
On Monitoring Information Flow of Outsourced
Data

Anne V.D.M. Kayem
Department of Computer Science

University of Cape Town
Private Bag X3

Rondebosch
7701

South Africa
Email: akayem@cs.uct.ac.za

Abstract—Data outsourcing is an Internet-based paradigm that
allows organizations to share data cost-effectively by transferring
data to a third-party service provider for management. En-
forcing outsourced data privacy in untrustworthy environments
is challenging because the data needs to be kept secret both
from unauthorized users and the service provider (SP). Existing
approaches propose that the data owner(s) encrypt the data
before it is transferred to the service provider to preserve
confidentiality. Access is only granted to a user initiated program
if the key presented can decrypt the data into a readable format.
Therefore the data owner can control access to the data without
having to worry about the management costs. However, this
approach fails to monitor the data once it has been retrieved
from the SP’s end. So, a user can retrieve information from
the SP’s end and share it with unauthorized users or even
the SP. We propose a conceptual framework, based on the
concept of dependence graphs, for monitoring data exchanges
between programs in order to prevent unauthorized access. The
framework has a distributed architecture which is suitable for
data outsourcing environments and the web in general. Each
data object contains a cryptographic tag (like an invisible digital
watermark) that is computed by using a cryptographic hash
function to combine the checksum of the data and the encryption
key. In order to execute an operation with a data object the key
presented for decryption must match the one associated with
the user’s role and generate a cryptographic tag that matches
the one embedded into the data. Tracing data exchanges, in this
way, can leverage data privacy for organizations that transfer
data management to third party service providers.

I. INTRODUCTION

The emergence of the Internet made the power of distributed
computing a reality that organizations have and will continue
to tap on to provide an information sharing environment that
strives to be dynamic and reliable with guaranteed quality of
service. Data outsourcing is an interesting information sharing
application in which organizations transfer the management
of data intensive applications like data publishing and data
warehousing to third-party service providers (SP) for manage-
ment. The advantage of this is that it reduces their management
costs and makes the data available so that users are able to
access information according to their needs. Yet, information
sharing in this context raises challenges pertaining to trust and
data privacy that need to be addressed in order to ensure that
sensitive information is not accessible to unauthorized parties.

The necessity of trust and data privacy makes it important to
protect the data from access by unauthorized users including
the SP [1], [2]. For example, health insurance companies
that wish to outsource data concerning their clients’ personal
information must protect the information even from the SP in
order to avoid breaches of data privacy laws. Therefore, the
data owners need some way of protecting the data that is sent
to the SP and also preventing users who are authorized to view
the data from sharing it with unauthorized parties.

A. Problem Statement

Approaches based on using cryptographic keys to protect
the data propose that the data owners encrypt the data before
it is transfered to the SP [3], [4]. This ensures that the data is
not visible to the SP and the data owner can decide who gets
to see the data by sharing the keys only with users that are
authorized to view the data. As well, in order to minimize
the cost of updating security policies, the SP can apply a
second layer of encryption to the data so that security policy
updates are handled by updating the affected keys and re-
encrypting the data only on the SP’s end [1], [2]. This is in
contrast to having to request and have a new encrypted copy
re-transmitted by the data owner which is expensive in terms
of bandwidth. However, while cryptographically supported
access control approaches protect the data from being read by
the SP, preventing authorized users from retrieving the data
and then proceeding to share its contents with unauthorized
users including the SP is a challenging problem.

For instance, consider the scenario depicted in Fig. 1
in which an organization such as a health insurance firm
outsources the storage of client data. The company wants to
be able to allow medical students or other parties to retrieve
data and perform statistical calculations without revealing the
identity of the clients concerned. Consider the case of two
users, Alice and Bob, who both have access to different
parts of the data. Alice can only access records concerning
clients who are older than 70 while Bob can only access data
concerning patients who are chronically ill.

