respect, the task is now a standard concept attainment task. Simply

by changing our way of viewing the problem space (or spaces), we have transferred

from the category of problem solving to the category of concept attainment, pat­

tern, induction, or rule discovery.

Simon & Lea -12-

>* s Insert Figure 5 about here

From this example, we may surmis:e that the trademark that distinguishes

these two classes of tasks is: the presence or absence of more than one dis­

tinguishable problem space in which the problem solving activity takes place.

If there is only one space, we describe problem solving as a search through

that space, made more or less selective and efficient by drawing upon the in­

formation that is available in each of the information states that is reached.

If there are two spaces, we describe problem solving as a search through one

of them (usually, as we shall see, through the space of rules), made more or

less selective and efficient by using information available in each space to

guide search in the other. By focussing our attention on the processes for

utilizing information, we can provide the common framework that we have been

seeking for all of these tasks.

Rule Induction
(1968,1973)

Newell \ has proposed a taxonomy of methods that can be used by

a general problem solver- -methods, that is, that make relatively unspecific

demands upon the task environment in order to be applicable. Some items drawn

from this taxonomy will clarify the way in which information is obtained and

used by a problem solving system, and will enable us to examine in detail the

Information flows in problem solving and rule induction systems.

Some General Methods

We will be concerned with just three of Newell f s methods: the generata-
(or hypothesis-and-match)

and- test method, the heuristic search method, and the inductionAmethod. Within

variants of these three methods there will be incorporated, in turn, two other

Simon & Lea . -13-

^^ submethods: the matching method, and the means-ends method.

We postulate a problem solving task of discovering an object of a cer­

tain kind. In particular, the object that is sought may be a rule, pattern,

or concept, but need not be any of these. The simplest solution method, gener-

ate-and-test, postulates two information processes: a generator of potential

solutions, and a test to determine whether an object produced by the generator

is in fact a solution. Whatever power and efficiency this method has derives

from information built into the generator and test. If, for example, the set

of objects the generator can produce is very small, and if this set is guaranteed

to contain the solution, the method will be powerful. If the test can reject

inadequate solutions rapidly--say, by means of a matching process then the cost

of testing will be relatively small. That is about all that can be, or needs

to be, said about the generate-and-test method.
x-s

Next, suppose that the generator is not independent of what objects have

been generated previously--that information flows back from the test to the gen­

erator. This means that the test must provide more information than just the

success or failure of the match between objects generated and the specification

of the goal object. A common form of the dependency of generator upon test is

that the generator produces each new object by modifying an object produced pre­

viously in the search. It is this kind of dependency that characterizes the

heuristic search method.

We have already remarked on two kinds of information that can be used by

the generator in heuristic search. In our present terms these are: first, in­

formation to select which of the previously generated objects will be modified

to produce the next object; second, information to select which of several

^^ available operators will be applied to the object to modify it. If the latter

choice depends on detection by the test of specific differences between an object

Simon & Lea -14-

and the goal object, then we speak of using the means-ends method.

Now, suppose the problem solving is to occur in a dual space. In the

rule induction tasks, the goal object is a rule in the first of two spaces.

The test of whether a given object is that rule involves applying the proposed

rule to objects ("instances") in the second space, and then testing whether

the application gives a correct result. The phrase "correct result" means either

that the rule generates instances in the second space which then are determined

by the test to satisfy some criteria;or, that the rule is used to classify

instances in the second space that have been produced by another generator, and

that the classifications are then determined by the test to be correct. Newell

defines the induction method as one in which there are separate generators for

rules and instances, and a match process to test whether a rule agrees with the

instances.

A moment's reflection will reveal that the induction method, so defined,

is really a whole collection of methods. In its most primitive version, there

is no feedback of information from test to rule generator; the test simply

eliminates rules that have been generated, but does not provide information to

help the generator select the next rule. In this case, the method is an "induc­

tive" version of the generate-and-test method, adapted to the dual problem space.

