
Considering web services

security policy compatibility

Tristan Lavarack1 and Marijke Coetzee2
Academy for Information Technology

University of Johannesburg
Gauteng, South Africa

tlavarack@gmail.com1, marijkec@uj.ac.za2

Abstract— For most organizations supporting business-to-
business (B2B) web services interactions, security is a growing
concern. Web services providers and consumers document their
primary and alternative security policy requirements and
capabilities in security policy files, defined by WS-Policy, WS-
SecurityPolicy and WS-Security syntax. To secure message
exchanges to the satisfaction of all parties, the security
requirements of both web services providers and consumers need
to be satisfied. This paper investigates how mutually agreed-upon
security policies can be created. An analysis of the policy
intersection algorithm highlights its deficiencies for finding
mutually compatible policies. The interrelated effect that security
policy assertion choices have on each other is identified as an
important aspect not yet considered. Over and above security
policy assertions, other influence on security policy choices,
which may affect the security level supported by the
organization, is identified. A proposal is made on how the
assertions of two security policies should be considered, in order
to create a secure, mutually agreed-upon security policy that will
satisfy the requirements of both parties.

Keywords: WS-Policy; WS-SecurityPolicy; policy intersection,
security policy assertions, policy compatibility

I. INTRODUCTION

For the last decade, e-business has been on the rise,
supported by web services technologies. Businesses experience
the benefits that web services technology provides as they
extend their business processes beyond the physical boundaries
of their enterprise [1]. As the future vision of the Internet of
Services (IoS) [20] is realized, security requirements of B2B
web services are becoming increasing important to address. In
IoS, services need to interact continuously, across domains and
even international borders. To enable secure interoperation for
first generation web services, security policies are defined by
means of metadata associated with services, and exchanged by
proprietary protocols.

Web service providers specify their security requirements
and capabilities in machine-readable security policies that web
services consumers have to conform to. If they cannot
conform, they need to search for other web services providers
with whom they can find security policy compatibility. For
web services consumers that already have their own set of
security policies and mechanisms in place, this proves a

difficult problem. In this modern day, web services providers
thus need to be more flexible and accommodate a variety of
security requirements.

Currently, the compatibility between the security policies of
web services consumers and providers is determined by policy
intersection. Policy intersection suffers from a number of
limitations as semantic meaning of policy assertions is not
considered. It is thus an inadequate method to solve this
problem.

To harness the flexibility needed in managing the security
of a web service, new approaches are required, where security
policies of both web services providers and consumers are
carefully considered to create a security policy acceptable to
both parties. As the underlying platforms hosting B2B web
service interactions are becoming more complex, where hosts
are networked in complicated topologies using firewalls and
intrusion detection systems, the definition of an adequate
security policy is no easy task. The configuration of non-
functional aspects such as security thus requires a deep
understanding by administrators.

This paper gives an analysis of security policy intersection.
Currently, WS-Policy [3] and related WS-SecurityPolicy [12]
specifications determine policy compatibility by using policy
intersection. The main contribution of this paper is to give an
overview of the limitations of policy intersection, and to
highlight additional considerations that should be taken into
account when mutually compatible policies are defined.
Section II begins the paper by reviewing web services and their
corresponding security specifications using an example to
highlight important aspects. Section III analyses the
intersection of two security policies. Section IV gives a high-
level model of aspect to consider and section V concludes the
paper.

II. BACKGOUND

Security for web services is implemented is a unique way.
The WS-Policy specification [3] defines an XML Schema that
defines the main structure of a security policy. Specifications
such as WS-Security [2] further define platform independent,
domain-specific security mechanisms that are used to specify
the rules of the security policy. Web services and security

978-1-4244-5494-5/10/$26.00 ©2010 IEEE

specifications namely WS-Security, WS-Policy and WS-
SecurityPolicy [12] are briefly discussed next.

A. Web services

Web services are exposed to consumers via the use of
explicitly defined interfaces, documented in Web Services
Definition Language (WSDL) [4] files. WSDL files define the
functional characteristics of web services such as location and
structure of messages. The WSDL syntax cannot be used to
specify non-functional characteristics for web services such as
quality-of-service or security [5]. To specify such non-
functional requirements, additional policies are needed. For
security, there are many policy specifications that can
additionally be used such as WS-Policy [3], WSPL [6] and
WS-Agreement [7].

