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Abstract—Edge networks in enterprise networks are increas-
ingly complex and dynamic, raising questions about the ability to
maintain a current overview of computing assets on the network
and their potential vulnerability. However, to respond to ongoing
or impending attacks that may propagate at high speed, it has
become crucial to ensure proper and efcient reachability of all
network nodes that might be at risk so as to be able to assess
and, where possible, mitigate the threat.

In this paper we therefore propose an agent-based semi-
autonomous scanning mechanism which utilizes topology infor-
mation to traverse networks with minimum bandwidth usage
and maximum network coverage, and hence avoiding potential
service degradation in large-scale structured networks. Topology
information is also used to constrain propagation to a well defined
network, while intermittently active hosts and topology changes
are detected by using resident reactive agents plotted throughout
the mechanism gradual propagation.

I. INTRODUCTION

The constant threat of service disruption due to network
attacks has been a major concern to many organizations.
Especially, with these attacks increasing [1], while most of
them have exploited an already publicly known vulnerability
before it has been addressed by network administrators. For
example, in case of Conficker, the relevant security update has
been published in October of 2008 whilst different Conficker
versions observed in November 2008 through April 2009
have exploited the same vulnerability [2], [3]. The delay
in distributing updates might be explained by the quality
of security-related configurations, but the question of how
efficient current mitigation mechanisms in providing sound
protection to enterprise networks does still remain. Indeed,
in many cases it is crucial to respond promptly and effec-
tively to eliminate a malicious worm outbreak. Self-replicating
agents are one way to efficiently reach network nodes, as
their self-discovering nature enables them to find and detect
even undocumented and hidden nodes [4], especially common
under dynamic and complex networks. However, besides the
possibility of self-replicating programs being vulnerable to
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misuse [5], such an approach can consume significant band-
width resulting in unacceptable service degradation as well
as hindering the discovery and mitigation mechanism itself.
To address this issue, we proposed an agent-based mecha-
nism which uses topology information found in structured
networks to optimize its propagation speed whilst minimizing
resource consumption [6]. And in this paper we introduce
enhancements and improvements to address the limitations of
our mechanism which include: Edge node failure recovery,
network backbone traverse, and intermittent node detection
and recovery. The remainder of this paper is structured as
follows: Section II briefly reviews related work on different
worms propagations, while section III introduces topology and
modeling assumptions. Section IV compares self-replicating
with classical based vulnerability detection, after which Sec-
tion V introduces improvements of the mechanism, followed
by a discussion on treating intermittently nodes and topology
changes in section VI, whilst mechanism design aspects are
then described at section VII. A short overview of vulnerability
mitigation techniques is described in section VIII followed
by risks and threats to the mechanism in section IX, then a
comparison of a naive scanning strategy in section X, whose
properties are evaluated through network simulation in section
XI before a brief discussion of simulation results in section
XII. Finally, our conclusions are then described in section XIII.