In order to find out which clients are both over 70 and
chronically ill, Alice can decide to persuade Bob to share

978-1-4244-5494-5/10/$26.00 ©2010 IEEE

Data

Data Owner

Service Provider

1: Outsource Data to third-party service provider

3: Queries

4: Response

Service 1

2a: Initiating Service call

Service 2

Service n

2b: Initiating Service call
5: Initiating Collusion

Bob

Alice

Fig. 1. Collusion between Alice and Bob to access unauthorized data

his data with her in exchange for taking a peep at her data.
Current approaches based on cryptography do not prevent
cases of illegal data sharing such as the one we have just
described. Therefore, security policies for controlling the flow
of information between users and/or the SP, are need in order
to prevent unauthorized exchanges of information.

B. Contributions

This paper presents a conceptual framework that uses cryp-
tographic tags to monitor data exchanges between users or
user initiated programs, like services, in order to prevent
unauthorized data sharing. In the framework, data owners
transfer management of their data to a third party SP from
where it can be accessed by users. Access to the data on
the SP’s end can either be requested directly or orchestrated
by a service that is invoked by a user with a role(s) that
authorizes him/her to retrieve the data requested. In the case
where the outsourced data is protected by a double encryption
scheme, all the SP requires is that the service presents a key
that matches the one associated with the role of the user
responsible for the invocation. The user will then use the key
that the data owner assigned to him/her to decrypt the retrieved
data into a readable format. Illegal information flows between
users or services are prevented essentially by labeling each
data object with a cryptographic tag (similar to an invisible
digital watermark) that is computed by using a cryptographic
hash function to combine the checksum of the data and the
encryption key. Embedded in each service is an Information
Flow Control Module (IFCM) that monitors the usage of the
data ensuring that the data is only manipulated in ways that
are authorized by the access control mechanism. The IFCM

relies on two knowledge bases that contain the security policies
as well as the rules for verifying the cryptographic tags.
The security policies are used to construct the dependency
graph to indicate which services may share the information
that has been retrieved, while the rules for verifying the
cryptographic tags are used to determine whether a data
object can be read by a user. This approach to tracing data
exchanges between services can leverage privacy of data that
organizations transfer to third party SPs, and thereby, make
customers and organizations more willing to use applications
that depend on outsourced data.

The framework has a distributed architecture which makes it
suitable for suitable for data outsourcing environments and the
web in general. Potential applications can be found in banks
and hospitals where customers’ private financial and medical
information is transferred to third party service providers for
statistical analysis, as well as in social computing applications
where there is a need to secure shared information like
photographs, blogs or documents from unauthorized access.

C. Organization

The rest of the paper is structured as follows. In Section
II, we present related work on the “Database-as-a-service”
paradigm in relation to cryptographically supported access
control to outsourced data. In Section III, we present our
framework for monitoring the flow of outsourced data between
services and discuss the challenges involved in implementing
the framework. Section IV gives an example application sce-
nario for the framework in order to highlight the importance
of securing information exchanges between users. Concluding
remarks and topics for future work are offered in Section 5.

978-1-4244-5494-5/10/$26.00 ©2010 IEEE

II. RELATED WORK

The “database-as-a-service” paradigm emerged with the
purpose of finding ways to facilitate resource outsourcing,
by data owners, in a secure and reliable way to SPs on the
Internet. Most solutions focus on methods of executing queries
efficiently and securely on encrypted outsourced data [3]–
[6]. Typically, these methods are centered around indexing
information stored with outsourced data. The indexes are
useful for returning responses to queries without the need to
decrypt the data (or response to the query). Only the party
authorized to view the response should, in principle, be able
to decrypt the result returned in response their query. The
challenge in developing indexing techniques is in establishing
a reasonable trade-off between query efficiency, exposure to
inference, and linking attacks that depend on the attacker’s
knowledge [7]. Additionally, there is the issue of a malicious
user with access to the SP’s end being able to piece together
information from parts of information gathered historically and
then using this knowledge to transmit false information [2],
[7], [8].