To better understand the security requirements of web
service interactions, consider the following example:
WebSupply is a web service provider supporting the sale of
digital media such as music Compact Discs (CDs) to retail
stores. WebSupply provides services that allow online
customers of web services consumers to search a selection of
music on CD’s, order and pay for the ordered CD’s. As
confidential information is exposed such as client information
and credit card numbers, SOAP messages need to be well-
protected. As a consumer, NewHitsMusic is a retail CD store
that has recently discovered WebSupply as provider of
services. NewHitsMusic requires the integration of the
services of WebSupply into their application environment to
the benefit of their online customers. NewHitsMusic is a new
company and have not yet managed to support a
comprehensive number of security mechanisms. When credit
card numbers are exchanged, they have to be protected by
security mechanisms such as encryption algorithms that both
parties can successfully apply to a part of the SOAP message.

Next, security policy specifications, used to specify the
security policies of Web Supply and NewHitsMusic are
discussed. In order to be able to specify security mechanisms,
WS-Security is discussed next.

B. WS-Security

As web services messages have the ability to pass through
untrusted or unknown intermediaries before reaching their
destination, point-to-point security mechanisms such as
HTTPS are not sufficient. WS-Security provides end-to-end
security for web services by extending SOAP to include
security mechanisms, such as Kerberos, XML signature and
XML encryption, to create a framework to imbed security in a
SOAP message, in a transport-neutral way [11]. WS-Security
specifies three main mechanisms:

 Security tokens for authentication,

 Encryption of SOAP messages for confidentiality,

 Signing of SOAP messages for integrity and non-
repudiation.

WS-Security uses a variety of signature formats,
encryption algorithms and authentication tokens [12]. To
imbed security into a SOAP message, a security header is

added to it as shown in Figure 1. The
<wsse:UsernameToken> tag contains all information
needed to send a secure message with a username, password
and timestamp. The username tag, <wsse:Username>
requires a plain text username; “Bob” and the
<wsse:Password Type="wsse:PasswordDigest>"
tag is the password digest. Because a password digest is
required, a nonce is used inside the <wsse:Nonce> tags. A
timestamp is inserted between the <wsu:Created> tags to
give the SOAP message additional protection.

Figure 1: WS-Security header with Username Token

WS-Security only specifies platform-independent security

mechanisms. In order to allow a consumer to understand how
to format a security header, and to explicitly state all other
security requirements and capabilities, a security policy needs
to be defined.

C. WS-Policy

WS-Policy is a framework for defining XML based
policies and has been standardized in 2007. Policies consist of
policy assertions that represent domain-specific capabilities,
constraints or requirements [13], specified by for example,
WS-Security and WS-SecurityPolicy. Policy assertions are
grouped together to form a policy expression. Each policy has
a subject such as a web service port, operation or message to
which the policy can be bound.

Figure 2 is an example of a policy defined in WS-Policy.
The policy uses three operators to control assertions namely;
<wsp:Policy>, <wsp:All>, and <wsp:ExactlyOne>
[13]. Namespaces wsu, sp and wsp represent the WS-
Services Utility, WS-Security and WS-SecurityPolicy
namespaces respectively. <wsp:Policy> is a container for
nested policy assertions. Each <wsp:Policy> has a unique
ID value by use of the wsu:id attribute. The <wsp:All>
operator requires that all child assertions contained within it
are satisfied.

Figure 2: WebSupply security policy.

As Figure 2 contains one <wsp:All> tag, all the child

assertions have to be satisfied. The policy has two nested

<Wsse:UsernameToken>
 <wsse:Username>Bob</wsse: Username>
 <wsse:Password Type="wsse:PasswordDigest">
 Pea-s=s!w@o$r(d
 </wsse:Password>
 <wsse:Nonce>abc123</wsse:Nonce>
 <wsu:Created xmlns:wsu="http://schemas.xmlsoap.org
 /ws/2002/07/utility">
 2010-04-08T13:30:30Z
 </wsu:Created>
</wsse:UsernameToken>

<wsp:Policy wsu:Id="WebSupplyPolicy">
 <wsp:All>
 <wsp:ExactlyOne>
 <sp:UsernameToken>...</sp:UsernameToken>
 <sp:X509Token>...</sp:X509Token>
 </wsp:ExactlyOne>
 <sp:IncludeTimestamp/>
 </wsp:All>
</wsp:Policy>

978-1-4244-5494-5/10/$26.00 ©2010 IEEE

assertions. The first assertion, surrounded by a
<wsp:ExactlyOne> tag, has two nested assertions relating
to the use security tokens. The second assertion is compulsory
and requires the use of time stamps. The policy thus states
with the <wsp:ExactlyOne> operator that either a
UsernameToken or a X509Token must be used. A timestamp
is always needed. The definition of policy alternatives is
discussed next.

