

TOWARDS SECURITY EVALUATION

BASED ON EVIDENCE COLLECTION

Reijo Savola

VTT Technical Research Centre of Finland

P.O. Box 1100, FIN-90570 Oulu, Finland

phone: +358 40 569 6380, fax: +358 20 722 2320

Reijo.Savola@vtt.fi

ABSTRACT

Information security evaluation of software-intensive systems typically relies heavily on the
experience of the security professionals. Obviously, automated approaches are needed in this field.
Unfortunately, there is no practical approach to carrying out security evaluation in a systematic
way. Here we introduce a general-level holistic framework for security evaluation based on security
behaviour modelling and security evidence collection, and discuss its applicability to the design of
security evaluation experimentation setups in real-world systems.

KEY WORDS

Information security evaluation, security metrics, security modelling, security testing

TOWARDS SECURITY EVALUATION

BASED ON EVIDENCE COLLECTION

1 INTRODUCTION
Products and services, and the technical infrastructures that enable them are showing a strong trend
towards convergence and networking. At the same time, industrial companies and other
organizations are creating very complex value nets to design and manufacture products and to
maintain them. These trends, together with pressure from information security and privacy
legislation, are increasing the need for adequately tested and managed information security
solutions in software-intensive systems and networks. The lack of appropriate information security
solutions might have serious consequences for business and the stakeholders.

Security evaluation, testing and assessment techniques are needed to be able find adequate
solutions. Seeking evidence of the actual information security level or performance of systems still
remains an ambiguous and undeveloped field. In order to make progress in the field there is a need
to focus on the development of better experimental techniques, better security metrics and models
with practical predictive power [4].

Security evidence can be used for both quantitative and qualitative analysis methods. The
evidence is more useful when it is meaningful for most of the system’s lifecycle:

• During research and development, security evidence helps researchers to develop more secure
solutions and find design vulnerabilities. Research-oriented security evidence can be
constructed using analytical models that take account of factors contributing to security and the
cross-relationships of components. Research-oriented metrics can concentrate on the critical
parts, especially the technical challenges.

• During system implementation, security evidence can be used to find design and
implementation vulnerabilities as a part of security engineering. These are also based on
analytical models. If security metrics are part of a security engineering process, they are more
valuable.

• During the system maintenance phase, security evidence can be used for preservation of the
achieved security level during possible updates, integration or modifications, and to find
implementation vulnerabilities. From the point of view of the security engineering process, a
technical system can be constantly in the system maintenance phase. In addition to preservation
of the security level, this level can be improved using feedback obtained from the application of
security evidence information.

The main contribution of this study is to introduce a holistic approach to security evaluation
based on evidence collection and to discuss the evidence collection process in practice. The rest of
this paper is organized as follows. Section 2 discusses security metrics and their relationships in
general, Section 3 presents our theoretical security modelling and evaluation framework, Section 4
analyses how evidence collection can be done in practice with the help of the framework, and,
finally, Section 5 discusses future work and Section 6 gives conclusions.

2 BACKGROUND
The wide majority of the available security metrics approaches offering evidence information have
been developed for evaluating security policies and the maturity of security engineering processes.
The most widely used of these maturity models is the Systems Security Engineering Capability
Maturity Model SSE-CMM (ISO/IEC 21827) [8]. Other well-known models are Trusted Computer
Security Evaluation Criteria (TCSEC, The Orange Book) (TCSEC 1985) [16] and Common Criteria
(CC) [7]. In connection with policy and process metrics, it is extremely important to evaluate the
security functionality of products at the technical level, without forgetting their life cycle
management. The goal of the whole process of seeking of security evidence should be targeted at
understanding the information security threats and vulnerabilities of the product and its usage
environment holistically.

Jonsson [9] sorts the methods of security measurement into the following techniques: risk
analysis, certification and measures of the intrusion process:

• Risk analysis is an estimation of the probability of specific intrusions and their consequences
and costs: it can be thought of as a trade-off to the corresponding costs for protection,

• Certification is the classification of the system in classes based on design characteristics and
security mechanisms. “The ‘better’ the design is, the more secure the system.”

• Measures of the intrusion process means statistical measurement of a system based on the effort
it takes to make an intrusion. “The harder it is to make an intrusion, the more secure the
system.”