Other proposals avoid this occurrence by using design
approaches based on cryptography to protect the data from
being accessed either by malicious users or by the third party
SPs to whom the data is outsourced. Research on tackling the
issue of access control to outsourced data with cryptography
began with the approach that Miklau et al. [8] proposed in
2003. In the Miklau et al. approach, different cryptographic
keys are used to encrypt different portions of the XML tree
by introducing special metadata nodes in the document’s
structure. In this way, the data remains secret to all the
participants in the system and only those in possession of
valid keys are able to decrypt and read meaningful information
from the data. However, while this solves the problem of
securing the outsourced data, and additionally imposes some
form of hierarchical access control, it does not address the
problem of handling key updates and more crucially the need
of categorizing the data that the SP receives. As well, the
problem of illegal information flow or exchanges between
users is not addressed.

De Capitani Di Vimercati et al. build on this approach
and specifically consider the problem of authorization policy
updates which is, in a situation where access control is
supported cryptographically, equivalent to the problem of key
updates [2], [7]. The De Capitani Di Vimercati approach
operates by using two keys. The first key is generated by the
data owner and used to protect the data initially by encrypting
the data before it is transmitted to the SP. Depending on the
authorization policies the SP creates a second key that is used
to selectively encrypt portions of the data to reflect policy
modifications. The combination of the two layers provides an
efficient and robust solution to the problem of providing data
security in outsourced data environments. However, as with
previous solutions this solution does not provide a method of
controlling data exchanges between users once the information
has been retrieved from the SP’s end.

The literature on cryptographic access control approaches
to addressing the problem of secure data access and cost
effective key management has been investigated in the con-
text of distributed environments like the Internet [9]–[13].
Examples of applications in which access can be controlled
using these more conventional cryptographic key management
approaches to enforcing access control hierarchically include,
pay-tv, sensor networks and social networking environments
[14]–[16]. However, the case of controlling illegal exchanges
of outsourced data in an untrustworthy scenario, differs from
these cases in the sense that the SP cannot be trusted to
enforce access control policies in the manner that the data
owners specify. Moreover, because of the sensitivity of the
data, it is important that users are not able to share the
data with unauthorized users in order to forestall cases of
collusion between users and SPs. Using cryptographically
supported access control has the advantage that the SP can
categorize the data received and if the SP is compromised,
data confidentiality is maintained if users do not reveal their
keys to the malicious party. In the next section, we present
our framework for monitoring information flows between users
and/or services to guarantee outsourced data privacy.

III. A FRAMEWORK FOR SECURE SHARING OF
OUTSOURCED DATA

We propose a conceptual framework for monitoring the flow
of outsourced data in a service oriented architecture (SOA)
where data owners transfer the management of their data to
a third-party SP. In our SOA, the SP handling the outsourced
data offers a service that can be invoked to retrieve parts of
the data that is received from the data owner(s). Invocations
of the outsourced data service can either be made directly by
users or via services that make the invocation on behalf of a
user. Information flow control is important in this context to
prevent either the users or services from sharing data in ways
that are not authorized by the security policies. Although the
SOA operates in an environment like the Internet where trust
is a concern, we assume that the users invoking the services
belong to a trusted group of users and have clearly defined
roles with associated permissions. Our conceptual framework
consists of three principal components that, as shown in Fig. 2,
interact with two knowledge bases to decide whether or not to
authorize the transfer of data between users and/or services.

The knowledge bases in this case, the ACM and Key Graph
repository as well as the Hash Value repository, allow the
Access Control (AC) module, Information Flow Control (IFC)
module, and the Security Policy Module (SPM) to check
that the rules governing access to the data are verified. Both
knowledge bases and the SPM reside at the data owner’s end
while the AC module resides at the SP’s end and the IFC
module resides at the user’s /user invoked service’s end. Each
of the components can be implemented as a service that can
be invoked according to the task the needs to be performed. In
the following sections we describe how each component can
be designed and integrated into a service oriented architecture
in order to manage and protect the privacy of outsourced data.

