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ABSTRACT 

Information security evaluation of software-intensive systems typically relies heavily on the 
experience of the security professionals. Obviously, automated approaches are needed in this field. 
Unfortunately, there is no practical approach to carrying out security evaluation in a systematic 
way. Here we introduce a general-level holistic framework for security evaluation based on security 
behaviour modelling and security evidence collection, and discuss its applicability to the design of 
security evaluation experimentation setups in real-world systems. 
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1 INTRODUCTION 
Products and services, and the technical infrastructures that enable them are showing a strong trend 
towards convergence and networking. At the same time, industrial companies and other 
organizations are creating very complex value nets to design and manufacture products and to 
maintain them. These trends, together with pressure from information security and privacy 
legislation, are increasing the need for adequately tested and managed information security 
solutions in software-intensive systems and networks. The lack of appropriate information security 
solutions might have serious consequences for business and the stakeholders. 

Security evaluation, testing and assessment techniques are needed to be able find adequate 
solutions. Seeking evidence of the actual information security level or performance of systems still 
remains an ambiguous and undeveloped field. In order to make progress in the field there is a need 
to focus on the development of better experimental techniques, better security metrics and models 
with practical predictive power [4]. 

Security evidence can be used for both quantitative and qualitative analysis methods. The 
evidence is more useful when it is meaningful for most of the system’s lifecycle: 

• During research and development, security evidence helps researchers to develop more secure 
solutions and find design vulnerabilities. Research-oriented security evidence can be 
constructed using analytical models that take account of factors contributing to security and the 
cross-relationships of components. Research-oriented metrics can concentrate on the critical 
parts, especially the technical challenges. 

• During system implementation, security evidence can be used to find design and 
implementation vulnerabilities as a part of security engineering. These are also based on 
analytical models. If security metrics are part of a security engineering process, they are more 
valuable.  

• During the system maintenance phase, security evidence can be used for preservation of the 
achieved security level during possible updates, integration or modifications, and to find 
implementation vulnerabilities. From the point of view of the security engineering process, a 
technical system can be constantly in the system maintenance phase. In addition to preservation 
of the security level, this level can be improved using feedback obtained from the application of 
security evidence information. 

The main contribution of this study is to introduce a holistic approach to security evaluation 
based on evidence collection and to discuss the evidence collection process in practice. The rest of 
this paper is organized as follows. Section 2 discusses security metrics and their relationships in 
general, Section 3 presents our theoretical security modelling and evaluation framework, Section 4 
analyses how evidence collection can be done in practice with the help of the framework, and, 
finally, Section 5 discusses future work and Section 6 gives conclusions. 

 



  

2 BACKGROUND 
The wide majority of the available security metrics approaches offering evidence information have 
been developed for evaluating security policies and the maturity of security engineering processes. 
The most widely used of these maturity models is the Systems Security Engineering Capability 
Maturity Model SSE-CMM (ISO/IEC 21827) [8]. Other well-known models are Trusted Computer 
Security Evaluation Criteria (TCSEC, The Orange Book) (TCSEC 1985) [16] and Common Criteria 
(CC) [7]. In connection with policy and process metrics, it is extremely important to evaluate the 
security functionality of products at the technical level, without forgetting their life cycle 
management. The goal of the whole process of seeking of security evidence should be targeted at 
understanding the information security threats and vulnerabilities of the product and its usage 
environment holistically. 

Jonsson [9] sorts the methods of security measurement into the following techniques: risk 
analysis, certification and measures of the intrusion process: 

• Risk analysis is an estimation of the probability of specific intrusions and their consequences 
and costs: it can be thought of as a trade-off to the corresponding costs for protection,  

• Certification is the classification of the system in classes based on design characteristics and 
security mechanisms. “The ‘better’ the design is, the more secure the system.” 

• Measures of the intrusion process means statistical measurement of a system based on the effort 
it takes to make an intrusion. “The harder it is to make an intrusion, the more secure the 
system.” 

