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Abstract

The speed of convergence of the Expecta-
tion Maximization (EM) algorithm for Gaus-
sian mixture model fitting is known to be
dependent on the amount of overlap among
the mixture components. In this paper, we
study the impact of mixing coefficients on
the convergence of EM. We show that when
the mixture components exhibit some over-
lap, the convergence of EM becomes slower
as the dynamic range among the mixing co-
efficients increases. We propose a determin-
istic anti-annealing algorithm, that signifi-
cantly improves the speed of convergence of
EM for such mixtures with unbalanced mix-
ing coefficients. The proposed algorithm is
compared against other standard optimiza-
tion techniques like BFGS, Conjugate Gra-
dient, and the traditional EM algorithm. Fi-
nally, we propose a similar deterministic anti-
annealing based algorithm for the Dirichlet
process mixture model and demonstrate its
advantages over the conventional variational
Bayesian approach.

1. Introduction

Clustering is a widely used exploratory data analysis
tool that has been successfully applied to biology, so-
cial science, information retrieval, signal processing,
and many other fields (Jain et al., 1999). In many of
these applications (for example, biological data analy-
sis, anomaly detection, image segmentation, etc.), the
goal is to identify rare groups or small clusters (in
terms of number of members) in the presence of other
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larger clusters. In this paper, we focus on the par-
ticular problem of clustering large datasets with high
dynamic range in cluster sizes.

The Gaussian mixture model is a powerful model for
data clustering (McLachlan & Peel, 2000). It models
the data as a mixture of multiple Gaussian distribu-
tions where each Gaussian component corresponds to
one cluster. Let X = {x1,x2, . . . ,xN} be N i.i.d. ran-
dom vectors that follow a K component Gaussian
mixture distribution. The jth Gaussian component
in the mixture is defined by its mean µj , covari-
ance Σj , and the mixing coefficient αj (αj > 0 and
∑K

j=1 αj = 1). These parameters together are repre-

sented as the parameter vector Θ = [αj ,µj ,Σj ]
K
j=1.

Our goal is to estimate model parameters Θ given the
data X. The parameter estimation is typically accom-
plished by the Expectation-Maximization (EM) algo-
rithm (Dempster et al., 1977). In this paper, we em-
pirically show that EM exhibits slow convergence if
one of the Gaussian mixture components has a very
small mixing coefficient compared to others, and there
exists some overlap among the mixture components.
We explain this slow convergence of EM for a mixture
with unbalanced mixing coefficients using the conver-
gence analysis framework presented by Xu and Jor-
dan (1996), and Ma et al. (2000).

We present a solution to this problem based on De-
terministic Annealing (Rose, 1998; Ueda & Nakano,
1998). It is well known that deterministic anneal-
ing can help prevent the EM algorithm from getting
trapped in local optima (Ueda & Nakano, 1998). Tra-
ditional deterministic annealing follows a monotoni-
cally decreasing temperature schedule by slowly in-
creasing the inverse temperature parameter (β) from 0
to 1. We propose a novel non-monotonic temperature
schedule that can improve the speed of convergence as
well. We call this modified annealing schedule Anti-

annealing. We start with a traditional temperature
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schedule by slowly increasing β from 0 to 1. Next we
continue increasing β beyond 1, up to a chosen upper
bound, and finally slowly decrease β down to 1. Our
experiments demonstrate the effectiveness of the pro-
posed Anti-annealing schedule to improve the speed of
convergence of the EM algorithm for unbalanced mix-
tures. Finally, we extend our results to the Dirichlet
Process Gaussian Mixture Models (DP-GMM).