1) Policy Alternatives
WS-Policy allows the use of policy alternatives [3] to

allow the specification of policy choices. Policy alternatives
are the building blocks of combined security policies. By
being able to specify alternatives in a policy, security policies
become less static in nature as web services consumers are
given a choice between security requirements of web services
providers. With more, equally secure, sets of security
requirements and capabilities, a web services provider will
thus be able to interact with more diverse web services
consumers.

Before policy alternatives can be compared with each
other, the policy has to be in normal form to clarify the content
of all alternatives [15]. Normal form of policies is a
standardized format where only one <wsp:ExactlyOne>
operator is used. <wsp:All> tags are used to represent
policy alternatives, which are nested in the
<wsp:ExactlyOne> tag. Figure 2 is converted into normal
form, and shown in Figure 3. Each <wsp:All> tag contains
a set of nested assertions There are two alternatives, the one
requires the use of a Username Token and timestamp, and the
other requires the use of a X.509 Certificate Token and
timestamp.

Figure 3. Part of WebSupply’s security policy in normal form.

WS-Policy provides the structure and rules of policy
processing. If developers were to be given a free hand when
designing security policies, much confusion will arise. To
ensure that standard, usable security policies are defined, WS-
SecurityPolicy is used.

D. WS-SecurityPolicy

The WS-SecurityPolicy [12] defines a set of policy
assertions that are used to define individual security
requirements or constraints of a web service. It reuses the
operator set defined in WS-Policy to create security policies
that contain policy alternatives with nested security assertions.

The range and structure of security aspects over which
compatibility between the service consumer and provider must

be reached is defined by these security specifications. ISO
7498-2 [19] defines 5 main categories of security services
namely authentication, access control, confidentiality,
integrity and non-repudiation. The main focus of WS-
SecurityPolicy is on authentication, confidentiality and
integrity. Mechanisms for non-repudiation are not explicit, but
can be applied with integrity and binding mechanisms. Access
control is either left to the web services provider to implement,
or can be defined with SAML or Kerberos Tokens. WS-
SecurityPolicy incorporates WS-Security to define policies
that can use weaker security mechanisms such as the transport
security provided by HTTP, or much stronger security
mechanisms such as a custom combination of XML signature
and encryption. Administrators need to carefully evaluate
chosen mechanisms and their combinations in order to
determine the strength of security that is supported by a
security policy. There are five main policy assertion types:

 Token assertions specify security tokens such as X509
certificates that provide public/private keys when a
SOAP message is signed and encrypted.

 Security binding assertions define the way in which
SOAP message exchanges are secured, such as the use
of HTTPS transport protection when the Transport
binding assertion is selected.

 Protection assertions specify which message parts are
protected and how they are protected for selective
signing and encryption of SOAP message parts.

 Supporting token assertions specify security tokens
used to provide additional claims about a message
sender such as security tokens used in authentication.

 Protocol assertions are used to specify predefined
security requirements for SOAP message security and
trust related options that SOAP message senders and
receivers must both support. For example, the Wss10
assertion requires that the sender and receiver are able
to process external URI references.

The Token assertions and Security binding assertion are
now further examined as they provide the foundation for a
security policy.

The Token Assertion is used to specify the types of tokens
used for SOAP message protection such as Username
Tokens, X509 Tokens, SAML Tokens and HTTPS Tokens.
The second part of Table 1 gives supported authentication
tokens. If stronger authentication tokens are used, better
identification and trust in the other party is possible.

The Security Binding Assertion defines the process used to
secure SOAP message exchanges [12]. Three binding
assertions are defined by WS-SecurityPolicy namely the
Transport binding assertion, Asymmetric binding assertion and
the Symmetric binding assertion. For Transport binding, SOAP
message security point-to-point security is provided. The
SOAP message sender and receiver have a restricted level of
security as they may, for example, not be able to specify
which message parts need to be signed, thereby lowering the
level of security provided.