978-1-4244-5494-5/10/$26.00 ©2010 IEEE

 Security
Policy Module

Enforces Security Policy Updates

 Security Policies
(ACM and Key Graph
 Repository)

Check or
Modify ACM

New ACM State

Monitors Access Requests and
Enforces Security Policies

Check Credentials

Access Control Module

Build Dependency Graph to
Check Information Flow

Information Flow
Control Module

Access Requests Response

Response

 Policies to Compute
 hash values in data
(Hash Value Repository)

Data Sharing
 Attempt

Response

Policy Changes Response

Check User Role and Key

Response

Response

Computing Secret Hash

Fig. 2. Framework for Information Flow Control of Outsourced Data

A. Security Policy Module (SPM)

We assume that we are dealing with a two layered encryp-
tion scheme such as the one that Vimercati et al. [1], [2] have
proposed for protecting outsourced data privacy. In this case,
each user holds two keys that are used to first remove the
encryption layer imposed by the SP and second to decrypt the
data into a readable format. The SPM basically enforces the
security policies that the data owner defines before the data is
transfered for management to the SP. These security policies
are defined by assigning authorized users to roles according to
the permissions the users are granted with respect to accessing
the data. For simplicity, we assume that our security policies
are based on an role based access control (RBAC) model
in which roles are defined in the form of a hierarchy. The
permissions associated with a role are represented using an
access control matrix (ACM) where the rows indicate the role
and the column the data objects.

As shown in Fig. 3, in the ACM, a 1 at the intersection of a
row and column indicates that a user with the corresponding

Fig. 3. Access Control Matrix

role has the permission to access the data, while a 0 indicates
otherwise. So, for instance (see Fig. 3), a user with the role
R0 would have the permission to access the data objects B, D
and E while a user with the role R3 can only access the data
objects D and E.

When the RBAC model is supported with cryptography,
each one of the data objects is encrypted with a unique key that
is shared with the users requiring access to the data. Holding

978-1-4244-5494-5/10/$26.00 ©2010 IEEE

several keys is cumbersome in terms of security management
and so it makes sense to use a hierarchy of inter-dependent
keys where users are assigned a single key from which all the
required keys can be derived. In order to do this, we structure
the roles hierarchically as shown in Fig. 4 with the role that
has the most permissions being at the top of the hierarchy
and the role with the least permissions at the bottom of the
hierarchy. As shown in Fig. 4, R2 has the most permissions
because it allows a user access all of the data on the system,
whereas R1 and R3 have the least permissions.

R3

R2

R1 R0

Fig. 4. An Example of a Role Hierarchy

The role hierarchy can then be expressed as a key graph
where keys are assigned to a role according to the parts of
the data that the user with the associated role can access.
Cryptographic keys can then be generated to enforce the
security policy by creating security classes to which users are
assigned according to the role(s) they have with respect to
accessing the data. The generated keys are then mapped onto
a key graph so that a user receives only the keys that he/she
requires according to the role(s) he/she has on the system.
Although, in this case a user can get assigned several keys, it
is possible to minimize the number of keys assigned by using
a key management scheme, such as the one that Atallah et
al. [17] proposed, in which all the required sub keys can be
derived from a master or composite key.

K3

K2

K1 K0

R2

R1 R0

R3

A

B

C D E

Fig. 5. Key Graph Expressing Permissions of Access to the Data

For instance, in Fig. 5 the keys K0, K1, K2, and K3 are
associated with the roles R0, R1, R2, and R3 respectively. In
this case, the number of keys assigned to users is minimised
by using a key assignment scheme that makes it possible for a
user with a key say K2 to derive all the required keys K0, K1,

and K3 that are required to access the data objects A, B,C, D,
and E. However, the key assignment algorithm does not allow
a user with the key K3, for example, to derive any of the
higher level keys. For example, the key assignment scheme
that Atallah et al. proposed randomly assigns keys to the nodes
in the key graph and uses a function

YRj�Ri
= Kj ⊕H (Ki, lj)

where YRj�Ri
indicates that a user with role Ri is authorized

to read data that is accessible to a user with a role Rj ,
H (Ki, lj) is a cryptographic hash function that is used to
check that the key Ki can be used to derive Kj , lj is a public
value or label that is assigned to the node Rj , and Ki and
Kj are the random keys assiigned to the nodes Ri and Rj

respectively. Therefore, a user can only access a data object
if the precedence rule is verified and the user’s key can be
used to decrypt the data into a meaningful format. All of the
information in the ACM and the key graph is stored in the
ACM and Key Graph repository.