2. Convergence of EM Algorithm

2.1. Related Work

The EM algorithm is guaranteed to monotonically con-
verge to local optima under mild continuity condi-
tions (Dempster et al., 1977; Wu, 1983). Redner and
Walker (1984) show that EM has linear rate of con-
vergence and suggest that Newton’s or Quasi-Newton
methods should be preferred over the EM algorithm.
They also experimentally show that EM converges
slowly in the presence of overlapping clusters. Xu
and Jordan (1996) analyze the rate of convergence
of the EM algorithm and show that EM exhibits a
super-linear rate of convergence as the overlap among
the mixture components goes to zero (Xu & Jordan,
1996). They forge a connection between the EM
algorithm and gradient ascent and prove that rate
of convergence of the EM algorithm depends on
the condition number of a projected Hessian matrix
ET P (Θ∗)H(Θ∗)E, where Θ∗ is the optimum parame-
ter value, E = [e1, . . . , em] is a set of unit basis vectors
spanning the constrained parameter space (satisfying

the constraint
∑K

j=1 αj = 1), P (Θ∗) is a projection
matrix, and H(Θ∗) is the Hessian of the log-likelihood
function. Later, Ma et al. (2000) extend this result
and show that the rate of convergence of EM is a
higher order infinitesimal of maximum pairwise over-
lap among the mixture components. Salakhutdinov et
al. (2003) propose the Expectation Conjugate Gradi-
ent (ECG) algorithm for highly overlapping Gaussian
mixtures. ECG allows faster convergence than the tra-
ditional EM algorithm in the presence of high overlap
among mixture components. Therefore, the impact
of component overlap on the convergence of EM has
been known for more than a decade. While overlap
among components is the major factor that influences
rate of convergence of EM, we show that mixing co-
efficients can also significantly influence the speed of
convergence in the presence of some overlap. To our
knowledge, this is the first work that addresses the im-
pact of mixing coefficients on the rate of convergence
of EM.
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(b) Estimated Mixture af-
ter 100 iterations

Figure 1. Performance of EM for two component mixture
of Gaussians. The small cluster parameters did not con-
verge to true values.
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(b) Estimated model after
12 iterations

Figure 2. EM converges quickly to correct parameters only
after 12 iterations.

2.2. Convergence of EM for Small Clusters

We investigate the convergence of the EM algorithm
for Gaussian mixtures with some small mixing coeffi-
cients. We start with 3 simulation examples. First,
we create synthetic data with a 2-component uni-
variate Gaussian mixture with the parameters α =
(0.025, 0.975)T , (µ1, µ2) = (−5.0, 5.0), (Σ1,Σ2) =
(6.25, 6.25) (as shown in Figure 1(a)). We perform
2-component EM fitting and after 100 iterations, we
get a parameter estimate of α̂ = (0.059, 0.9410)T ,
(µ̂1, µ̂2) = (−0.497, 5.08) , (Σ̂1, Σ̂2) = (23.15, 5.92).
In this simple setting, the inaccurate result is due to
the slow speed of convergence. If we allow EM to run
for many more iterations, it usually converges to the
true parameter values.

Next, we create another dataset (Figure 2(a)) with bal-
anced mixing coefficients (α = (0.5, 0.5)T ) and leave
the other parameters the same. Under the same over-
lap (since means are not changed), EM converges to
almost accurate parameters much faster, after only
12 iterations. This simulation implies that under the
same amount of overlap, more balanced mixing co-
efficients yield faster convergence of EM. Finally, we
create a synthetic dataset with skewed mixing coeffi-
cients, but relatively less overlap (Figure 3(a)). Means
are set at points (µ1, µ2) = (−10.0, 10.0), mixing co-
efficients at α = (0.025, 0.0975)T , and covariance val-
ues at (Σ1,Σ2) = (6.25, 6.25). Despite having very



Convergence of the EM Algorithm for Gaussian Mixtures with Unbalanced Mixing Coefficients

−20 −10 0 10 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

X

P
ro

ba
bi

lit
y 

de
ns

ity

Gaussian Mixture (True Distribution)

(a) True Mixture

−20 −10 0 10 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

X

P
ro

ba
bi

lit
y 

de
ns

ity

Gaussian Mixture estimated by EM

(b) Estimated model

Figure 3. EM converges to correct parameters only after
23 iterations despite the highly unbalanced mixing coeffi-
cients.

small mixing coefficient values, EM converged to the
true parameters in only 23 iterations. This example
emphasizes the critical impact of overlaps on speed
of convergence. However, the first example also im-
plies that under some overlap, mixing coefficients have
strong influence on the speed of convergence.