II. RELATED WORK

Since their creation computer worms have adapted different
techniques to allocate vulnerabilities and propagate to cover as
many targets as possible. Worms like Code Red I and Slammer
have used random scanning techniques to allocate their targets,
while even the Morris worm used a more intelligent way of
propagation [7]. The propagation speed increases when the
worm incorporates information of all the vulnerable hosts such
as in Flash worms [8]. A hit-list worm would incorporate
information about some vulnerable hosts where then it will
switch to random scanning after scanning all the hosts in
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the hit-list as proposed by Staniford et al. with further tar-
geting enhancements suggested e.g. by Fan and Xiang [9].
Worms like SQLsnake uses a built-in list of numbers that
will be used later to generate network addresses to probe
for vulnerabilities, these numbers are generated according to
network space that most probably contain vulnerable targets
[10]. Zou et al. proposed a routing worm which scans based
on the information provided by Border Gateway Protocol to
reduce scanning space [11]. They also introduced a divide-
and-conquer scan worm which uses the divide and conquer
approach to propagate; when the target is infected it passes
half of the scanning space to the target and continues scanning
the other half of its original space [12]. Code Red II used
different scanning techniques where hosts closer to the infected
target are scanned with higher probability than those farther
away [13]. This is a scanning technique referred to as Island
Hopping, as the network is looked at as islands where an island
receives specific attention before hopping to another island
[10]. Vojnovi¢ et al. identified optimal static and dynamic
propagating strategies. These proposed strategies minimize the
total number of sampling to reach a target fraction [14]. In
one strategy, a worm infects a randomly selected host then
tries to spread on the same subnet, as long as there are many
vulnerable hosts. If not, the worm shift to another subnet
using random scanning [15]. Markus Kern has introduced
CRclean, a worm that spread passively by listening to Code
Red I scanning attempts. When Code Red I scan a host
that already has CRclean installed, CRclean will responds
to the scanning activity by reinfecting the scanning source
host and removing the malicious worm to provide remediation
and containment of Code Red I malicious spread [16]. The
worm, however, has not been tested in real world networks.
Blacklists were used by Conficker, the list contained entities
that might provide remedies and containment actions towards
malicious code, such as anti-virus sites and Microsoft, the
worm will not try to scan IPs in the list to avoid detection
[17]. Al-Salloum et al. proposed an agent-based (vulnerabil-
ity) scanning mechanism using semi-autonomous propagation
strategies similar to those found in worms, but which utilizes
information from the link layer (layer 2 of the OSI model) to
reconstruct topology information found through the Link Layer
Discovery Protocol to detect neighboring nodes and propagate
gradually until total coverage of an enterprise network is
reached [18]. They also introduced a Link-Layer-Based Self-
Replicating Vulnerability Discovery mechanism which utilizes
topology information such as Content-addressable memory
(CAM) tables and Spanning Tree information stored in active
network components such as switches. In this approach, the
scanning mechanisms propagates through traversing active
network components whilst probing vulnerable hosts until the
network is covered [6].

III. NETWORK TOPOLOGY MODEL

In the design of the network we have taken into account
where the mechanism will most probably and most beneficially
be found. These networks were designed hierarchically with

different number of local area networks (LANS) connected
with each other through a backbone. This topology mimics
to a large extent enterprise networks to both accelerate and
contain scanning activity whilst making use of the disparate
bandwidth available on backbone and cross-link networks as
well as the considerably higher bandwidth of edge switches.
For topology change and intermittently active hosts detection,
each node run under two modes: online and offline. When
the node is on the offline mode it can not be seen by the
mechanism and is considered disconnected until it becomes
online. Fig. 1 shows an example of a small 100-node network,
with a switch and hosts in the offline mode. For more
accurate results, different numbers and layouts of hierarchical
networks have been designed for simulations. Network nodes
are chosen randomly to be linked to a randomly chosen
switch under a specified probability. A switch is then linked
to the router in the backbone. In the simulation we have
assumed the following: Simple Network Management Protocol
(SNMP) is supported, network implements the Spanning Tree
Protocol STP and is loop-free, network backbone implements
Open Shortest Path First (OSPF) as a routing protocol, and
CAM/port status is maintained by switches. These assumptions
are not uncommon in enterprise networks. We have generated
17 hierarchical networks with connected nodes via a duplex-
link where packets can flow in both directions, and for the
results reported in section XI, the number of nodes was
chosen between 100 and 8000, with link bandwidth set to 100
MBps and assuming a discovery packet size of 900 bytes. If
we consider a switch domain as a switch with its directly
connected hosts, then there exist three mechanism failures
that can be described as: self-replicating failure to the next
switch domain, failure when probing an edge node, and self-
replicating failure to the next LAN. The cause of failures,
however, is either due to a link or a node operation failure.
In both cases the agent will try to recover the failure. More
simulation attributes are mentioned in section XI.