The advantage of combining cryptography with RBAC is
that it makes security policy updates easy to handle since a
consistent copy of the data can be maintained on the SP’s
end where users can both access the data and apply updates.
An example of the necessity of maintaining copy consistency,
while protecting data privacy, arises in the case of medical
records to which several doctors from different hospitals have
access. In this case, it is important that every doctor gets a
synchronized view of the patient’s records to avoid situations
in which a diagnosis is made with incomplete information.

B. Access Control (AC) Module

The Access Control (AC) Module basically enforces the
security policies formulated both by the data owner and the
SP in order to protect the outsourced data from unauthorized
access. Moreover, the access control module serves as an
intermediary between the user and the SP so that the contents
of the data are not revealed to the SP. This module can be
implemented as a service that a user invokes in order to access
the outsourced data on the SP’s end.

As mentioned earlier, the AC module is embedded at the
SP’s end and controls access to data that is doubled encrypted
using the method that Vimercati et al. [2], [7] proposed. Since
this involves two layers of encryption on the data, the AC
module decides whether or not to grant a user or user initiated
service call access to the data by analyzing each access request
according to the information in the ACM and Key Graph
repository. As shown in Fig. 2, when the AC module receives a
request to access data, the AC module will begin by checking
the credentials of the user against the information in the ACM
and Key Graph repository to determine whether the role of
a user matches authorizes access to the data requested. The
reason for doing this is to prevent users illegally exchanging
keys and performing impersonation attacks to retrieve data at
the SP’s end. The AC module prevents this by comparing the
role of the user requesting access to the one corresponding to
the node in the role hierarchy that is associated to the user’s

978-1-4244-5494-5/10/$26.00 ©2010 IEEE

role. A simple way of doing this, is to have some sort of secret
question whose answer determines whether or not the user is
who he/she claims to be. A successful credential verification,
results in the AC module decrypting the data, to remove the
layer of encryption imposed by the SP, and returning the data
to the user.

An example of how the data is retrieved from the SP’s end
and returned to the user is shown in Fig. 6. In this case, a data
owner transfers encrypted data A, B,C, D, and E to an SP
for management. The SP double encrypts all the data received
using a second set of keys a0, a1, a2, and a3 to obtain double
encrypted data D0, D1, D2, and D3 that is stored at the SP’s
end. Finally, the SP creates an ACM in which all the rules
of access are mapped to facilitate security management. The
keys a0, a1, a2, and a3 are then shared with the data owner
who then assigns users a set of two keys depending on the role
of the user. As with the keys that the data owner generates,
the SP can use a hierarchical key management scheme that
assigns users single keys from which the required keys can be
derived. So, as shown in Fig. 6 a user with the role R2 will
hold two keys a2 and K2 where a2 can be used to derive the
keys a0, a1, and a3 and likewise K2 can be used to derive the
keys K0, K1, and K3. In order to access the data object A,
the user with the role R2 can use the key a2 to derive a1 in
order to decrypt D1 to remove the layer of encryption imposed
by the SP and download the data object A that is decrypted
with the key K1, derived from K2, to read the data. We now
consider what happens when a user retrieves data from the
SP’s end and proceeds to share it either with an authorized
user or even the SP.

C. Information flow Control Module

The Information Flow Control Module (IFCM) uses the
concept of dependence graphs to prevent data exchanges
between unauthorized users. Embedded in each data object is
a cryptographic tag (like an invisible digital watermark) that
is computed by combining the checksum of the data and the
cryptographic key with which the data is initially encrypted (at
the data owner’s end) to obtain a cryptographic hash. This hash
value is then embedded into the data like a digital watermark
and used to authenticate a user before access is granted to the
decrypted data.