<wsp:Policy>
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:X509Token>...</sp:X509Token>
 <sp:IncludeTimestamp/>
 </wsp:All>
 <wsp:All>
 <sp:UsernameToken>...</sp:UsernameToken>

<sp:IncludeTimestamp/>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

978-1-4244-5494-5/10/$26.00 ©2010 IEEE

 Table 1: Algorithm suites and authentication tokens

By applying message protection at the SOAP encoding
layer instead of at the transport layer, more flexible security
policies at finer level of granularity can be defined with
Asymmetric Binding and Symmetric Binding for multi-tier
architectures. These bindings use security tokens and keys to
selectively sign and encrypt parts of SOAP messages to
provide end-to-end security as messages moves across
domains. This allows for flexible control over confidentiality
and integrity that is not present in Transport binding.

Symmetric binding is generally used in situations where
only the web services provider has an X.509 certificate [12]. A
common security token is used for SOAP message exchange.
A symmetric key is created and encrypted using the keys
derived from the security token and used for all message
encryption and signature operations. The symmetric key is
encrypted using the public key of the web services provider
and is sent with the SOAP message. If both parties possess
X.509 certificates, Asymmetric binding is recommended.

 In Asymmetric binding two unique security tokens are
used, provided by each party [16]. The public-private key
pairs used for signing and encryption are derived from X509
certificates or SAML tokens. The private keys are used to sign
a SOAP message and the public keys are used to encrypt a
SOAP message.

For confidentiality and integrity, a sound collection of
cryptographic algorithms, listed in Table 1, is defined by an
algorithm suite, for performing operations such as signing,
encryption, and generating message digests.

For example, Basic256, listed in the first row,
incorporates the AES256 encryption algorithm, Sha1 hash
function, KwAes256 key wrap algorithm for symmetric keys,
KwRsaOaep key wrap algorithms for asymmetric keys,
PSha1L256 encryption key derivation algorithm and
PSha1L192 signature key derivation algorithm and 256
minimum key length.

The choice of algorithm has an influence on the strength of
message security. For example, the choice of digest influences
the strength of integrity, and the choice of encryption algorithm
has an influence on the strength of confidentiality. The key

wrap algorithms influence strengths of both integrity and
confidentiality. The strengths of encryption algorithms can be
ordered from strongest to weakest as AES-256, AES-192,
AES-128, and Triple-DES. Similarly, each of the columns
can be ordered from strongest to weakest e.g.
TripleDesSha256Rsa15 is the weakest algorithm suite.

Finally, additional features such as TimeStamps and
MessageIDs can be used to further assist with non-repudiation
and protect against replay attacks. The WS-SecurityPolicy
specification is complex and addresses a large variety of
additional aspects not discussed here such as the order of
encryption and hashing, and whether both the header and body
of the message must be protected. Administrators need to
carefully evaluate chosen mechanisms and their combinations
in order to determine the strength of security that is supported
by a security policy. When two policies are intersected, it
would be important to ensure that the list of compatible
alternatives provide a sufficient level of security to both the
web service provider and consumer.

E. Policy Intersection

Policy intersection finds the matching alternatives of two
policies by using an intersection algorithm [13]. Policy
intersection is a commutative and associative function that
takes two policies as input and returns a policy containing the
compatible alternatives. If two policy alternatives are
compatible, their intersection is an alternative containing all of
the assertions found in both alternatives. If the alternatives that
are being combined do not agree on the same vocabulary, they
are not added to the new policy. For example, if a web service
provider's security policy requires authentication with
certificates and a consumer uses username-password
combinations, no compatibility between the policies can be
found.

The intersection algorithm consists of two steps namely
domain-independent policy intersection and domain-specific
processing. The WS-Policy specification does not explain how
domain-specific processing should be implemented. This is
left to the individual or organization in charge of the domain-
specific processing.

978-1-4244-5494-5/10/$26.00 ©2010 IEEE

For domain-independent policy intersection, two policies
in normal form, with a set of policy alternatives and their
nested assertions have to be present. Policy intersection is
implemented as follows. Policy alternatives from both policies
are compared to each other using the following rules. If two
policy assertions have the same type, they are compatible. The
type of an assertion is specified by the Qualified Name
(QName) property of an assertion. The QName is unique and
identifies what an assertion does. For example,
sp:ProtectionToken specify protection tokens that
need to be present in a respective policy alternative. If an
assertion has a nested policy with alternatives, it is only
compatible with an assertion that has a nested policy with
compatible assertions [3].