In addition to these methods, it is justifiable to consider auditing and security evaluation as 
measurement techniques for information security. Most technical security analysis is currently 
performed using penetrate-and-patch or “tiger team” tactics. The security level is evaluated by 
attempting to break into a system under evaluation by exploiting previously known vulnerabilities. 
If a break-in attempt is successful, the vulnerability is patched. Penetrate-and-patch tactics have 
been used by special security testing professionals whose methods and tools have not been made 
public knowledge. There are several problems with penetrate-and-patch: it requires experienced 
professionals, the actual testing is carried out too late, and the patches are often ignored and even 
sometimes introduce new vulnerabilities. Most of the technical testing metrics are meant for the 
unit or source code level. Various methods for system security evaluation and assessment have been 
proposed in the literature, see, e.g., [2, 12, 13, 18]. These frameworks are conceptual and help in 
understanding the problem area. However, these frameworks do not offer aggregated means for 
practical security evaluation or the testing process. 

 

3 FRAMEWORK FOR SEEKING EVIDENCE OF SECURITY 

In the following we introduce our holistic framework for model-based information security 
evaluation or testing of software-intensive systems. This collection of constructs and abstractions 
forms the basis of our approach to seeking evidence of security in a system. Please note that the 
framework could be expressed in a formal way using various types of representations, such as 
Labelled Transition Systems (LTSs). However, in this paper we discuss the implications of the 
framework for practical security testing and evaluation rather than intending to formalize the 
framework. 

 



  

3.1 Role of Threat Analysis 
The most important task in the whole process of security evaluation is to identify the security risks 
and threats, taking enough assumptions of the attackers’ capabilities into account. A subtask in 
threat analysis is to identify valuable assets that may be subject to security risks. An asset is 
something in the context of the system that is to be protected. A threat description can be 
represented by, e.g., threat / asset combinations. A holistic and cross-disciplinary threat picture of 
the system controls the development of security solutions. Threats that are possible during the 
whole life cycle of the system under evaluation must be considered. 

It must be noted that the collection of security threats to a system is not static. Security 
algorithms and other solutions are cracked and new vulnerabilities are found every now and then. 
Even complete platforms or communication protocol structures can be compromised. As a 
consequence, a system’s threat landscape is constantly changing, possibly reflecting different kinds 
of trends. A weak signal is a factor for change that is hardly perceptible in the present but which 
will constitute a strong trend in the future. Some weak signals can represent on-going or anticipated 
changes in the threat landscape. The actual change in time can happen in small steps or in one leap. 
In the former case the trend could be exposed, if the weak signals presenting the steps could be 
detected [11]. 

Example 1  We denote the original set of identified threats in a system by T, consisting of the 
threat factors T0, T1, T2,…Tn. Later, the effect of discipline, Dx, is introduced into the system. This 
effect manifests itself as a weak signal type of threat, τx, which can or cannot be identified. In the 
former case T is updated to T := T ∪ τx. In the latter case the effect of Dx remains a hidden threat 
represented by the undetected weak signal τx. □ 

 

3.2 Role of Security Requirements 
The goal of defining security requirements for a system is to map the results of risk and threat 
analysis to practical security requirement statements that manage (cancel, mitigate or maintain) the 
security risks of the system under investigation. Security requirements are constraints on functional 
requirements intended to reduce vulnerabilities. Security mechanisms are then developed to fulfil 
the requirements. Haley et al. [6] present an interesting method for deriving security requirements 
from threat descriptions. They derive the security requirements using an iterative process where 
each iteration recomposes the threat descriptions with the functional requirements. Iterations are 
required because identifying and eliminating vulnerabilities will often create new vulnerabilities. 

The security requirements play a crucial role in the security evaluation. The requirements 
guide the whole process of security evidence collection. For example, security metrics can be 
developed based on requirements: if we want to measure security behaviour of an entity in the 
system, we can compare it with the explicit security requirements, which act as a “measuring rod”.  