When a service call is initiated the IFCM will construct
a dependence graph to determine whether any illegal infor-
mation flows are likely to occur. The dependence graph is
constructed by using the key graph to decide which users
are allowed to share information. Users can share information
when they belong in the same group and have a role that
matches the one associated with the key that was used to
encrypt the data. When the user has a role that is higher than
the role of the user initiating the data sharing, the role of the
user initiating the sharing must be one of the sub-roles of the
higher role. As well, the user with the higher role must either
hold the key required to decrypt the data or be able to derive
the key from the one in his/her possession. This allows the

IFCM to determine which users can share information and
what information they can share.

As a second line of defense, embedded in each data object
is a cryptographic hash that is computed by combining the
checksum of the data and the cryptographic key with which the
data was encrypted. This hash value allows the IFCM module
to prevent users from creating covert channels to transfer
data illegally to unauthorized users. In order to do this, each
execution involving a data object is evaluated by comparing
the user’s role with the key presented to determine if the key
presented belongs to the user making the access request. When
this is the case, the IFCM will proceed to crosscheck the user’s
authorization to view the requested data by using the key
presented to compute the cryptographic has associated with
the data. Access is allowed if a “correct” hash is computed.

We now consider the case of a user attempting to share
information that has been retrieved from the SP and decrypted.
The IFCM will contact the knowledge base to compare the role
of the user, on the receiving end, to the one that is associated
with the key that was used to compute the cryptographic
hash on the data being transfered. The comparison allows the
IFCM to determine whether or not the data can be shared
with the requesting user. When there is a mismatch between
the requesting user’s role and the key on the data, the data
transfer will not be allowed to proceed.

IV. EXAMPLE SCENARIO

As an example we consider the case of hospitals that
outsource the management of their patients’data to a third-
party SP in order to ensure that it can be managed in a cost
effective way. Outsourcing the patients’ data makes the data
easily accessible via the Internet so, in an emergency a medical
practitioner would only need a patient’s name and health card
number to get an up to date record of the patient’s data.

In order to control access to the patient’s data, each hospital
applies a first encryption layer to their data and transfers the
management of the data to an SP where a second encryption
layer is applied. The keys used for the second encryption
are then returned to the data owner who will assign every
health care practitioner, on the board of accredited medical
practitioners, a pair of keys according to their role. Access is
then possible if a health care practitioner holds the keys needed
to access a patient’s file. Since there might be potentially many
key pairs, as mentioned in Section III(C), it makes sense to use
a key management scheme that assigns users a composite key.
To do this, a tool for combining keys to form a composite key
is embedded at the user’s end. Using this tool, all of the keys
the user receives from the different data owners are combined
to form a composite key that can be used for all the required
data accesses.

As well, in order to ensure data consistency, it makes sense
to keep a single record of the data at the SP’s end rather
than have users download copies that are modified separately.
For instance, in an emergency unit a medical practitioner
might need to access a patient’s records to determine if the
patient has any allergies that need to be considered before an

978-1-4244-5494-5/10/$26.00 ©2010 IEEE

B C
R

1

0

1

R

R

1

0

1

Data Owner's end (ACM and corresponding Key Graph)

A

2

1

0 0

1

1

D
1

1

0

0R 03 0 1

E
1

1

0

1

K3

K2

K1 K0

R2

R1 R0

R3

A

B

C D E

R

1

0

1

R

R

1

0

1

SP's end (ACM and corresponding Key Graph)

2

1

0 0

1

1

1

1

0

0R 03 0 1

1

1

0

1

a 3

2

1 a 0

R2

R1 R0

R3

D0 D1 D2 D3 D4

D4D3D2

D1

D0

a

a

Fig. 6. Secure Management of Outsourced Data: Example

operation. If the allergy information is in a separate record on
the lab technician’s computer, the medical practitioner may not
find out about the patient’s allergies in time to carry out the
operation. Therefore having a consistent record on the SP’s
end is important.

Using cryptographic access control to protect data like this
on the SP’s end is necessary if the data owners (in this
case the hospitals) are to prevent the SP’s from reading the
data. Additionally, since sharing patient data is prohibited by
privacy laws, the hospitals need to guarantee that the data is
never shared with unauthorized users. The Access Control and
Information Flow Control modules in the framework we have
described (see Fig. 2) handle both concerns. As mentioned
earlier, the Access Control Module checks user credentials
to determine if they have the authorization to view the data
and only releases the information if this is the case. The
Information Flow Control module on the other hand monitors
and prevents attempts to share the data by using a combination
of dependence graphs and cryptographic hash values to decide
whether or not a data object can be shared between any two
parties.