2.3. Why Slow Convergence?

Next, we explore the reason that EM shows slow con-
vergence in the presence of small clusters. We ex-
plain it using the framework proposed by Xu and Jor-
dan (1996). Xu and Jordan (and later Ma et al. (2000))
have shown that the rate of convergence of EM is up-
per bounded by the norm

∥

∥I + ET P (Θ∗)H(Θ∗)E)
∥

∥

i.e. the condition number of the projected Hessian
κ

[

ET P (Θ∗)H(Θ∗)E
]

. As the condition number κ ≃
1, the log-likelihood surface is spherical and allows fast
convergence. On the other hand, a larger value of the
condition number of the effective Hessian implies an
elongated log-likelihood function which can cause slow
convergence for any linearly convergent method. Our
simulation results show that, in the presence of some
overlap, the condition number of the Hessian matrix
increases as one of the mixing coefficients decreases.
We verify this by computing the condition number of
the projected Hessian matrix ET P (Θ∗)H(Θ∗)E at the
true parameter values for 3 different 2-component mix-
ture configurations. For all the mixture configurations,
we keep one of the means fixed at µ2 = 0.0 and then
we vary the mean of the other components to µ1 = 10,
20, and 30. The variance of the components are set
to 9. Then, we vary the mixing coefficients of the first
component α1 from 0.01 to 0.99 and compute the con-
dition numbers for each case and plot them in Figure 4.
The results are quite intuitive. In the case of non-
overlapping clusters (µ1 = 20 or µ1 = 30), the condi-
tion number did not change much for extreme values of
α1. However, for the overlapping case (µ1 = 10.0), the
condition number of the projected Hessian became a
lot larger for extreme values (both higher and smaller
values) of α1. To confirm this intuition, we performed
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Figure 4. A plot showing the condition number of the ef-
fective Hessian matrix for the EM algorithm with varying
mixing coefficient values. The condition number increases
significantly for extreme values of α1 in case of the over-
lapping clusters.

another simulation where we generated 2 different 2-
component Gaussian mixtures with varying mixing co-
efficients and looked at their log-likelihood surface. For
simplicity, we plot log-likelihood as a function of only
the means of the mixture components, and assume the
mixing coefficients and covariances to be fixed. Fig-
ure 5 shows the log-likelihood surfaces (on the right)
for the corresponding Gaussian mixtures (on the left).
As one of the mixing coefficients becomes significantly
smaller compared to the others, the log-likelihood sur-
face tends to become flatter and elongated, which is in
agreement with our intuition.

3. Proposed Solution

In this section, we propose a variation of the Deter-
ministic Annealing EM (Ueda & Nakano, 1998) to ad-
dress the speed of convergence issue explained above.
We compare the result with two other well-known op-
timization techniques: Expectation Conjugate Gra-
dient (ECG) (Salakhutdinov et al., 2003) and Quasi-
Newton Method (BFGS) (Liu & Nocedal, 1989).

3.1. Deterministic Anti-Annealing
Expectation-Maximization

Deterministic Annealing is a well-known technique to
improve the convergence behavior for non-convex op-
timization problems. Ueda and Nakano (1998) pro-
posed a Deterministic Annealing Expectation Maxi-
mization (DAEM) algorithm that varies the temper-
ature from high to low temperature, and determinis-
tically optimizes the objective function at each tem-
perature. Conventionally, DAEM is used to provide
reliable global convergence. In EM, we estimate the
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Figure 5. The geometry of the log-likelihood surface for 2-
component Gaussian mixtures with different mixing coef-
ficients, under the same amount of overlap.

posterior membership probabilities hj(t) (the proba-
bility that xt belongs to the jth Gaussian component)
using the following equation:

hj(t) =
αjP (xt|µj ,Σj)

∑K

i=1 αiP (xt|µi,Σi)
(1)

The DAEM algorithm modifies the E-step update rule
using the scheduling parameter β:

hj(t) =

(

αjP (xt|µj ,Σj)
)β

∑K

i=1 (αiP (xt|µi,Σi))
β

(2)

In the M-step, the model parameters are estimated
using this hj(t) values in exactly the same manner as
the traditional EM algorithm. The parameter β can
roughly be interpreted as the inverse of temperature.
DAEM typically starts at β ≃ 0 and slowly increases
β up to 1. At each β value, DAEM iterates the E-step
(2) and the M -step until convergence. The algorithm
can be described as follows:

1. Initialize:

• Set β ← βmin (0 < βmin ≪ 1)

• Start with a random initial parameter Θ(0)

2. Iterate until convergence:

• E-step: estimate posterior probabilities hj(t)
using Equation 2.