All applicable dimensions (or quality attributes) of security should be addressed in the 
security requirements definition. See [1] for a presentation of quality attribute taxonomy. Well-
known general dimensions include confidentiality, integrity, availability, non-repudiation and 
authenticity. Quality attributes like usability, robustness, interoperability, etc., are important 
requirements too. In fact, an unusable security construct can even turn out to be a security threat.  

The safety community has developed a standard approach to solving the problem of 
requirements relevance, and the similarity between safety and security implies that it would be well 
worth considering if something similar could be done for security [3]. For example, Security 
Importance Levels (SILs) could be used for categorizing non-security requirements in terms of their 
security relevance and Security Evidence Assurance Levels (SEALs) could be used to enforce the 
additional measures needed to develop the more security-critical parts of systems. 



  

It must be noted that one cannot easily define a general-level security requirement list that 
could be used for different kinds of systems. The actual requirements and role of the security 
dimensions heavily depends on the system itself, and its context and use scenarios. 

 

3.3 Modelling Entities and their Cross-Relationships 
It is obvious that a model of the security behaviour of a system is needed in order to be able to 
evaluate security systematically. To make a decision about whether a system is secure, we need 
evidence that (i) each software or hardware component and subcomponent and (ii) the composition 
formed from them, taking account of cross-relationships, are secure. Essentially, the process of 
security evaluation takes use scenarios and the context of the system into account. In addition to 
this structural classification of entities, it is important to find the behavioural entities in the system. 
In order to help investigate the security behaviour of a system, we define security action, atomic 
security action and security behaviour:  

Definition 1 (security action) A security action, ar, is a behavioural entity of a system that has 
some effect, either incremental or decremental, on the security defined by a certain security 
requirement, r, of a system. □ 

Definition 2 (atomic security action) An atomic security action, α, is a security action that 
cannot be split into other security actions. It is the lowest level of observable security behaviour. □ 

Definition 3 (security behaviour of a system) The security behaviour, A, of a system consists 
of a composition of atomic security actions of all the security requirements of the system that take 
their cross-relationships into account. □ 

The security behaviour of the system, expressed using suitable modelling language, is the 
basis model of the system under security evaluation. For example, a pattern language could be used 
to describe the security actions and security behaviour. 

Security actions can represent one or several dimensions or quality attributes of security. We 
define the dimensions of a security action in the following: 

Definition 4 (dimensions of a security action) A security action, ar,, having an effect on 
security requirement r, has an impact, i(ar,u), and a probability, p(ar,v). □ 

Definition 5 (impact of a security action) The impact i(ar,u) of security action ar is the 
estimate of its impact in scale [-1,1] with security requirement r. If the impact increases security, it 
is positive; u is the uncertainty of the impact estimate, between [0,1], where 1 presents complete 
certainty. □ 

Definition 6 (probability of a security action) The probability p(ar,v) of security action ar is 
the estimated probability of the security action to be realized with uncertainty, v. □ 

It is important to notice that impact analysis of security actions is within the focus of our 
approach. After all, we are interested in the impact of a system’s security behaviour on the whole – 
i.e. the overall impact. 

Definition of the actual security actions in the system under investigation is a challenging 
task. In practice, this task may turn out to be impossible due to the amount of functionality and use 
scenarios in practical systems. Real-world implementations are far too complex for this kind of 
analysis. There is a need for automated and easily applicable and standardized technical methods 
for software implementation to ensure and measure security, e.g. standard secure memory 
management support and component-level life cycle management support.  

Modelling the security behaviour is an iterative process. Voas [17] states that we do not know 
a priori whether the security of a system composed of two components, A and B, can be determined 
merely from knowledge of the security of A and B. Rather, the security of the composite is based on 



  

more than just the security of the individual components – it hinges on the cross-relationships. Both 
the atomic behaviour and the cross-relationships have to be known and analysed in an iterative way. 