IV. WHY SELF-REPLICATING APPROACH

The self-replicating approach outperforms traditional vul-
nerability scanners at least in three main aspects: Probing

Fig. 1. A 100 node hierarchical network that implements STP with scattered
disconnected (offline) nodes, including a switch.
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distance, ability to detect intermittent nodes and traversing
the network without regard to network architecture. A shorter
communication distance between a vulnerable node and the
probing server is faster and less exposed to link failures
compared to communicating to a remote IP address. Self-
Replicating approaches install agents along their propagation
path which hire each node to participate in the scanning
activity to ensure high scanning coverage. Scanners, however,
scan different IP addresses remotely adding more distance and
more time for the scanners to communicate with their targets.
Furthermore, Self-Replicating approaches keep probing their
targets for vulnerabilities and detect any newly joining nodes
or off-line nodes that become on-line. Yet, when vulnerability
scanners conclude their assessment, newly joining or previ-
ously offline nodes become exposed. Also, the self-discovering
nature of the self-replicating approach gives it the ability to
spread around complex and large network without high regard
to the network architecture. Yet, scanners are usually required
to be installed at each network segment for better performance

[4].

V. AGENT-BASED HOST ENUMERATION AND
VULNERABILITY SCANNING USING DYNAMIC TOPOLOGY
INFORMATION

The Link-Layer-Based Self-Replicating Vulnerability Dis-
covery Agent discussed in [6] is a mechanism that utilizes net-
work topology knowledge to increase propagation efficiency
by using STP and Content Addressable Memory (CAM) table
to both explore topology and identify edge node status. How-
ever, the mechanism falls short in performing edge node failure
recovery and topology change detection, which is detrimental
when confronted with volatile edge networks such as wireless
networks. It also does not provide an algorithm for traversing
the network backbone, which requires assigning a host at each
LAN as a starting point. Therefore, in the following we provide
enhancements to address these limitations. In order to provide
edge node failure recovery, the scanning mechanism will wait
for a response from edge nodes to ensure successful probes;
upon failure to respond, the agent will retry after 0.5 seconds.

Fig. 2. Traverse Backbone Algorithm

For the scanning agent to be able to propagate from LAN to
another LAN, it needs to map the topology of the backbone.
Since OSPF routing protocol is implemented, the agent upon
detection of a router during its propagation, sends an SNMP
MIB request to fetch the OSPF Link State Database (LSD),
which gives a complete description of the network, including:
Routers, network segments, and how they are interconnected
[19]. This database is built by the collection of Link State
Advertisements (LSA) sent by each router in the backbone to
describe its local routing information. The agent also reads
the ARP cache of the LAN interface of each router to detect a
host IP address to self-replicate to. For example, Fig. 2 shows
a sample of a network of four LANs connected by a backbone
that consists of four routers. When the agent reaches H1 and
detects a router device (e.g. by checking the SNMP MIB value
of ipForwarding if set to one then the device is a router [20]),
it will send an SNMP MIB request ospfLsdbTable to fetch
the LSD [19] and the ARP cache stored at router A using
SNMP MIB ipNetToMediaTable; upon receiving router’s A
response the agent at H 1 extracts the backbone network map,
which in this example consists of routers A,B,C, and D. The
agent thereafter sends an SNMP MIB request to routers B,
C, and D to fetch the stored ARP cache of network interfaces
connected to the LAN. In parallel, the agent picks a host in
the ARP cache table of router A to detect a valid IP address
that belongs to the LAN where the agent should propagate (No
IP will be picked in the case of the example, since there is
only one LAN connected to router A). The agent subsequently
attempts to self-replicate to the IP address chosen and waits
to receive replies from routers B, C, and D containing ARP
cache tables. Upon receiving the tables, the agent picks one
IP address for each LAN and self-replicates to it, to ensure
proper coverage of the vulnerability discovery mechanism (re-
trying in case of replication failure, e.g. if the platform is not
supported'). We denote the list of LANs connected to the first
router encountered by the mechanism as L(ARPg,) where
ARPp, is the ARP cache stored at router Ry. And we denote
LSD stored in the first router as LS Dpg,, where the number of
routers according to the database is LSDpg, {N}. We denote
the function of fetching data through SNMP as SNMP and
agent self-replicating as SR. The algorithm for traversing the
backbone, then follows:

1) Fetch Link State Database (LSD) and ARP cache
from the first encountered router, using SNMP:
SNMP{LSDg, UARPg,}

2) Pick an IP address from each LAN interface (else the
source LAN interface) in the ARP cache of the first
encountered router and self-replicate to that IP address:
SR(L(ARPg,) — {Lo})

3) Fetch ARP cache from all other routers in the
backbone (according to LSD), using SNMP:

SNMP {ARPy, U ARPR, U ARPr, o (1, }

IThe replication mechanism itself is beyond the scope of this paper; how-
ever, both managed service interfaces and active exploitation of vulnerability
may be considered.

978-1-4244-5494-5/10/$26.00 ©2010 IEEE



4) Pick an IP address from each LAN interface in the
ARP caches of backbone routers and self-replicate to
these IP addresses: SR(L(ARPg,) U L(ARPg,).. U
L(ARPg, .,

The algorithm assumes that the Autonomous System con-
sists of a single area only, where a single read of the LSD
is enough to determine the map of the backbone. Dividing
the backbone into more than one area is used in very large
networks to reduce the size of routing tables, but can be
handled in a straightforward manner.

)

VI. INTERMITTENTLY ACTIVE HOSTS AND TOPOLOGY
CHANGES

In dynamic networks, it is difficult to achieve efficient cover-
age of a network with transient nodes without excessive scan-
ning frequency. However, by utilizing topology information it
is possible for the mechanism to determine topology changes
and intermittently active hosts for vulnerability discovery. The
agent takes advantage of the CAM table stored in the switch
and stores it during the first scan round. After 0.5 simulation
seconds, the switch is probed for the CAM table and checked
for changes; new nodes or switches are thereafter detected
by the agent and probed. When a new switch is listed in
the CAM table the agent has to verify that it is actually a
directly connected switch, by using Lemma 4.1 and 4.2 [6].
Intermittently active hosts and topology changes detection can,
therefore, be achieved by the following algorithm:

1) Fetch CAM table from the directly connected switch.

2) Compare the CAM table with the locally stored previous
CAM table.

3) Probe newly detected edge nodes.

4) Probe newly detected switches devices according to
Lemma 4.1 and 4.2 [6]

5) Go back to step 1 each time ¢

Note that to speed up the simulation, we have chosen 0.5
simulation seconds for the agent to check the CAM table.
However, the interval may be up to 5 minutes (the default
expiration time for CAM tables stored in switches) [21]. But
what about systems missing from the CAM table due to
inactivity or table age expiration, those systems will be treated
as offline nodes and will be detected when they become active
as per the algorithm. The agent can also check for topology
changes by listening to BPDUs emitted from the root switch.
When a topology change occurs, i.e. when a switch port goes
into forwarding status or from forwarding (or learning) into
blocking, the switch will emit a Topology Change Notification
(TCN) BPDU to the next switch (towards the root bridge)
until the root switch receives the TCN BPDU and emits a
configuration BPDU with the topology change bit on. The
BPDU emitted by the root is sent to all switches and thereafter
the agent can listen to it, where it can trigger a topology change
detection. However, in case the agent might miss a topology
change BPDU we have set the agent to check for network
topology changes each 0.5 simulation second.