On the other hand, if the generator does not create each rule anew, but

produces it by modifying previous rules on the basis of information received

from the test of instances, then we have an inductive version of the heuristic

search method.

Further, the existence of two problem spaces and two generators, one

for rules and one for instances, opens up possibilities for methods that are

not available when there is only a single problem space. For example, the in-

stance generator may not be autonomous, but may instead derive information from

Simon & Lea -15-

/*"""*
f the rules that have been generated, and the previous tests that have been per­

formed. Thus, each new rule may be generated on the basis of the instances

constructed up to that point (heuristic search for rules), while each new

instance may be generated on the basis of the rules constructed up to that

point (heuristic search for instances). This, in fact, is what was going on

in the cryptarithmetic solution method described earlier when we interpret the

problem display and the list of assignments as defining two distinct problem

spaces.

Let us now make these ideas about information flows more concrete by

applying them to standard psychological paradigms for experiments on rule induc­

tion. First, we will discuss concept attainment experiments, then extrapolation

of patterned sequences, then induction of grammars.

f~^ Concept Attainment

In the commonest laboratory form of the concept attainment task, the

subject sees a sequence of stimuli that differ along one or more dimensions

(e.g., "large blue square," "large green triangle," etc.). Certain of these

stimuli are instances of a concept (e.g., "square"), others are not. The sub­

ject guesses whether each is an instance, and is told whether he is right- or

wrong. His task is to induce the concept so that he can classify each suc­

cessive stimulus correctly. In heuristic search terms, the subject can be con­

sidered to be searching through a space of possible concepts for the right one.

The information that guides this search, however, is not information about con­

cepts, but information about whether certain stimuli are instances of concepts

or not.

Gregg & Simon (1967) have described a whole class of inductive methodsr^
for performing the concept attainment task which differ with respect to the

Simon & Lea -16-

amount of information the subject retains as a basis for guiding the concept

generator. If no information is fed back, whenever a guess has been wrong,

the method selects a concept at random from the set of available concepts.

A slightly more efficient generator (which does not, strictly speaking, re­

quire feedback from instances other than knowledge of whether the last instance

was classified correctly or not) would sample randomly from the set of avail­

able concepts, but without replacing those already eliminated. A somewhat more ef­

ficient generator would produce a concept consistent with the correct classifi­

cation of the most recent instance. A still more efficient generator would

produce a concept consistent with the classifications of all previous instances.

Gregg and Simon argued that which of these methods would be employed by a human

subject would depend, at least, on the limits of his short-term memory, and the

availability of time to fixate information or of external memory to record it.

The paradigm just described does not incorporate the flow of inform­

ation from the space of concepts to the generator of instances, since the in­

stances are produced by the experimenter independently of the subject f s prob­

lem solving processes. The two spaces are linked only through the problem

solver's guesses as to the correct classification of the instances as they are

produced. In fact, these guesses are irrelevant, since the information is actual­

ly provided by the experimenter's reinforcement of each guess as correct or in­

correct. The same problem solving methods would work if the experimenter simply

classified each instance as corresponding or not corresponding to the concept,

without demanding a response from the problem solver. The flow of information

is entirely from the instances to the concept generator, and not in the opposite

direction.

However (Bruner, Goodnow & Austin, 1956), it is also possible to arrange

the concept attainment experiment in such a way that the problem solver himself

Simon & Lea -17-

generates the instances. He may, of course, generate them randomly; but he

may also select instances so constructed as to choose between two classes of

hypotheses. This information flow from the space of rules to the generator of

instances enables solution methods that are more efficient than any that are

available with a one-way flow of information. Notice that the criterion for

selection of instances is indirect and sophisticated: instances are valuable

for solving the problem (finding the correct concept) to the degree that in­

formation on their classification imposes new restrictions on the domain of

the rule generator.

Extrapolation of Patterned Sequences

Contemporary theories of how human subjects discover the patterns implicit

in sequences of letters or numbers and use these patterns to extrapolate the

sequences have been reviewed and synthesized by Simon (1972).