In addition to these methods, it is justifiable to consider auditing and security evaluation as
measurement techniques for information security. Most technical security analysis is currently
performed using penetrate-and-patch or “tiger team” tactics. The security level is evaluated by
attempting to break into a system under evaluation by exploiting previously known vulnerabilities.
If a break-in attempt is successful, the vulnerability is patched. Penetrate-and-patch tactics have
been used by special security testing professionals whose methods and tools have not been made
public knowledge. There are several problems with penetrate-and-patch: it requires experienced
professionals, the actual testing is carried out too late, and the patches are often ignored and even
sometimes introduce new vulnerabilities. Most of the technical testing metrics are meant for the
unit or source code level. Various methods for system security evaluation and assessment have been
proposed in the literature, see, e.g., [2, 12, 13, 18]. These frameworks are conceptual and help in
understanding the problem area. However, these frameworks do not offer aggregated means for
practical security evaluation or the testing process.

3 FRAMEWORK FOR SEEKING EVIDENCE OF SECURITY

In the following we introduce our holistic framework for model-based information security
evaluation or testing of software-intensive systems. This collection of constructs and abstractions
forms the basis of our approach to seeking evidence of security in a system. Please note that the
framework could be expressed in a formal way using various types of representations, such as
Labelled Transition Systems (LTSs). However, in this paper we discuss the implications of the
framework for practical security testing and evaluation rather than intending to formalize the
framework.

3.1 Role of Threat Analysis
The most important task in the whole process of security evaluation is to identify the security risks
and threats, taking enough assumptions of the attackers’ capabilities into account. A subtask in
threat analysis is to identify valuable assets that may be subject to security risks. An asset is
something in the context of the system that is to be protected. A threat description can be
represented by, e.g., threat / asset combinations. A holistic and cross-disciplinary threat picture of
the system controls the development of security solutions. Threats that are possible during the
whole life cycle of the system under evaluation must be considered.

It must be noted that the collection of security threats to a system is not static. Security
algorithms and other solutions are cracked and new vulnerabilities are found every now and then.
Even complete platforms or communication protocol structures can be compromised. As a
consequence, a system’s threat landscape is constantly changing, possibly reflecting different kinds
of trends. A weak signal is a factor for change that is hardly perceptible in the present but which
will constitute a strong trend in the future. Some weak signals can represent on-going or anticipated
changes in the threat landscape. The actual change in time can happen in small steps or in one leap.
In the former case the trend could be exposed, if the weak signals presenting the steps could be
detected [11].

Example 1 We denote the original set of identified threats in a system by T, consisting of the
threat factors T0, T1, T2,…Tn. Later, the effect of discipline, Dx, is introduced into the system. This
effect manifests itself as a weak signal type of threat, τx, which can or cannot be identified. In the
former case T is updated to T := T ∪ τx. In the latter case the effect of Dx remains a hidden threat
represented by the undetected weak signal τx. □

3.2 Role of Security Requirements
The goal of defining security requirements for a system is to map the results of risk and threat
analysis to practical security requirement statements that manage (cancel, mitigate or maintain) the
security risks of the system under investigation. Security requirements are constraints on functional
requirements intended to reduce vulnerabilities. Security mechanisms are then developed to fulfil
the requirements. Haley et al. [6] present an interesting method for deriving security requirements
from threat descriptions. They derive the security requirements using an iterative process where
each iteration recomposes the threat descriptions with the functional requirements. Iterations are
required because identifying and eliminating vulnerabilities will often create new vulnerabilities.

The security requirements play a crucial role in the security evaluation. The requirements
guide the whole process of security evidence collection. For example, security metrics can be
developed based on requirements: if we want to measure security behaviour of an entity in the
system, we can compare it with the explicit security requirements, which act as a “measuring rod”.

All applicable dimensions (or quality attributes) of security should be addressed in the
security requirements definition. See [1] for a presentation of quality attribute taxonomy. Well-
known general dimensions include confidentiality, integrity, availability, non-repudiation and
authenticity. Quality attributes like usability, robustness, interoperability, etc., are important
requirements too. In fact, an unusable security construct can even turn out to be a security threat.

The safety community has developed a standard approach to solving the problem of
requirements relevance, and the similarity between safety and security implies that it would be well
worth considering if something similar could be done for security [3]. For example, Security
Importance Levels (SILs) could be used for categorizing non-security requirements in terms of their
security relevance and Security Evidence Assurance Levels (SEALs) could be used to enforce the
additional measures needed to develop the more security-critical parts of systems.

It must be noted that one cannot easily define a general-level security requirement list that
could be used for different kinds of systems. The actual requirements and role of the security
dimensions heavily depends on the system itself, and its context and use scenarios.