VII. VULNERABILITY DISCOVERY MECHANISM DESIGN
COMPONENTS

Nazario et al. defined different components that constitute
a worm system [22]. We use their components to describe
the design of our mechanism with slight modifications. The
scanning and vulnerability discovery mechanism consist of
three components that allow it to cover the network as follows:

e Reconnaissance. This component is responsible for dis-
covering host nodes that are vulnerable. The improved
scanning mechanism reads CAM tables stored in switches
to detect edge node hosts to probe for vulnerability. The
mechanism also reads STP in addition to CAM table to
determine next switch to propagate [6].

e Probe Component. This component describe the method
the mechanism use to detect the property (e.g. vulnera-
bility) at a target node. For the sake of simplicity, our
simulation assumed all hosts to be susceptible and it
requires only one packet of the size 900 bytes to exploit
another node. However, in a heterogeneous network, more
elaborate scanning will be required from agents.

o Communication. This component describes the communi-
cation between agents. The scanning mechanism enables
communication between agents by sending an acknowl-
edgment packet to the sender agent to only ensure that the
self-replicating task has been accomplished successfully
so as to disable any blocking attempts.

These three components summarize the design of the scan-
ning mechanism; further extensions are discussed briefly in
section XIII.

VIII. VULNERABILITY DETECTION

In our simulations, we have assumed that one packet is
enough to detect a vulnerability and install an agent; which
mimics — to some extent — SQL Slammer which uses a
single packet to propagate [23]. Of course, one packet is not
enough to contain a payload that performs complex tasks (or
deal with multiple vulnerabilities), however, for such tasks
larger payloads can be used. Different approaches do exist
to detect a vulnerability such as by exploiting it. The agent
will try to probe a potential vulnerable machine by sending
a packet with the necessary payload to achieve three tasks.
First, exploit the vulnerability to gain the necessary privilege
to apply temporally remediation. Second, apply vulnerability
remediation to eliminate the security exposure of the vulner-
able machine. Third, trigger the agent for further propagation
to cover other vulnerable nodes. Vulnerability remediation is
temporary and clearly is not substitute for a code-level patch
and can rang of different techniques, such as disabling a
port that can be used by a malicious user to compromise a
machine, or installing a wrapper script that will act as a packet
filter between the vulnerable application and the network,
or even uninstalling the vulnerable application. What ever
remediation is used by the network security team, it must have
the required privilege to assure successful deployment. The
mechanism, however, should be deployed carefully as payload
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might be exposed to network users with malicious intention;
but the mechanism will most likely be triggered by the
enterprise security team in response to a critical vulnerability
with an already publicly available exploit. If exploitation was
successful, the node is vulnerable, otherwise, the node most
likely is not. This approach would eliminate the amount of
false positives, usually reported by vulnerability discovery
applications [24]. However, the exploitation procedure must be
performed carefully as it can lead to service disruption, where
it might get the system into a halt or unstable state, bound to
the nature of the vulnerability and its exploit. Tests should be
conducted before deploying any exploit. However, when this
cannot be ensured a secondary propagation mechanism must
be used.

IX. RISKS AND THREATS

Since the propagation path depends on topology informa-
tion, any malicious interactions with STP, OSPF, ARP, SNMP,
or CAM tables might have negative impact on the mechanism
behavior. For example, the lack of authentication of the STP
protocol, makes it possible for a malicious user to manipulate
the topology and compromise the integrity of BPDUs leading
to undesirable actions such as changing switch port status
or electing a compromised switch as root. Yet, although
these vulnerabilities does not relate to the agent directly, any
countermeasure to prevent such abuse would participate in the
protection of the mechanism itself. Some protection measures
do exist for STP, such as disabling user ports upon detection
of STP traffic and disabling ports that emit false BPDUs
that elect false roots. A malicious user flooding CAM table
with fake MAC addresses, will cause the switch to act as a
hub, with no edge information for the agent to utilize. One
possible mitigation to such misuse would be shutting down a
port if more than one MAC were detected, performance issues
however, should be considered when applying such mitigation.
For the agent to traverse the backbone it has to read the
ARP cache stored in the router. ARP cache poisoning may
redirect the agent to an IP address (out of the mechanism
scope) inserted by malicious users, however, the agent can
be designed to ignore any IP address that does not adhere
to certain attributes put by the security team. ARP cache
poisoning can be achieved by sending malformed Gratuitous
ARPs to the target machine, however, private VLANs can —
to some extent — eliminate such abuse, as they don’t allow
nodes on different ports to communicate at layer two but
still allow them to share the same network space. Since the
agent use SNMP in its communication with network devices
(e.g. switches and routers) a malicious user can intercept this
line of communication and alter it according to its attack
preference. When the agent, for example, probe a neighbor
switch to determine if it is directly connected to the current
switch, the attacker can respond with an SNMP message that
indicate the switch to be a non-neighbor switch, which will
cause the agent to ignore the switch, and might cause the
agent itself to stop any further propagation. Another scenario,
would be an attacker altering the router response to fetch the