V. CONCLUSION

We have presented a framework based on the concept
of dependence graphs to prevent unauthorized sharing of
outsourced data. Dependence graphs and program slicing are
popular approaches to monitoring the flow information with in
programs in order to prevent illegal assignments [18]. Specif-
ically we considered the case of handling data exchanges in a

scenario in which access to the outsourced data is controlled
cryptographically [2]. Our discussion of the background on
this topic indicated that most solutions have tended to focus
on indexing techniques that strike a balance between query
efficiency and controlling exposure to inference attacks as well
as handling security policy updates efficiently. However, we
noted that a key concern in using outsourced data in service
oriented architectures on the Internet is that of preventing
authorized users from sharing the data with unauthorized users.
Data owners need some way of guaranteeing that data privacy
will be maintained and SPs need a way of maintaining the
data owners’trust.

Our framework consists of three modules namely, the Se-
curity Policy Module, the Access Control Module and the
Information Flow Control Module. All three modules can be
implemented as services that can be invoked separately. The
Security Policy Module is implemented as a two separate
knowledge bases, one on the data owner’s end and one on
the SP’s end. The knowledge bases contain the combination
of rules that implement the security policy and these rules
are expressed using an RBAC model. In the RBAC model,
users are assigned roles according to the permissions they have
with respect to accessing the data. RBAC and cryptography
are combined generating keys that are mapped onto a key
graph that reflects the role assignments. This key graph is
then used by the Access Control Module, that is located
at the SP’s end, to evaluate access requests based on the
role of the user making the request and the key presented.

978-1-4244-5494-5/10/$26.00 ©2010 IEEE

The Information Flow Control Module, essentially acts to
prevent unauthorized flows of data. This is done by monitoring
information exchanges between users and services using a
combination of cryptographic tags, that are embedded into the
data, and dependence graphs. The dependence graphs allow the
Information Flow Control Module to determine whether or not
a exchange of data between the two services is allowed and
the cryptographic tags act as a second line of defense allowing
a user to only read the data if their profile matches the key
presented. Therefore, even if a user were to illegally obtain the
key with which the data was encrypted, access would not be
possible because the Information Flow Control Module would
be unable to match the user’s profile, in the knowledge bases,
to the key that is presented to compute the cryptographic tag
in the data.

As future work, we plan on designing and implementing all
three modules in a service oriented architecture that involves
outsourced data. Our first step will be to design an intelligent
knowledge base that is able to make predictions about changes
in security policies and adapt the role hierarchy as well as the
key graph to reflect the change. An example of this arises
during service compositions where services with different
security requirements need to interact securely. In this case,
establishing a global security policy that satisfies the minimum
security requirements of the individual services is challenging
both from the access control and information flow control
perspective. A second step would be to develop the access
control framework by designing an access control scheme that
is able to handle security policy compositions efficiently. The
access control policy needs to be flexible so that security policy
updates can be handled without requiring data encryptions that
are costly for large volumes of data. Finally, the Information
Flow Control Module, needs to be formalized, implemented,
and proven to be secure against illegal data exchanges when
security conditions change. Finally, since trust is a concern
for systems operating on the Internet, a method of enforcing
a trust is needed to determine whether or not a user is who
he/she claims to be.

REFERENCES

[1] S. De Capitani Di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and
P. Samariti, “Over-encryption: Management of access control evolution
on outsourced data,” in In Proc. VLDB 2007. Vienna, Austria,
September 23-28 2007, pp. 123–134.

[2] S. De Capitani Di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and
P. Samariti, “A data outsourcing architecture combining cryptography
and access control,” in In Proc. of the 2007 ACM Workshop on Computer
Communications Security (CSAW). Fairfax, Virginia, USA, November
2 2007, pp. 63–69.