In the sequence extrapolation task, the subject is presented with

series of symbols followed by one or more blanks (e.g., "ABMCDM_"). His

task is to insert the "right" symbols in the blanks that is, the symbols that

continue the pattern he detects in the given sequence. The goal object, then,

is a sequence of symbols in which all of the blanks have been replaced "appro­

priately." But to define what is meant by "appropriately," we must introduce

the notions, e.g., of "same" and "next" between pairs of symbols, and perhaps

other relations, in order to characterize the pattern as a basis for extrapol­

ating it. If the problem solving is to be characterized as a search, the

I/ Ernst & Newell (1969) have suggested an ingenious scheme for handling
the sequence extrapolation task as a problem solving task--that is, in
terms of a single problem space that accommodates both the sequences
and the patterns. We will not discuss this scheme here, since an analysis
in terms of a dual problem space seems more natural and simpler.

Simon & Lea -18-

search goes on in the space of patterns and not in the space of extrapolated

sequences.

To extrapolate the sequence, ABMCDM..., given as an example above, the

problem solver must induce the pattern underlying that sequence: in each period

of three letters, the first is next in the English alphabet to the second let­

ter in the previous period; the second letter in each period is next to the

first letter in the same period; the third letter in each period is the con­

stant letter ! M'. The period might be described as IN2pNlsS3p t with 'S 1 for "same"

(and tN l for "next") the numerical postscripts to indicate which symbol is
is

to be updated. The sequence/jinitialized by supplying the beginning 'A* and

the constant ! M'.

Clearly, the sequence itself in the extrapolation task is the counter­

part of the instance in the concept attainment task; while the pattern is the

counterpart of the concept. What are the flows of information? As in the

simplest concept attainment paradigm, the sequence is provided by the experi­

menter rather than the problem solver. However, in his search for pattern,

the proMem solver can choose which elements of the sequence he will test for

relations at any given moment. If, in the previous example, he is provided

with three periods instead of two--ABMCDMEFM... then, having discovered the

second 'M 1 three symbols beyond the first, he can test whether an f M' occurs

again three symbols later. To this extent, there can be a flow of information

from a hypothesized pattern component (the repetition of ! M f) to a choice of

which instance (which part of the sequence) to examine next.

The flow of information in the opposite direction, from sequence to

pattern, is even more critical for the efficiency of the solution method. The

problem solver need not generate "all possible hypotheses," but can instead

detect simple relations ("same" and "next") between pairs of symbols in the

Simon & Lea -19-

-^ sequence, and then hypothesize patterns constructed from those relations. Al­

though obviously inductive, the process need not involve any considerable amount

of search.

Induction of Grammars

As our final example of a rule induction task we consider the induction

of a grammar for a language from examples of sentences and non-sentences. This

task has received some attention in the artificial intelligence literature (e.g.,

Solomonoff, 1959; Klein & Kuppin, 1970; Biermann & Feldman, 1971; Siklossy,

1972). In the grammar induction task, the subject generates a succession of

symbol strings that may be sentences in a language possessing %a formal grammar.

He is then told whether or not each string is a sentence. His task is to in­

duce the rules of the grammar so that he can predict infallibly whether any given

string is a sentence. The commercially marketed game, QUERIES 'N THEORIES, pro-
S~\

vides a version of this task that is readily adapted to the laboratory.

In this problem domain, the examples of sentences and non-sentences

constitute the space of instances, while the grammar rules correspond to the

space of concepts. In the most common form of the task, the problem solver

selects the sentences against which to test his system of rules, hence there is

a flow of information from the space of rules to the space of instances, as well

as a reverse flow from instances to rules.