OSPF Link State Database SNMP request, giving the attacker
the freedom to define the backbone map according to his
intrusion preference and using it as an input to the mechanism.
Even if we assumed the agents to not be vulnerable to STP,
ARP, or SNMP attacks; a switch domain can be isolated from
the vulnerability discovery process by turning the agent off
physically (weather the intention malicious or due to human
error). Also, the agent can be controlled remotely if it was
running under a vulnerable operating system where an attacker
can exploit or if the intruder was able to compromise a
privileged user account on the agent host. Different protective
measures and performance aspects of the mechanism are
addressed in [25].

X. RANDOMLY SCANNING AGENT

We have designed a simple random scanning worm to
compare it with our mechanism in terms of bandwidth. It
mimics Slammer worm that uses a random scanning technique
where it targets a randomly chosen IP, by sending one UDP
packet to its victims [23] but with slight difference as it
operates in corporate networks specifically at layer two of the
OSI model. When the worm is initiated, it propagates to all
LANs in the corporate network according to a hard coded
destination host at each LAN. The randomly scanning worm
thereafter, will utilize the information in the host to indicate
the address range the worm can randomly choose from. This
is done by reading the IP address and the subnet mask, of
the host. We have assumed for the simulation class A network
with subnet mask 255.255.192.0. The address space thereafter
consists of 16384 IP addresses; ignoring the network address
and the broadcast address yields 16382 possible target hosts.
The worm uses one packet of size 900 bytes to infect, and we
assume all hosts are vulnerable. However, there are switches
and routers that the worm might scan, with no infection as the
vulnerability exist only in host nodes.
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XI. SIMULATION RESULTS

Since each network has different topology and parameter
choices, it is somewhat difficult to find a closed-form com-
plexity estimate for the vulnerability discovery mechanism;
we have therefor chosen to conduct extensive network simu-
lations of our mechanism. For the results to be more realistic
following the model and assumptions outlined in section III,
hierarchical networks were used, reflecting typical network
topologies in large-scale, enterprise networks. All simulations
have been conducted using the Network Simulator 2 (NS-2),
a discrete event simulator mainly used for research activities
[26]. The simulations in total ranged to 765 hierarchical
networks. Since the capacity of NS-2 is limited, we weren’t
able to conduct simulations on topologies over 8000 network
nodes. Therefore, we have run our simulations against 100 to
8000 nodes with around 500 nodes difference between each
topology. The topology does not consist of host nodes only,
switches and routers also exist to reflect a multilevel topology.
For more accurate results each topology has been simulated 45
times where the average has been calculated to account for ran-
dom effects such as link and node operation failure in addition
to time coverage. In addition to our mechanism simulation,
we have performed simulations of a random scanning worm
following the model and assumptions outlined in section X.
However, due to the extensive amount of communications and
bandwidth consumption of such random propagation strategy,
the time of simulation was beyond our capacity, and therefore
we settled down with one simulation of network topologies
ranging from 100 to 3000 nodes.