• M-step: estimate Θ(new) using hj(t) values
estimated in E-step

0.0

∞

β

1.0

Traditional Annealing

Anti-annealing

(a) Traditional Annealing
vs Anti-annealing

0.0

∞

β

1.0

Proposed Schedule

β
max

(b) Our proposed annealing
schedule

Figure 6. Scheduling of the DAEM algorithm. We chose
to follow the one shown in (b) which allows both robust
convergence (for β < 1) and faster convergence for β > 1.

3. Increase β

4. If β ≤ 1, go back to step 2.

5. If β > 1, return.

Initially, for β → 0, all the clusters are overlap-
ping and the posterior probability becomes uniform,
i.e. hj(t) ∼ 1/K for all j. On the other hand, as β be-
comes larger, DAEM allows less and less overlap and
for β → ∞ it becomes analogous to the winner-take-
all (Kearns et al., 1998) approach, i.e. hj(t) = 1 for
only one j, and hi(t) = 0, ∀i 6= j. For β = 1, it
is reduced to the original posterior distribution given
current Θ.

Traditionally, DAEM starts with β ≃ 0 and slowly
monotonically increases to β = 1. For tiny clusters,
we observe that EM gives highly overlapping param-
eter estimates even after hundreds of iterations, and
converges very slowly. We can improve the speed by
starting from β > 1 and slowly decreasing it down to
1.0, where the objective function is same as that for
EM. Let us call this scheduling strategy Anti-annealing
scheduling. Although this improves the speed of con-
vergence by restricting the amount of overlaps, the ob-
jective function becomes more irregular and EM tends
to converge to poor local optima more frequently. In
order to solve this problem, we follow a hybrid sched-
ule, where we start with βmin < 1 and slowly increase
it to a value βmax > 1 and then again decrease back
to β = 1.

The proposed anti-annealing schedule (Figure 6(b))
improves the speed of convergence and helps avoid
poor local optima as well. However, it is necessary
to choose a slow enough temperature schedule, par-
ticularly for complicated data with a large number of
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clusters. We also need to perturb the estimated pa-
rameters after each iteration. At lower β values, the
effective number of clusters is often less than K, as
many components share the same parameters. As we
increase β, the clusters start to move around and ef-
fective number of clusters increases as a result of split-
ting. We must perturb the estimated parameters with
a small noise term to enable the clusters to split. In
our implementation, we add a small amount of random
noise to the mean of each of the Gaussian components
along the first principal component dimension of the
associated cluster.

How Does Anti-Annealing Speed up

Convergence?

Using the results shown by Ma et al. (2000), we explain
the faster convergence of the proposed Anti-annealing
method. Let eij(Θ

∗) be the measure of overlap be-
tween the ith and jth Gaussian component:

eij(Θ
∗) =























limN→∞

1
N

∑N

t=1 hi(t)hj(t),
if i 6= j

limN→∞

1
N

∑N

t=1 (1− hi(t))hi(t),
if i = j

and let the maximum component-wise overlap be:
e(Θ∗) = maxi,j eij(Θ

∗). Ma et al. (2000) show that
the rate of convergence r is a higher order infinitesi-
mal of e(Θ∗):

r ≤ lim
N→∞

∥

∥I + ET P (Θ∗)H(Θ∗)E
∥

∥ = o(e0.5−ǫ(Θ∗))

During the Anti-annealing phase (β > 1), the pair-
wise overlap values eij(Θ

∗) decreases due to relatively
harder membership probabilities. For the extreme case
β → ∞, the posterior probabilities hi(t) values are
either zero or one, which causes eij(Θ

∗) ≃ 0 for all
i, j ∈ {1, . . . ,K} leading to superlinear convergence.
In general, it can be easily shown that e(Θ∗) decreases
as β increases.