Let us illustrate these information flows more concretely. Consider

a grammar with two components: a set of base sentences; and a set of replace­

ment rules that allow the construction of a new sentence by replacing certain

symbols or sequences of symbols in any sentence where they occur by a new sym­

bol or sequence. A simple example of such grammar is given by:

Simon & Lea -20-

Base sente-nce: Y

Replacement rule: Y <-- BY

This grammar has a single base sentence, Y, and a single replacement

rule, Y <-- BY. Applying the replacement rule to the base sentence, then to

the resulting sentence, and so on, we obtain, as additional sentences of the

language, BY, BBY, BBBY, and so on.

Suppose that it was already known, by previous tests, that Y and BY

were sentences. Then, by supplying information from the instances to the rule

generator, the possible replacement rule Y < BY could be constructed directly.

Reversing the flow of information, the rule itself can now be used to generate

instances of predicted sentences, and the correctness of these can be checked

by the "native informant" (the experimenter).

To match the various concept attainment paradigms, the task could be

modified, for example, to supply all examples of valid sentences in advance.

Or the experimenter could supply examples of sentences and non-sentences, and

require the problem solver to classify them. The two classes of tasks are in

every way identical with respect to the ways in which information can be made

available to the problem solver.

A General Rule Induction Program

We have now explored the formal isomorphisms among three classes of

rule induction tasks: concept attainment, extrapolation of patterned sequences,

and induction of the rules of a grammar. One way to exhibit these isomorphisms

quite formally is to construct a single computer program that is capable of per­

forming the whole range of tasks. We can then compare this program, in turn,

with a general problem solving program that operates in a single problem space.

Simon & Lea -21-

We must be careful as to what we mean by "capable of performing the

whole range of tasks." The space of concepts appropriate to the usual concept

attainment tasks is different from the space of grammar rules or the space of

sequential patterns. For a program to undertake to solve problems in any one

of these domains, it will require, in addition to its general mechanisms and

organization, common to all the domains, particularized equipment for dealing

with the specific domain before it.

The situation here is essentially the same as the situation confronting

the General Problem Solver. GPS is a very general organization for performing

means-ends analysis, and for guiding search through a space of knowledge states.

Before GPS can go to work on any specific problem, it must be provided with a

specification of the problem domain: the objects, the definition of the knowl­

edge states, the operators, the differences, and the associations of operators

with differences. A General Rule Inducer will need the same kinds of problem

specification in order to tackle specific tasks. GRI itself will be an ex­

ecutive program providing a framework within which the specialized subprocessea

can operate. Figure 6 uses the informal programming language defined in

Newell & Simon (1972, pp. 38-51) to describe the program of GRI.

Insert Figure 6 about here

In Figure 7, we show the flows of information in GRI. Some of these

(shown by broken lines) are "optional," in the sense that variants of the task

can be devised, as we have already noted, that include or exclude them. Thus,

in the Bruner-Goodnow-Austin paradigm for the concept attainment task, inform­

ation from the current hypothesis is an input to the instance generator, while

\

Simon & Lea -22-

-^ in the more common laboratory paradigm for this task, the instances are generated

by the experimenter without using this information.

Insert Figure 7 about here

Table 1 shows how the major processes in GRI are to foe interpreted in

the context of the specific tasks: concept attainment, sequence extrapolation,

or grammar induction, as the case may be. A fourth column is included in the

Insert Table 1 about here

table to show how cryptarithmetic can be interpreted as a rule induction task.

Information for constructing these processes must either be derived from the

experimental instructions or brought into the laboratory from his past ex-

perience with the same or analogous tasks (cf. Newell & Simon, 1972, pp. 847-

867; Simon & Siklossy, 1972, Part II).

In concept attainment experiments, for example, the subject is usually

specifically instructed as to what concepts are admissible--that is, as to the

definition of the space of rules. He is also provided with an explicit defin­

ition of the space of possible instances. He must devise a process for testing

whether a rule is consistent with the experimenter T s classification of an in­

stance, and he must devise a rule generator.