3.3 Modelling Entities and their Cross-Relationships
It is obvious that a model of the security behaviour of a system is needed in order to be able to
evaluate security systematically. To make a decision about whether a system is secure, we need
evidence that (i) each software or hardware component and subcomponent and (ii) the composition
formed from them, taking account of cross-relationships, are secure. Essentially, the process of
security evaluation takes use scenarios and the context of the system into account. In addition to
this structural classification of entities, it is important to find the behavioural entities in the system.
In order to help investigate the security behaviour of a system, we define security action, atomic
security action and security behaviour:

Definition 1 (security action) A security action, ar, is a behavioural entity of a system that has
some effect, either incremental or decremental, on the security defined by a certain security
requirement, r, of a system. □

Definition 2 (atomic security action) An atomic security action, α, is a security action that
cannot be split into other security actions. It is the lowest level of observable security behaviour. □

Definition 3 (security behaviour of a system) The security behaviour, A, of a system consists
of a composition of atomic security actions of all the security requirements of the system that take
their cross-relationships into account. □

The security behaviour of the system, expressed using suitable modelling language, is the
basis model of the system under security evaluation. For example, a pattern language could be used
to describe the security actions and security behaviour.

Security actions can represent one or several dimensions or quality attributes of security. We
define the dimensions of a security action in the following:

Definition 4 (dimensions of a security action) A security action, ar,, having an effect on
security requirement r, has an impact, i(ar,u), and a probability, p(ar,v). □

Definition 5 (impact of a security action) The impact i(ar,u) of security action ar is the
estimate of its impact in scale [-1,1] with security requirement r. If the impact increases security, it
is positive; u is the uncertainty of the impact estimate, between [0,1], where 1 presents complete
certainty. □

Definition 6 (probability of a security action) The probability p(ar,v) of security action ar is
the estimated probability of the security action to be realized with uncertainty, v. □

It is important to notice that impact analysis of security actions is within the focus of our
approach. After all, we are interested in the impact of a system’s security behaviour on the whole –
i.e. the overall impact.

Definition of the actual security actions in the system under investigation is a challenging
task. In practice, this task may turn out to be impossible due to the amount of functionality and use
scenarios in practical systems. Real-world implementations are far too complex for this kind of
analysis. There is a need for automated and easily applicable and standardized technical methods
for software implementation to ensure and measure security, e.g. standard secure memory
management support and component-level life cycle management support.

Modelling the security behaviour is an iterative process. Voas [17] states that we do not know
a priori whether the security of a system composed of two components, A and B, can be determined
merely from knowledge of the security of A and B. Rather, the security of the composite is based on

more than just the security of the individual components – it hinges on the cross-relationships. Both
the atomic behaviour and the cross-relationships have to be known and analysed in an iterative way.

The security behaviour of a system could be modelled using tree representations, such as
Attack Trees [14], evaluation criteria, such as Common Criteria [7] and several formal approaches
and semi-formal approaches, such as UML and its security extension UMLSec [10]. Perhaps the
most interesting method is to develop security patterns [15]. A security pattern describes a
particular recurring security problem that arises in specific contexts and presents a well-proven
generic scheme for its solution. In practice, a chosen set of security patterns could guide the process
of defining security requirements. Security behaviour with an adequate set of security actions could
be associated with these patterns. The key elements of security patterns include the following:

• Name: a label representing the structure,

• Context: general conditions,

• Problem: a statement that defines the problem that will be solved by the security pattern, and

• Solution: the solution to the problem.

3.4 Evidence Information
Security evidence is gathered from various sources as input to the decision process of security
evaluation. The evidence collection should be arranged in a way that supports evaluation of the
security behaviour and security actions. We classify the types of security evidence information into
three categories:

• Measured evidence: The process of gathering measured or assessed information uses security
metrics as its basis. Table 1 lists some examples of measured security evidence. Measured
evidence can be collected during security testing or in a security audit based on pre-defined
metrics.

• Reputation evidence: Reputation of software or hardware constructs, or their origin, is an
important class of evidence. A software company in charge of implementing a product might
have some confidential knowledge of the security of different software components. Table 2
lists some examples of reputation evidence. Reputation evidence can be collected from
experience of R&D departments and be based on general-level knowledge.

• Tacit evidence: In addition to the measured and reputation evidence, there might be some
“silent” or “weak” signals of security behaviour. The subjectivity level of tacit evidence might
be higher than in the case of measured and reputation evidence. Collection of tacit evidence is
typically an ad hoc process. Senior security experts and “tiger teams” play an important role in
this kind of evidence.

Table 1: Examples of measured evidence

Dimension Metric types
Confidentiality Use of compartmentalization in memory use
Confidentiality Encryption strength
Integrity Result of one-way hash function
Integrity Robustness of data synchronization algorithm
Availability Validation result of access control rules
Usability Amount of user interaction needed

The objectivity level of the evidence varies a lot. In many cases even the measurements are
arranged in a highly subjective manner. Typically, no single measured value is able to capture the
security value of a system. Thus several pieces of security evidence have to be combined.