The security behaviour of a system could be modelled using tree representations, such as 
Attack Trees [14], evaluation criteria, such as Common Criteria [7] and several formal approaches 
and semi-formal approaches, such as UML and its security extension UMLSec [10]. Perhaps the 
most interesting method is to develop security patterns [15]. A security pattern describes a 
particular recurring security problem that arises in specific contexts and presents a well-proven 
generic scheme for its solution. In practice, a chosen set of security patterns could guide the process 
of defining security requirements. Security behaviour with an adequate set of security actions could 
be associated with these patterns. The key elements of security patterns include the following: 

• Name: a label representing the structure, 

• Context: general conditions, 

• Problem: a statement that defines the problem that will be solved by the security pattern, and 

• Solution: the solution to the problem. 

 

3.4 Evidence Information 
Security evidence is gathered from various sources as input to the decision process of security 
evaluation. The evidence collection should be arranged in a way that supports evaluation of the 
security behaviour and security actions. We classify the types of security evidence information into 
three categories: 

• Measured evidence: The process of gathering measured or assessed information uses security 
metrics as its basis. Table 1 lists some examples of measured security evidence. Measured 
evidence can be collected during security testing or in a security audit based on pre-defined 
metrics. 

• Reputation evidence: Reputation of software or hardware constructs, or their origin, is an 
important class of evidence. A software company in charge of implementing a product might 
have some confidential knowledge of the security of different software components. Table 2 
lists some examples of reputation evidence. Reputation evidence can be collected from 
experience of R&D departments and be based on general-level knowledge. 

• Tacit evidence: In addition to the measured and reputation evidence, there might be some 
“silent” or “weak” signals of security behaviour. The subjectivity level of tacit evidence might 
be higher than in the case of measured and reputation evidence. Collection of tacit evidence is 
typically an ad hoc process. Senior security experts and “tiger teams” play an important role in 
this kind of evidence. 

Table 1: Examples of measured evidence 

Dimension Metric types  
Confidentiality Use of compartmentalization in memory use 
Confidentiality Encryption strength 
Integrity Result of one-way hash function 
Integrity Robustness of data synchronization algorithm 
Availability Validation result of access control rules 
Usability Amount of user interaction needed 

 



  

The objectivity level of the evidence varies a lot. In many cases even the measurements are 
arranged in a highly subjective manner. Typically, no single measured value is able to capture the 
security value of a system. Thus several pieces of security evidence have to be combined. 

Table 2: Examples of reputation evidence 

Metric types  
Reputation of practices of subcontractor  
Reputation of implementation results of subcontractor 
Reputation of a software version 
Reputation of a software component provider 
Reputation of a standard used in the implementation 
Reputation of an integrator 

 

3.5 Trust Assumptions 
A trust assumption is a decision to trust the given properties of some domain and go no further in 
the analysis [5]. Trust assumptions set the boundaries for the need for evidence. Trust assumptions 
can be made based on reputation evidence: if we trust a software version fully, there is no need to 
investigate it at a more detailed level.  

Trust assumptions can make the security evaluation process feasible by taking a certain risk in 
assuming that the object left out of more detailed investigation is trusted. 

 

3.6 Decision Process 
The most final phase of security evaluation is the decision process. The overall goal of the decision 
process is to make an assessment and form conclusions on the information security level or 
performance of the system under investigation. The decision process can be split into sub-decisions 
based on the security action model. 

The decision process can be carried out in the following way: 

1. For each security requirement and security action composition, seek evidence and estimate the 
probability and impact of that action, taking cross-relationships and trust assumptions into 
account. 

2. Estimate the overall impact of the gathered evidence on each security requirement 

3. Make a decision whether the security of the system with regard to the requirements is at a 
sufficient level. 

In a high abstraction level, the overall impact of all security actions on a security requirement 
can be defined as follows: 

Definition 7 (overall impact) The overall impact of all security actions on a security 
requirement is  

tt

T

t
t ipwI ⋅⋅= ∑

=0
 

where I is the overall impact, T the number of all security actions of a security requirement, and wt 
is a weighting factor, pt a probability and it the impact of security action t on the requirement under 
investigation. The weighting factor depends on time and context. 