In contrast, in sequence extrapolation tasks much more is usually left
i

to the subject. The space of rules and the rule generator are not usually dis­

cussed explicitly in the instructions, nor _a fortiori, the test for the adequacy

or correctness of extrapolation. The experimenter provides the instances and

an incomplete statement of the goal (that the sequence is to be extrapolated),

and little else. The subject evolves the rest: the space of rules and the rule

Simon & Lea -23-

generator, the process for extrapolating with the rules, and the test for cor-

rectness of an extrapolation.

Figures 8 and 9 show programs implementing the GRI framework, for per­

forming the concept attainment and grammar induction tasks, respectively. (The

programs have actually been debugged in SNOBOL, but are presented here in a more

readable language.) Corresponding routines have the same names in the two pro­

grams to make the comparison easy. The particular concept attainment paradigm

illustrated allows the subject to generate successive instances and contains a

fairly sophisticated rule generator, in order to illustrate the whole range of

possible information flows. For programs fitting other concept attainment para­

digms see Gregg & Simon (1967).

Insert Figures 8 and 9 about here

The relation of programs like that of Figure 8 to human behavior in the

concept attainment task has been examined in some detail in Bruner, Goodnow &

Austin (1956), and in Gregg & Simon (1967). Likewise, we have now gathered

some data on human behavior in the grammar induction task which fits the scheme

of Figure 9 relatively well, but we will have to postpone our analysis of these

data to another paper. Our main aim here is to gain an understanding of the

relations among these various task environments in terms of problem spaces and

channels for the flow of information.

Conclusion

In this paper, we have proposed a conceptualization of problem solving

and of rule induction that allows these two arenas of human thinking to be

brought within a common framework. We have seen that both problem domains can

be interpreted in terms of problem spaces and information processes for searching

Simon & Lea -24-

such spaces. What chiefly distinguishes rule induction tasks from problem

solving tasks is that the former call for a pair of problem spaces one for

rules and one for instances--while the latter commonly require only a single

problem space. Our analysis of the cryptarithmetic task shows it to lie mid­

way between the two main classes, and hence to provide a useful bridge for

translating each of them in terms of the other.

Simon & Lea -25-

/*""*. References

Biermann, A. W. and J. A. Feldman. A survey of results in grammatical in­

ference. Conference on Frontiers in Pattern Recognition. Honolulu:

January 1971.

Bruner, J. S., J. J. Goodnow and G. A. Austin. A Study of Thinking. New York:

Wiley, 1956.

Ernst, George W. and Alien Newell. GPS: A Case Study in Generality and Prob­

lem Solving. New York: Academic Press, 1969.

Feldman, Julian, Frederick Tonge and Herschel Kanter. Empirical explorations

of a hypothesis testing model of binary choice behavior. In A. Hoggatt

and F. Balderston (eds.), Symposium on Simulation Models. Cincinnati:

Southwestern Publishing Company, 1963, pp. 55-100.

s^ Gregg, Lee W. and Herbert A. Simon. Process models and stochastic theories of

simple concept formation. J. Math. Psychol. 4: 246-276 (1967).

Hunt, Earl. Concept Learning. New York: Wiley, 1962.

Hunt, Earl. Computer simulation: artificial intelligence studies and their

relevance to psychology. Annual Review of Psychology 19: 135-168 (1968)

[Palo Alto: Annual Reviews, Incorporated]

Klein, Sheldon and Michael A. Kuppin. An intermediate heuristic program for

learning transformational grammars. Computer Science Department, Uni­

versity of Wisconsin, Madison. Technical Report #97, August 1970.

Newell, Alien. Heuristic programming: ill-structured problems. In J. S.

Aronofsky (ed.), Progress in Operations Research 3: 363-414 (1968).

[New York: Wiley]

Newell, Alien. A. I. and the concept of mind. In R. Schank & K. Colby (eds.)
^

Computer Models of Thought and Language. San Francisco: W. H. Freeman,

1973.

Simon & Lea -26-

Newell, Alien and Herbert A. Simon. Human Problem Solving. Englewood Cliffs,

New Jersey: Prentice-Hall, 1972.