Table 2: Examples of reputation evidence

Metric types
Reputation of practices of subcontractor
Reputation of implementation results of subcontractor
Reputation of a software version
Reputation of a software component provider
Reputation of a standard used in the implementation
Reputation of an integrator

3.5 Trust Assumptions
A trust assumption is a decision to trust the given properties of some domain and go no further in
the analysis [5]. Trust assumptions set the boundaries for the need for evidence. Trust assumptions
can be made based on reputation evidence: if we trust a software version fully, there is no need to
investigate it at a more detailed level.

Trust assumptions can make the security evaluation process feasible by taking a certain risk in
assuming that the object left out of more detailed investigation is trusted.

3.6 Decision Process
The most final phase of security evaluation is the decision process. The overall goal of the decision
process is to make an assessment and form conclusions on the information security level or
performance of the system under investigation. The decision process can be split into sub-decisions
based on the security action model.

The decision process can be carried out in the following way:

1. For each security requirement and security action composition, seek evidence and estimate the
probability and impact of that action, taking cross-relationships and trust assumptions into
account.

2. Estimate the overall impact of the gathered evidence on each security requirement

3. Make a decision whether the security of the system with regard to the requirements is at a
sufficient level.

In a high abstraction level, the overall impact of all security actions on a security requirement
can be defined as follows:

Definition 7 (overall impact) The overall impact of all security actions on a security
requirement is

tt

T

t
t ipwI ⋅⋅= ∑

=0

where I is the overall impact, T the number of all security actions of a security requirement, and wt
is a weighting factor, pt a probability and it the impact of security action t on the requirement under
investigation. The weighting factor depends on time and context.

4 PRACTICAL CONSIDERATIONS
In the previous section we presented an approach to security modelling and evaluation.
Unfortunately, in practice, a thorough modelling of security behaviour is only possible in a few
ideal cases. Typically, today’s software-intensive products are very complex, and their functionality
is not well documented and often has unknown dependencies. Development of an ambiguous
security behaviour model at an atomic security action level is a very challenging and time-
consuming task.

The practical needs for security evaluation are often limited too. This results in a situation in
which we should be able to try to find the security actions that are most critical and most typical. To
reach the desired security level it is not important to try and measure every part and component that
affects security. Instead, we need enough evidence to make trade-off decisions.

We propose the following process to carry out practical-level security evaluation:

• Risk and threat analysis. Carry out risk and threat analysis of the system and its use
environment, if not carried out before. In real-world engineering risk and threat analyses are not
carried out adequately. Consequently, the set of security requirements might not be sufficient.

• Define security requirements in such a way that they can be compared with the security actions
of the system. Based on the threat analysis, define the security requirements for the system, if
not yet defined. These are lacking in many practical systems.

• Prioritize security and other requirements. The most critical and most often needed security
requirements should be paid the most attention.

• Model the security behaviour. Based on the prioritized security requirements, identify the
functionality of the system that forms the security actions and their dependencies in a priority
order.

• Gather evidence from measured, reputation and tacit security information.

• Estimate the probabilities and impacts of security actions based on the evidence.

• Aggregate the results from the probability and impact estimation to form a clear picture of
whether or not the system fulfils the security requirements.

5 DISCUSSION AND FUTURE WORK
A practical security evaluation framework based on the ideas discussed in this paper requires a lot
of future development. In the following we list some goals for future work.

A suitable language needs to be developed to formalize and express security actions and their
cross-dependencies, as well as security requirements. Both the system security behaviour and
requirements need to be expressed in such a way that it is possible to compare them. A language
able to express behavioural patterns is a good candidate for this purpose. Security patterns are
currently under development in the pattern community. Security patterns augmented with semantics
representing security properties could offer a feasible means to model the security requirements and
security behaviour of systems. Possibly, the use of fuzzy logic might be connected to that kind of
language. A mechanism to describe the interactions and cross-dependencies of security actions is
needed.

A knowledge base of typical security constructs should be established to offer pattern
information on their security behaviour. The security actions of a system can be expressed using
patterns. Typical constructs include encryption elements, firewalls, proxies, compartmentalization,
inter-process communication, access control mechanisms and authentication mechanisms. The
information needs to be collected experimentally to enable development of the knowledge base.

Security evaluation or testing can be done in practice if this kind of knowledge base support
could be used for security behaviour modelling and suitable security requirement documentation of
the system is available. Furthermore, the process of evidence collection from different sources, and
aggregation of it, should be developed using experimental information from real-world systems.