In our simulations we have gathered the following:

o Number of link failures under p = 0.01.

o Number of node operations failures under p = 0.05. Note
that node operation failures are failures caused by the
node itself (e.g. system is busy or in different state due
to restarting).

e Number of packets generated by both our scanning
mechanism and the randomly scanning worm to cover

45 T
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2000 3000 4000 5000 6000 7000 800C
Network Nodes

Fig. 4. Time to cover the whole enterprise network

the network. The packets, however, that are generated
between a switch and a host are exempted due to it having
no significant impact on the bandwidth of the network.

o Time it takes the mechanism to cover the corporate
network. When there is a link or a node operation failure,
the mechanism will retry after 0.5 simulation seconds.

o Time it took the mechanism to detect all new network
nodes that have just joined the network. In all simulations
the network nodes were randomly added to the topology
at different locations. All offline nodes became online at
the 2.5 second of the simulation time.

o Number of random worm scans of non-existent IP ad-
dresses.

For the sake of simplicity, we have assumed in the simula-
tion, that the CAM table and STP information can be requested
by sending one packet to the switch. One SNMP MIB request
is also assumed to fetch OSPF information in addition to ARP
cache table stored in the router.

XII. DISCUSSION

It is not usual to propose a self-replicating approach as a
security measure, that is due to the nature of self-replicating
software; which genereally propagate randomly, consuming
huge bandwidth and causing the network to become congested,
as with malicious worms [27]. However, that doesn’t prevent
researching this area to eliminate its risks and tweak it in a
way to fulfill a certain task. Our mechanism tries to com-
bine both the distinctive exploring nature of self-replication
programs and the constraints of the enterprise network, to
provide a sound protection without disturbance to the network
focal interests. It appears that by using the network topology
information it is possible to dramatically reduce the bandwidth
utilized by self-replicating programs as in the case with
our proposed scanning mechanism. The mechanism before
improvements [6] had some limitations in its capability to
spread around the network and achieve sound coverage without
human intervention (i.e. hard coding a single host IP at each
LAN to bypass the backbone). The improvements thereafter
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are required to address these limitations to produce a more
robust vulnerability discovery mechanism. Three limitations
of the previous approach have been addressed. First, it adds
edge node failure recovery ensuring that all network nodes
are not missed; this is important since one vulnerable node
cause a threat to the whole enterprise network. Second, it
provides an algorithm to detect newly added network devices,
which ensures that a vulnerable node joining the enterprise
network get probed as soon as possible to minimize the time
of vulnerability exposure. Third, it provides an algorithm to
bypass the network backbone utilizing protocols such as OSPF
and ARP; which gives the mechanism the capability to spread
and cover the vulnerable network as fast as possible to achieve
absolute protection. Yet, as in any mechanism it is not fully
immune to threats and risks. Our mechanism depends on
topology information to propagate, which leaves it bound to
the protection measures applied to this information. Vulnerable
STP allows a malicious user to control and define the path the
mechanism would take; this allow the attacker to hide nodes
from the mechanism, or even cause a denial of service attack
by adding network loops to the topology. Notice that this is
not a direct attack on the mechanism itself but on the feedback
the scanning mechanism uses to function. The same apply to
the CAM table, what if a malicious user alters it to reflect no
switches available; this would lead the mechanism to find no
further way to propagate and stop. More threats exist in the
backbone as well. The scanning mechanism depends on OSPF
protocol to pass to other LANs, what if an attacker was able
to forge the LSD to contain non-existent IP addresses, which
will stop the vulnerability discovery process from reaching
further LANs. As a matter of fact, the compromise of the
LSD would allow the attacker to define routers IP addresses
that is not necessary part of of the predefined scope of the
mechanism. Likewise with the ARP cash stored at routers,
a poisoned ARP cache can give the attacker the ability to
direct the worm to self-replicate to whatever IP is given as
long the target is vulnerable. This would take the scanning