Siklossy, Laurent. Natural language learning by computer. In H. A. Simon and

L. Siklossy (eds.) Representation and Meaning. Englewood Cliffs, New

Jersey: Prentice-Hall, 1972, pp. 288-328.

Simon, Herbert A. Complexity and the representation of patterned sequences
/

of symbols. Psycho1. Rev. 79: 368-382 (1972).

Simon, Herbert A. The theory of problem solving, Information Processing 71.

Amsterdam: North-Holland, 1972, pp. 261-277.

Simon, Herbert A. and Kenneth Kotovsky. Human acquisition of concepts for

serial patterns. Psychol. Rev. 70: 534-546 (1963).

Simon, Herbert A. and Laurent Siklossy (eds.), Representation and Meaning.

Englewood Cliffs, New Jersey: Prentice-Hall, 1972.

Solomonoff, Ray. A new method for discovering the grammars of phrase structure

languages. Information Processing 59. Proceedings of the International

Conference on Information Processing. Paris: UNESCO, 1959.

Woodworth, Robert S. Experimental Psychology. New York: Henry Holt, 1938.

-26a-

Acknowledgment

*This work was supported by Public Health Service Grant MH-07722, from

the National Institute of Mental Health.

-26b-

1
50NA.L5 D=5
GERAL5 T=0
ROBERO R > 5, odd

Figure 1

A Knowledge State
in a Cryptarithmetic Task

Simon & Lea -27-

(-Rv-P)

R2

R. (R3WP) • (RvQ)
o R7

-»iS"

R12

(~Rv~P) • (RvQ)

(1PQ)

R5

.Q)

(~PvR) (P-Q) (Q'P)
a R6 R5 Rl
* ———————————————V • —————.————————.——.-

11 ? 12

^(^R— R)

Figure 2

Search Tree Generated by GPS in Logic

Initial expression (node 1) was (K3-P)

Above each node (knowledge state) is shown the new expression that has been
derived here.

Below each node is shown the order in which it was generated.

On each link is shown the operator used to generate the next node.

(See Newell & Simon, 1972, pp. 420-425.

Simon & Lea -28-

i 1
Goal: Transform object A into object B

Match A to B D
to find ———— •-

difference D

Subgoal: A' Subgoal: success p
reduce D ' Transform A' into 1! * «ucu~

Inone Ifail [fail

Success Fail Fail

Goal: Reduce difference D between object A and object B

Search for operator 0
relevant to reducing D

1 none

O T t -rr MI Yes Subgoal: A' v . Test if feasible _ i ^,_ »——— >- . . . ——— *- apply Q to A ———————— *~
(preliminary) producing A' Success

Jno 1 Fail

! Fail
Goal: Apply operator Q to object A

*

t

i

Match condition
of'QtoAto ——

find difference D
none

i
.,.._._., ._.. .. ,,, y

Produce result ——

D Subgoal: A> Subgoal: A" e
reduce D apply Q to A' -uccc...

1 fail 1 fail

Fail Fail

Figure 3

GPS Methods - Flow Diagram

(Reprinted with permission from Newell & Simon, 1972, Figure 8.7,p.417)

Simon & Lea -29-

DONALD D=5
+G E .R A L D
ROBERT

i

Problem Display List of Assignments
(Instance Space) (Rule Space)

Figure 4

Dual Problem Space Interpretation
of Cryptarithmetic Task

Simon & Lea -30-

2D = T + 10C2

C2 + 2L = R + IOCS

C3 + 2A = E + 10C4

C4+N + R = B + IOCS

C5+0 + E=0+ 10C6

C6 + D + G = R

Figure 5

Space of Instances

in Cryptarithmetic

(Showing interdependency of instances

by virtue of carries (C2-C6))

Simon & Lea -31-

General Rule Indueer:

1. modify rules (=> rules);

generate instances (=> instance):

classify instance by rules (=> instance-class);

test instance-class (=* test-result) .

if tally-correct=criterion exit,

else go to 1.