6 CONCLUSIONS
We have discussed the problem of information security evaluation in the context of software-
intensive systems. There are no systematic means of carrying out security evaluation. In this paper
we have presented a conceptual holistic framework for security modelling and evaluation with
some practical considerations. The framework is based on evidence collection and security
requirement-centred impact analysis.

This is not a rigorous solution and future work needs to be done on developing a suitable
language for expressing security requirements and security behaviour in an unambiguous way. A
collection of security patterns would be very helpful in modelling the security behaviour when
carrying out security testing or experimentation.

In practical security evaluation, the requirements should be prioritized and the system
modelled only to the extent needed to conform to the trust assumptions. Full modelling of practical
systems is not feasible without automated approaches, which might be very challenging to develop.

REFERENCES
1. Avizienis A., Laprie J.-C., Randell B. and Landwehr C. (2004); Basic Concepts and

Taxonomy of Dependable and Secure Computing. In: IEEE Transactions on Dependable
and Secure Computing, Vol. 1, No. 1, January/March 2004, pp. 11-33.

2. Brocklehurst S., Littlewood B., Olovsson T. and Jonsson E. (1994) On Measurement on
Operational Security. In: IEEE AES Systems Magazine, Oct. 1994. pp. 7-15.

3. Firesmith D. G. (2005) Analyzing the Security Significance of System Requirements. In:
Symposium on Requirements Engineering for Information Security (SREIS), August 25,
2005, Paris.

4. Greenwald M., Gunter C., Knutsson B., Seedrov A., Smith J. and Zdancewic S (2003):
Computer Security is not a Science (but it should be). In: Large-Scale Network Security
Workshop, Landsdowne, VA, March 13-14, 2003.

5. Haley C. B., Laney R. C., Moffett J. D. and Nuseibeh B. (2003) Using Trust Assumptions in
Security Requirements Engineering. In: 2nd International iTrust Workshop on Trust
Management in Dynamic Open Systems, 15-17 September, 2003, Imperial College,
London, UK.

6. Haley C. B., Laney R. C. and Nuseibeh B. (2004) Deriving Security Requirements from
Crosscutting Threat Descriptions. In: AOSD 04, March 2004, Lancaster, UK.

7. ISO/IEC 15408 (2004) Common Criteria for Information Technology Security Evaluation,
Version 2.2

8. ISO/IEC 21827 (2002) Information Technology – Systems Security Engineering –
Capability Maturity Model (SSE-CMM).

9. Jonsson, E. (2003) Dependability and Security Modelling and Metrics, Lecture Slides,
Chalmers University of Technology, Sweden.

10. Jürjens J. (2002) UMLSec: Extending UML for Secure Systems Development. In: UML
2002 – The Unified Modeling Language, Vol. 2460 of LNCS, pp. 412-425, Springer, 2002.

11. Kajava J. and Savola R. (2005) Weak Signals in Information Security Management. In:
Proceedings of the International Conference on Computational Intelligence and Security
(CIS) 2005, Part II, Xi’an, China, December 15-19, 2005. Springer, pp. 508-517

12. McDermid J.A. and Shi, Q. (1992) A Formal Approach for Security Evaluation. In:
Proceedings of the 7th Annual Conference on Computer Assurance, Systems Integrity,
Software Safety, Process Security (COMPASS), pp. 47-55.

13. Nicol D., Sanders W. H., Trivedi K. S. (2004) Model-Based Evaluation: From
Dependability to Security. In: IEEE Transactions on Dependable and Secure Computing,
Vol. 1, No. 1, January/March 2004, pp. 48-65.

14. Schneier B. (1999) Attack Trees. In: Doctor Dobb’s Journal, December 1999, pp. 21-29.

15. Schumacher M. and Roedig U. (2001) Security Engineering with Patterns. In: Pattern
Languages of Programs 2001, September 11-15, Monticello, Illinois.

16. Trusted Computer System Evaluation Criteria, “Orange Book”, (1985), U.S. Department of
Defense Standard, DoD 5200.28-std

17. Voas, J. (2001) Why is it so Hard to Predict Software System Trustworthiness from Sofware
Component Trustworthiness? In: Proceedings of the 20th IEEE Symposium on Reliable
Distributed Systems.

18. Voas J., Ghosh A., McGraw G., Charron F. and Miller K. (1996) Defining an Adaptive
Software Security Metric from a Dynamic Software Failure Tolerance Measure. In:
Proceedings of the 11th Annual Conference on Computer Assurance, Systems Integrity,
Software Safety, Process Security (COMPASS).