Once policy intersection has been applied to two policies,
all compatible policy alternatives discovered during policy
intersection are included in a new policy. For two
incompatible policies, policy intersection will result in an
empty policy with no matching assertions. The new policy can
then be processed or used as necessary. To demonstrate policy
intersection, an example is now examined.

Figure 4: WebSupply’s security policy in normal form.

Figure 4 gives a simple security policy for the service
provider, WebSupply. It extends the policy defined in Figure 3
with more features using WS-SecurityPolicy syntax.

In this policy, the first policy alternative (A) requires the
use of symmetric binding with timestamps. Basic192 is
required as the algorithm suite from which the signing and
encrypting algorithms are defined.

The second policy alternative (B) requires the use of
transport level security provided by HTTPS. The Basic256
algorithm suite is required as well as a Username token to
authenticate the sender of the message.

These two options of varying strength and complexity
provide web services consumers with a choice of security
policy alternatives to choose from. The policy is in normal
form, which means that it is ready for policy intersection.

Figure 5 shows NewHitsMusic, a web services consumer’s
security policy. NewHitsMusic does not support a
sophisticated platform and support more basic security
mechanisms. A weaker security token namely Username
token, with a weaker algorithm suite namely Basic128 is
used over transport binding.

Figure 5. NewHitsMusic security policy.

NewHitsMusic determines whether it can support the
security mechanisms of WebSupply by first performing policy
intersection over the two policies defined in Figure 4 and
Figure 5. Policy alternative B from the WebSupply security
policy in Figure 4 and policy alternative C defined in the
NewHitsMusic security policy from Figure 5 match as these
alternatives have the same number and type of nested
assertions. Assertions 5 to 8 from alternative B in Figure 4
match the assertions 9 to 12 from alternative C Figure 5. All of
the matching assertions are included in a new security policy
shown in Figure 6.

Figure 6.WebSupply and NewHitsMusic intersected security policy.

<wsp:Policy>
 <wsp:ExactlyOne>
 ---<wsp:All>
 | <sp:SymmetricBinding> [1]
 | <sp:ProtectionToken> [2]
 | <sp:X509Token>...</sp:X509Token>
 | </sp:ProtectionToken>
 (A) <sp:AlgorithmSuite> [3]
 | <sp:Basic192/>
 | </sp:AlgorithmSuite>
 | <sp:IncludeTimestamp/> [4]
 | </sp:SymmetricBinding>
 ---</wsp:All>

 ---<wsp:All>
 | <sp:TransportBinding> [5]
 | <sp:ProtectionToken> [6]
 | <sp:HttpsToken>...</sp:HttpsToken>
 | </sp:ProtectionToken>
 | <sp:AlgorithmSuite> [7]
 (B) <sp:Basic256/>
 | </sp:AlgorithmSuite>
 | <sp:SupportingTokens> [8]
 | <sp:UsernameToken/>
 | </sp:SupportingTokens>
 | </sp:TransportBinding>
 ---</wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

<wsp:Policy>
 <wsp:ExactlyOne>
 ---<wsp:All>
 | <sp:TransportBinding> [13]
 | <sp:ProtectionToken> [14]
 | <sp:HttpsToken>...</sp:HttpsToken>
 | </sp:ProtectionToken>
 | <sp:AlgorithmSuite> [15]
 | <sp:Basic256/>
 | </sp:AlgorithmSuite>
 | <sp:SupportingTokens> [16]
 | <sp:UsernameToken/>
 (D) </sp:SupportingTokens>
 | <sp:ProtectionToken> [17]
 | <sp:HttpsToken>...</sp:HttpsToken>
 | </sp:ProtectionToken>
 | <sp:AlgorithmSuite> [18]
 | <sp:Basic128/>
 | </sp:AlgorithmSuite>
 | <sp:SupportingTokens> [19]
 | <sp:UsernameToken/>
 | </sp:SupportingTokens>
 | </sp:TransportBinding>
 ---</wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

<wsp:Policy>
 <wsp:ExactlyOne>
 ---<wsp:All>
 | <sp:TransportBinding> [9]
 | <sp:ProtectionToken> [10]
 | <sp:HttpsToken>...</sp:HttpsToken>
 | </sp:ProtectionToken>
 | <sp:AlgorithmSuite> [11]
 (C) <sp:Basic128/>
 | </sp:AlgorithmSuite>
 | <sp:SupportingTokens> [12]
 | <sp:UsernameToken/>
 | </sp:SupportingTokens>
 | </sp:TransportBinding>
 ---</wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

978-1-4244-5494-5/10/$26.00 ©2010 IEEE

After policy intersection, the policy in Figure 6 contains
duplicates and inconsistencies. In alternative D, assertions 15
and 18 both specify an algorithm suite of different strengths.
There are also two duplicate Username token assertions.
This policy will confuse developers using it and it needs to be
corrected with domain-specific processing.