[3] H. Hacigumus, B. Iyer, C. Li, and S. Mehrotra, “Encrypting sql over
encrypted data in the database-service-provider model,” in Proc. of ACM
SIGMOD. Madison, Wisconsin, USA, June 2002, pp. 216–227.

[4] H. Hacigumus, B. Iyer, and S. Mehrotra, “Providing database as a
service,” in Proc. of the 18th ICDE Conf. San Jose, California, USA,
2002, pp. 29–38.

[5] G. Aggrawal, M. Bawa, P. Ganesan, H. Garcia-Molina, K. Kenthapadi,
R. Motwani, U. Srivastava, D. Thomas, and Y. Xu, “Two can keep a
secret: A distributed architecture for secure database services,” in Proc.
CIDR 2005. Asillomar, California, USA, 2005, pp. 186–199.

[6] R. Agrawal, J. Kierman, R. Srikant, and Y. Xu, “Order preserving
encryption for numeric data,” in Proc. of ACM SIGMOD. Paris, France,
June 2004, pp. 563–574.

[7] A. Ceselli, E. Damiani, and S. De Capitani Di Vimercati, “Modeling and
assessing inference exposure in encrypted databases,” ACM Trans. on
Information and System Security, vol. 8, no. 1, pp. 119–152, February
2005.

[8] G. Miklau and D. Suciu, “Controlling access to published data using
cryptography,” in Proc. of the 29th VLDB Conf. Berlin, Germany,
September 2003, pp. 898–909.

[9] M. Atallah, K. Frikken, and M. Blanton, “Dynamic and efficient key
management for access hierarchies,” in In Proc. ACM Conference on
Computer and Communications Security. Alexandria, Virginia, USA,
November 7-11 2005, pp. 190–202.

[10] M. Atallah, M. Blanton, and K. Frikken, “Key management for non-tree
access hierarchies,” in In Proc. of ACM Symposium on Access Control
Models and Technologies. Lake Tahoe, California, USA, June 7-9 2006,
pp. 11–18.

[11] J. Crampton, “Cryptographically-enforced hierarchical access control
with multiple keys,” in In Proc. of the 12th Nordic Workshop on Secure
IT Systems (NordSec 2007), 2007, pp. 49–60.

[12] R. Hassen, A. Bouabaallah, H. Bettahar, and Y. Challal, “Key manage-
ment for content access control in a hierarchy,” Computer Networks,
vol. 1, no. 51, pp. 3197–3219, 2007.

[13] A. Kayem, S. Akl, and P. Martin, “On replacing cryptographic keys in
hierarchical key management systems,” Journal of Computer Security,
vol. 16, no. 3, pp. 289–309, 2008.

[14] J. Birget, X. Zou, G. Noubir, and B. Ramamurthy, “Hierarchy-based
access control in distributed environments,” in In Proc. of the IEEE
International Conference on Communications, Vol. 1. Helsinki, Finland,
June 11-14 2001, pp. 229–233.

[15] W. Yu, Y. L. Sun, and K. J. R. Liu, “Optimizing rekeying cost for
contributory group key agreement schemes,” IEEE Trans. Dependable
Secur. Comput., vol. 4, no. 3, pp. 228–242, 2007.

[16] S. Zhu, S. Setia, and S. Jajodia, “Performance optimizations for group
key management schemes,” in In Proc. of 23rd International Conference
on Distributed Computing Systems (ICDCS ’03. Fairfax, Virginia, USA,
May 19-22 2003, pp. 163–171.

[17] M. Atallah, M. Blanton, N. Fazio, and K. Frikken, “Dynamic and
efficient key management for access hierarchies,” ACM Trans. Inf. Syst.
Secur., vol. 12, no. 3, pp. 1–43, 2009.

[18] C. Hammer and G. Snelting, “Flow-sensitive, context-sensitive, and
object-sensitive information flow control based on program dependence
graphs,” Int. J. Inf. Secur., vol. 8, no. 6, pp. 399–422, 2009.

978-1-4244-5494-5/10/$26.00 ©2010 IEEE