35000 T T T

T
Mechanism
Random Scanning Malicious Worm -------

30000 T E
25000 - B
20000 i

15000 1

Packets of Size 900 bytes

10000 f 1

5000

o L I L L L L L
0 1000 2000 3000 4000 5000 6000 7000 800C

Network Nodes

Fig. 6. Number of packets generated by randomly scanning worm in
comparison to our scanning mechanism

mechanism out of its predefined scope and would add a
malicious intention to its operational procedure. Detecting new
switches and nodes is also threatened by malicious activity.
One scenario would be adding a rogue switch where the
scanning mechanism would not be able to deal with. When
the mechanism probes the rogue switch for CAM or STP
information, the switch would provide misleading response,
such as fake designate Bridge, allowing the switch to remain
with its directly connected malicious nodes away from the
mechanism coverage. Our mechanism assumes the topology
information to be authentic and hasn’t been altered. However,
if that is not the case, it becomes vulnerable to the same
vulnerabilities the network topology has. This is expected
as the mechanism in its topology dependent nature becomes
part of the network, like the protocols operating within the
network, not like an independent external security system.
The simulation results cover different aspects of performance.
Node operation and link failures of p = 0.05 and p = 0.01,
respectively, have recorded different results. For example in
a network of size 2500 nodes, link failures were 27 and
node operation failures were 131. Further, 85 link failures
were recorded at a network of size 8000 nodes and 420 node
operation failures at the same network. Fig. 3 shows more
results. The time it took the agent to cover a network of 2500
elements was 3.25 simulation seconds and 4.0s to cover a
5000 network topology. Of course the time is affected by
link and node operation failures, the improved mechanism
will wait 0.5s before retrying after a link or node operation
failure. Note that the time reflects the coverage of the whole
network including newly added network devices, that join the
network at simulation second 2.5. Fig. 4 shows more results.
For the topology change detection, which records the time it
takes the propagation mechanism to detect all newly added
network devices, it shows close results. That’s because each
topology detects almost the same number of network devices.
In a network of size 3000 it required 0.47s to detect 30 hosts
and a switch (with different hosts connected to it) and 0.48s of
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a network of size 8000. More results can be seen at Fig. 5. In
comparison with a randomly scanning worm, our mechanism
has generated 570 packets in a network of size 1500, while the
random scanning worm generated 23074 packets. Moreover,
the random worm generated 31358 packets to cover a network
of size 2500 while our scanning algorithm required 912
packets only. Further results are shown in Fig. 6. Also, the
random scanning worm has generated too many scans to non-
existent IP addresses. Although the worm operates within the
LAN, non-existent IP scans will cause the host to emit an
ARP probe for each new IP address scanning attempt. For a
network topology of size 1500 it resulted in 3660723 non-
existent IP scan attempts and 5165367 for a network of size
2500. Results are shown in Fig. 7. Our mechanism, however,
avoid scanning non-existent IP addresses since it detect targets
based on CAM information.

XIII. CONCLUSION

In this paper we have highlighted the need for effective
mechanisms to detect network nodes vulnerabilities. We have
previously proposed an agent-based mechanism to help pre-
vent malicious attacks, and in this paper we further enhance
its performance. Improvements include: edge node failure re-
covery to ensure sound and efficient coverage of all vulnerable
edge nodes and an algorithm to enable the mechanism to
traverse the network backbone using OSPF protocol and ARP
stored in routers — which provides independently driven self-
propagation to all network LANs without human intervention
as compared to the previous design. We also proposed an algo-
rithm to enable the mechanism to detect newly added network
devices as soon as possible to eliminate vulnerability exposure.
Since the mechanism is topology dependent, different risks
and threats to topology information have been highlighted,
especially protocols utilized in the discovery process, such
as: STP, OSPF, ARP, SNMP, and CAM. We have validated
our mechanism through simulations; the results shown here
assumed relatively volatile link failures of probability p = 0.01
and node operation failure of p = 0.05. The results also
showed the time it took the mechanism to cover the network,
in addition to the time required to detect newly vulnerable
nodes that have just joined the corporate network. Simulation
results of a randomly scanning worm that to some extent
mimic the propagation behavior of the Slammer worm has
also been gathered to be compared with the mechanism in
terms of bandwidth utilization. Ongoing and future work is
focused on increasing both the robustness and performance
of the algorithms in defending the propagation mechanism
against malicious adversaries.
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