 



  

4 PRACTICAL CONSIDERATIONS 
In the previous section we presented an approach to security modelling and evaluation. 
Unfortunately, in practice, a thorough modelling of security behaviour is only possible in a few 
ideal cases. Typically, today’s software-intensive products are very complex, and their functionality 
is not well documented and often has unknown dependencies. Development of an ambiguous 
security behaviour model at an atomic security action level is a very challenging and time-
consuming task. 

The practical needs for security evaluation are often limited too. This results in a situation in 
which we should be able to try to find the security actions that are most critical and most typical. To 
reach the desired security level it is not important to try and measure every part and component that 
affects security. Instead, we need enough evidence to make trade-off decisions. 

We propose the following process to carry out practical-level security evaluation: 

• Risk and threat analysis. Carry out risk and threat analysis of the system and its use 
environment, if not carried out before. In real-world engineering risk and threat analyses are not 
carried out adequately. Consequently, the set of security requirements might not be sufficient.  

• Define security requirements in such a way that they can be compared with the security actions 
of the system. Based on the threat analysis, define the security requirements for the system, if 
not yet defined. These are lacking in many practical systems. 

• Prioritize security and other requirements. The most critical and most often needed security 
requirements should be paid the most attention. 

• Model the security behaviour. Based on the prioritized security requirements, identify the 
functionality of the system that forms the security actions and their dependencies in a priority 
order. 

• Gather evidence from measured, reputation and tacit security information. 

• Estimate the probabilities and impacts of security actions based on the evidence. 

• Aggregate the results from the probability and impact estimation to form a clear picture of 
whether or not the system fulfils the security requirements. 

 

5 DISCUSSION AND FUTURE WORK 
A practical security evaluation framework based on the ideas discussed in this paper requires a lot 
of future development. In the following we list some goals for future work. 

A suitable language needs to be developed to formalize and express security actions and their 
cross-dependencies, as well as security requirements. Both the system security behaviour and 
requirements need to be expressed in such a way that it is possible to compare them. A language 
able to express behavioural patterns is a good candidate for this purpose. Security patterns are 
currently under development in the pattern community. Security patterns augmented with semantics 
representing security properties could offer a feasible means to model the security requirements and 
security behaviour of systems. Possibly, the use of fuzzy logic might be connected to that kind of 
language. A mechanism to describe the interactions and cross-dependencies of security actions is 
needed. 

A knowledge base of typical security constructs should be established to offer pattern 
information on their security behaviour. The security actions of a system can be expressed using 
patterns. Typical constructs include encryption elements, firewalls, proxies, compartmentalization, 
inter-process communication, access control mechanisms and authentication mechanisms. The 
information needs to be collected experimentally to enable development of the knowledge base. 



  

Security evaluation or testing can be done in practice if this kind of knowledge base support 
could be used for security behaviour modelling and suitable security requirement documentation of 
the system is available. Furthermore, the process of evidence collection from different sources, and 
aggregation of it, should be developed using experimental information from real-world systems. 

 

6 CONCLUSIONS 
We have discussed the problem of information security evaluation in the context of software-
intensive systems. There are no systematic means of carrying out security evaluation. In this paper 
we have presented a conceptual holistic framework for security modelling and evaluation with 
some practical considerations. The framework is based on evidence collection and security 
requirement-centred impact analysis.  

This is not a rigorous solution and future work needs to be done on developing a suitable 
language for expressing security requirements and security behaviour in an unambiguous way. A 
collection of security patterns would be very helpful in modelling the security behaviour when 
carrying out security testing or experimentation. 

In practical security evaluation, the requirements should be prioritized and the system 
modelled only to the extent needed to conform to the trust assumptions. Full modelling of practical 
systems is not feasible without automated approaches, which might be very challenging to develop. 
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