In the next section, policy intersection is evaluated to
identify aspects that need to be addressed to ensure that a
resultant policy does not lead to a less secure environment.

III. POLICY INTERSECTION EVALUATION

Policy intersection is by itself not intended to create
correct, useable security policies. WS-Policy intersection is
solely focused on syntactic of alternatives and does not
address the semantics of assertions, or their influences on each
other [10]. Subtle differences between assertions cannot be
managed properly. There is also no guidance on how to
address domain-specific processing in a standard manner.
Additional policy processing is required to correct policies
after policy intersection, resulting in a two step policy
intersection process. Also, as NewHitsMusic generally
supports weaker security mechanisms, policy intersection
ensures that the agreed upon policy includes these
mechanisms, without considering how their interdependence
will affect the strength of security supported by WebSupply.

To highlight the limitations of policy intersection, domain-
independent policy intersection, related influence of policy
alternatives and assertions, and the influence of external
factors on security policy intersection are now discussed.

A. Domain-independent policy processing

The manner in which policy assertions are constructed and
the absence of semantic matching of assertions are limitations
that lead to inconsistent policies when policy intersection is
performed.

 Policy inconsistencies: When security policies are
intersected, the new security policy will contain all the
matching assertions which can create semantic
inconsistencies in the form of assertion duplication or
contradicting assertions. For duplicate assertions, the policy
intersection algorithm does not interpret if assertions have
the same type and if so, whether the same underling
mechanism is specified. If assertions are exactly the same,
only one copy of the assertion should be placed in the new
security policy. For contradicting assertions of the same
type such as assertions 15 and 18 of alternative D in Figure
6 both specify an algorithm suite, but with different
strength namely Basic128 and Basic256. The policy
intersection algorithm cannot decide which one is best to
use and an out-of-band discussions between administrators
of the two environments is needed.

 Assertion incompatibility: Policy intersection only
considers assertions to be compatible if they share the same
type. If two assertions are slightly different they will not
match. Take for example the two assertions in figure 7, that
are very similar. They both require that some form of a

Figure 7. Two similar security assertions

supporting token has to be used. The only difference is that
the first assertion requires a time stamp to be used, while
the second one does not. In policy intersection these
assertions will not intersect. An intelligent intersection
mechanism should be able to detect that semi-compatible
assertions such as these are similar enough to be placed in
a policy.

 Assertion parameters: Attributes and child elements of
assertions are completely ignored by policy intersection,
thereby not detecting incompatibilities.

WS-policy does not address how domain-specific policy
processing should be implemented. The next sections
highlight some considerations that need to be taken into
account by domain-specific policy processing namely the
related influence of security mechanisms and of external
influences.

B. Related influence of security mechanisms

Security policy alternatives and assertions specified in
security policies are typically defined in isolation from each
other. However, the usefulness of any mechanism often lies
with the way in which it is combined with others. It is thus
important for security policy administrators to view their
security mechanisms in the context of the whole security
system. It would also be important for security policy
administrators to be able to evaluate alternative security
mechanisms against each other to determine which will be the
best for the given situation. This is even more important when
policy intersection has been performed.

The security mechanisms used in a security policy
alternative all contribute to the security level of a security
policy. Stronger security mechanisms help to increase the
security level while weaker security mechanisms lower the
security level. To create an appropriate security policy
alternative, a mix of stronger and weaker security mechanisms
can be used to reach a certain security level. For example, in
Figure 4, WebSupply uses transport binding with a Username
token, but requires a strong algorithm suite to protect
messages. Unfortunately, policy intersection does not consider
the contribution that each security mechanism makes towards
reaching a specific security level.

The security level or security goal of a web service is
directly affected by integrity, confidentiality and
authentication mechanisms used. This research considers the
related effects that security mechanisms and policy assertions
for these security services may have on each other and on the
security level of the organization.