Figure 6

Sequential Process

for the

General Rule Inducer

o

Ge
ne
ra
te

In
st
an
ce
s

Mo
di
fy

Ru
le
s t

K
X

\
>In

st
an
ce
s

\—
 —
 —

—
 —
 _

_

\ \
 s '\
\

Ru
le
s

Cl
as
si

fy

In
st
an
ce

Ex
pe
ri
me
nt
er
 f
s

Cl
as
si
fi
er

In
st
an
ce
-

Cl
as
s

Co
rr
ec
t

Cl
as
s i

Te
st

In
st
an
ce

Cl
as
s

Fi
gu
re

7

In
fo
rm
at
io
n

Fl
ow
s

in

th
e

Ge
ne
ra
l

Ru
le

In
du
ce
r

Br
ok
en

li
ne
s

sh
ow
 I

nf
or
ma
ti
on
 C

ha
nn
el
s

us
ed

in

so
me
,

bu
t

no
t

al
l,

Va
ri
an
ts

of

th
e

In
du
ct
io
n

Ta
sk
.

i u>

Simon & Lea -33-

/•*» Modify rules (=> rules):

set tally = 0;

1. delete rules from hypothesis-list;
select item randomly from

hypothesis-list (=> rules);
classify instance (=> instance-class) ;
test instance-class (=> test-result);
if test-result = s right' exit,

else go to 1.

Generate instances (=> instance):
if parity = *" odd set parity = even ,

else set parity = odd'j

produce instance randomly

from instance-description (=> instance);
classify instance (=> instance-class);
if parity = N even

then if instance-class = s positive" exit,^-N
else set complement(rules) = rules in instance & exit;,

else if instance-class = ''negative'* exit,
else set rules = complement(rules) in instance & exit.

Classify instance (=> instance-class):

if rule € instance set instance-class = ''positive'* & exit,
else set instance-class = ''negative'' & exit.

Test instance-class (=> test-result):
if correct-rule € instance

set correct-class = s positive',
else set correct-class = ''negative';

if instance-class = correct-class

set test-result = * right'

set tally = tally +1 & exit,

else set test-result = * wrong' & exit.

Figure 8
f~^-. Program for Concept Attainment Task

(Subroutines for Executive Program of Figure 6)

Simon & Lea -34-

Modify rules (=» rules):

if test-result = "wrong

delete new-rule from rules;
f

if basic-sentence-tally = "done go to 1,
else generate basic-sentence (=> rule)

set new-rule = rule & exit;
1. if replacement-rule-tally = ''done' exit,

else generate replacement-rule (=* rule) &
set new-rule = rule & exit.

Generate instances (=> instance):

if new-rule 6 basic-sentences
set instance = new-rule & exit,

else generate item from positive-instance (=> item);
apply new-rule to item (=> instance)

if instance £ positive-instance exit,
else continue generation;

if positive-instances exhausted

set signal = "finished' & exit.

Classify instance (=> instance-class):
generate basic-centences (=> basic-sentence):

if instance = basic-sentence set instance-class = s positive
& exit from routine,

else continue generation;
generate derived-sentences with length = length(instance)

(=* derived-sentence):

if instance = basic-sentence set instance-class = positive
& exit from routine,

else continue generation;
set instance-class = * negative' & exit.

Figure 9 (continued -*)

Simon & Lea (continuation of Figure 9) -35-

Test instance-class (=> test-result):

if instance € legitimate-instances add instance
to positive-instances & set correct-class = * positive',
else set correct-class = s negative";

if instance-class = correct-class

set test-result = ''right' &

set tally = tally + 1 & exit,

else set test-result = s wrong' &
set tally = 0 & exit;

add instance to tested-instances & exit.

Figure 9

Program for Grammar Induction Task
(Subroutines for Executive Program of Figure 6)