//Assertion 1
<wsp:All>
 <sp:SupportingTokens>...</sp:SupportingTokens>
 <sp:IncludeTimestamp/>
</wsp:All>

//Assertion 2
<wsp:All>
 <sp:SupportingTokens>...</sp:SupportingTokens>
</wsp:All>

978-1-4244-5494-5/10/$26.00 ©2010 IEEE

Figure 8: Security policy model

Authentication is an important security service to
implement. If a web services consumer cannot be properly
identified, the web services provider will not provide services
to the web services consumer. Because of this, authentication
has a strong influence on the security level. The security
mechanisms used for authentication must therefore carefully
be selected and protected. Authentication has a direct
influence on the trust relationship with the other party. On the
other hand, if there is high trust in the other party, the weaker
authentication tokens may be used. With low trust between
two parties, stronger forms of authentication tokens have to be
used to strongly identify each party to each other.

An important influence on integrity and confidentiality is
the security binding, as it defines a set of properties that
together give coherent information on how to secure a given
message exchange. For example, one can stipulate that an
asymmetric token is used with a digital signature to provide
integrity protection, and parts of a message are encrypted with
a symmetric key which is then encrypted using the public key
of the recipient. The security binding restricts what can be
placed in the security header of a message and the associated
processing rules. A decrease in either of the strength of
confidentiality and integrity mechanisms will negatively
influence the security binding. The security binding is also
influenced by the choice of algorithm suite, the binding type
and the use of timestamps. By using a strong algorithm suite,
the security level supported by the security binding will be
improved as it ensures a sound combination of security
mechanisms for integrity and confidentiality. The type of
binding such as Asymmetric binding can ensure more fine-
grained message security, as parts of a message can be
protected as it moves across domains. If Transport binding, is
used, HTTPS and not SOAP security is applied, providing
point-to-point protection, of lesser strength. Including
timestamps strengthens integrity, confidentiality and provides
non-repudiation evidence.

Current policy intersection processing does not address
any of these complexities. In the next section, the external
influences to policy intersection are discussed.

C. External influences

Computing environments supporting web services
applications are becoming more complex and diverse, as
complicated network topologies using firewalls, intrusion
detection systems and intermediate proxy servers are created.
If an organisation’s environmental scanners detect a
heightened number of attacks on the organisation’s systems, it
would require of consumers to use better confidentiality and
integrity mechanisms to counter this danger. The selection of
policy alternatives thus dictates a profound understanding of
the complexities of the environment and their influences on
each other. External influences are specific to the web service
provider or consumer environment, and influence the choice
of policy alternatives directly. For example, vulnerabilities
scanners or firewalls, metrics collected when security
mechanisms are used, and trust mangers that monitor the trust
level between the negotiating parties can be considered. These
influences differ according to the circumstances and
preferences of each provider or consumer. For example, a
SME may have very different security preferences, influences
on its security level, and security goals than a large enterprise.

IV. SECURITY POLICY FRAMEWORK

Currently, security policy intersection is very limited.
Compatible security policies may present risks to organizations
as the combination of security alternatives may include
inconsistencies and errors. In order to comprehensively
consider all important aspect when security policies are
intersected, a first step towards a security policy model is
presented in Figure 8. It presents a high-level view of the

978-1-4244-5494-5/10/$26.00 ©2010 IEEE

relationships between the different aspects that were discussed.
.

Figure 8 indicates which security mechanisms and policy
assertions influence each other. The security mechanisms, such
as specific algorithms resort under each respective component.

When policy intersection is performed, a trade-off analysis
is required between policy assertions in compatible security
policies to ensure that the best set of policy assertions to use.
There are a number of steps required in this process.

1. Identify the security preferences of the environment as
well as security mechanisms that have been implemented.

2. Assign a weight to each security mechanism to be able to
determine which are preferable to use.

3. Determine a security goal that a security policy should
support.

4. Once issues have been identified, decision-making
mechanisms must be employed to understand the impact
of choices and resolve disputes. Use intelligent decision-
making to select the best policy alternatives. The very
nature of such decisions is a fuzzy and uncertain process
that is domain and context dependent. In a cooperative
process of negotiation, consumers and providers are more
likely to be satisfied with the final result if they
participated in reaching the result by way of compromises
and trade-offs.

V. CONCLUSION

In this paper, the need to find mutually compatible security
policies was identified. Web services security policy
specifications were discussed using an example. The policy
intersection algorithm provided by WS-Policy was analyzed
and a number of weaknesses associated with security policy
intersection were identified. An important contribution made
was the discussion the inter-related effect that the selection of
security mechanisms has on each other, and on the security
level supported by the security policy.

The focus of future research is to design a tool to support
the features that were identified by this research. It will be of
great assistance to administrators to have a graphical interface
to view the influences that security policy selection has on the
security level supported by the policy in conjunction with
external influences.

REFERENCES
[1] M.P. Papazoglou and P. M. A. Ribbers, “e-Business: Organizational and

Technical Foundations”, Wiley, 2006.

[2] WS-Security, http://www.oasis-open.org/committees/wss.

[3] Boubez, T., Hirsch, F., Hondo, M., Orchard, D., Vedamuthu, A.,
Yalcinalp, U., Yendluri, P.:WS-Policy, http://www.w3.org/TR/ws-
policy/. Web Services Policy 1.5 – Framework (2007)

[4] M. Duran and J. Hasan, “Expert Service-Oriented Architecture in C#
2005”, Second Edition, Apress, USA, p. 15, 2006.

[5] L. Baresi, S. Guinea, and P. Plebani, “WS-Policy for Service
Monitoring”, 6th International Workshop on Technologies for E-
Services (TES 2005, Trondheim, Norway), Lecture Notes in Computer
Science (LNCS), Vol. 3811. Springer, pp. 72-83, 2005.

[6] A. Anderson, “An Introduction to the Web Services Policy Language
(WSPL)”, IEEE 5th International Workshop on Policies for Distributed
Systems and Networks, New York, USA, 7-9 June, 2004.

[7] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Nakata,
J. Pruyne, J. Rofrano, S. Tuecke and M. Xu, Web Services Agreement
Specification(WS-Agreement), Grid Resource Allocation Agreement
Protocol (GRAAP) Working Group, 2007.

[8] Cardoso. J, Voigt. K, Winkler. M, “Service Engineering for the Internet
of Services, Enterprise Information Systems”, LNBIP, Vol.19, pp.15-27,
Springer, 2009.

[9] K. Scarfone, A. Singhal, T. Winograd, “Guide to Secure Web Services”,
Recommendations of the National Institute of Standards and
Technology, August, 2007.

[10] Hudert. S, Eymann. T, Ludwig. H, and Wirtz. G, “A Negotiation
Protocol Description Language for Automated Service Level Agreement
Negotiations”, In: 2009 IEEE Conference on Commerce and Enterprise
Computing, Washington, DC, pp. 162-169, 2009.

[11] S. Seely, “Understanding WS-Security”, Technical Articles, Microsoft
Corporation, October, Available: http://msdn.microsoft.com/en-
us/library/ms977327.aspx, 2002.

[12] N. Mihindukulasooriya, “Understanding WS – Security Policy
Language”, WSO2 Inc., 28 January, Available:
http://wso2.org/library/3132, 2008.

[13] B. Hollunder, “Domain-Specific Processing of Policies or: WS-Policy
Intersection Revisited”, 2009 IEEE International Conference on Web
Services, Los Angeles, USA, 6-10 July, 2009.

[14] Barbir, A., Goodner, M., Granqvist, H., Gudgin, M., Nadalin, A.: WS-
SecurityPolicy 1.2. OASIS Standard, 1 July (2007)

[15] P. Nolan, “Understand WS-Policy processing”, IBM, 7 December,
Available: http://www.ibm.com/developerworks/webservices/library/ws-
policy.html, 2004.

[16] T. Nurmela, “WS-Policy specifications”, MOBILE WEB SERVICES,
2005.

[17] WS-SecurityPolicy Examples, http://docs.oasis-open.org/ws-sx/security-
policy/examples/ws-sp-usecases-examples.html.

[18] I. Suriarachchi, “WS-Security Processing Models Along with WS-
SecurityPolicy”, WSO2 Inc., 22 September, Available:
http://wso2.org/library/articles/ws-security-processing-models-along-ws-
securitypolicy-1, 2008.

[19] International Organization for Standardization, “IS0 7498-2, Information
Processing Systems – Open Systems Interconnection – Basic Reference
Model – Part 2: Security Architecture”.

[20] Schroth, C.: The Internet of Services: Global Industrialization of
Information Intensive Services, In: Proceedings of the 2nd IEEE
International Conference on Digital Information Management, Web X.0
and Web Mining Workshop, IEEE Computer Society, Lyon, France,
(2007)

978-1-4244-5494-5/10/$26.00 ©2010 IEEE