3.2. Expectation Conjugate Gradient (ECG)

The Conjugate Gradient method is known to outper-
form gradient descent methods for special cases when
the objective function is elongated, and the conjugate
direction is a better direction than the steepest gra-
dient direction. Salakhutdinov et al. (2003) proposed
an expectation conjugate gradient (ECG) method for
optimizing the log-likelihood functions in the case of
highly overlapping clusters. We evaluate the perfor-
mance of the ECG algorithm for the small cluster
scenario. The EM algorithm automatically satisfies
several constraints on the parameter space: αi ≥ 0,

∑

i αi = 1, and Σ � 0. To ensure that the ECG algo-
rithm satisfies the same set of constraints, Salakhutdi-
nov et al. (2003) propose to re-parameterize the model

parameters: αj = e
λj

P

l
eλl

and Σj = LjL
∗

j , where Lj

is the upper triangular matrix obtained by Cholesky
decomposition of Σj . Due to space limitation, exact
formulation of gradients under the re-parameterization
is presented in the Appendix. We apply the standard
conjugate gradient optimization algorithm using these
gradient values and a cubic line search (Matlab Li-
brary, Carl E. Rasmussen, 2006).

3.3. Quasi-Newton Method: BFGS

Quasi-Newton methods (for example, BFGS, LBFGS,
etc.) approximate the Hessian using gradient values
and usually converge faster than first order gradient
based methods. However, these methods (without line
search) lack the convergence guarantee of EM and re-
quire line search that introduces additional computa-
tion. We implement BFGS using the same gradient
functions as for conjugate gradient and the Matlab Op-
timization Toolbox, and compare with our algorithm.

4. Extension to Dirichlet Process

Mixture Model

The Dirichlet process mixture model
(DPMM) (Rasmussen, 2000) has gained signifi-
cant attention for flexible density estimation. Unlike
the traditional mixture models, DPMM does not as-
sume a fixed number of density components and allows
the model complexity to grow as more data points
are seen. We have extended the variational Bayesian
Dirichlet process mixture model (Blei & Jordan, 2006)
using Deterministic Anti-annealing. The variational
Bayesian DPMM is based on the truncated stick-
breaking representation. Let X represent the random
variable that follows the Dirichlet process mixture
model, and let the latent variables be W = {V,η∗,Z}
representing the stick lengths, individual mixture
component parameters, and cluster memberships
respectively. Let q(v,η∗, z) denote the factorized
variational distribution and T be the truncation
parameter. The posterior responsibility of a data
point xt to a mixture component j ∈ {1, . . . , T} is
represented as φij , which is computed as:

φij =
exp(Sj)

∑

l exp(Sl)
(3)

where Sj = Eq[log Vj ] +
∑j−1

l=1 Eq[log(1 − Vl)] +
Eq[log p(xi|zi)].

The deterministic annealing approach can be easily
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extended to DPMM by a straight-forward modification
of equation (3) (Katahira et al., 2008):

φij =
exp(Sj)

β

∑

l exp(Sl)β
(4)

5. Results and Discussion

5.1. Datasets

We experiment with three different datasets.1 The
first dataset consists of samples drawn from a two
component mixture of Gaussians, where the cluster
sizes are 200k and 200 data points respectively (Fig-
ure 7(a)). We deliberately set the means and covari-
ances so that there exists some overlap among the mix-
ture components. The second dataset is also composed
of a synthetic mixture of 4 Gaussians (Figure 7(b)),
having 150k, 100k, 50k, and 150 data points each.
Finally, we experiment with the MNIST handwritten
digits dataset, which consists of high dimensional im-
ages of handwritten digits (0-9). We have randomly
selected 5000 images of handwritten digit ‘4’, and
250 images of handwritten digit ‘8’. Then we com-
bine these samples and reduce the dimensionality of
the combined dataset down to two dimensions using
PCA. We choose these two particular digits because
of their nice elliptical shape in 2D PCA projection
(Figure 7(c)). We can approximate the density of this
dataset by fitting a 2-component mixture of Gaussians.

5.2. Experimental Results

We observe the convergence behavior of all the four dif-
ferent algorithms: EM, Deterministic Anti-annealing,
BFGS, and ECG, on all the three datasets described
above. Each algorithm terminates when it satisfies the
stopping criterion: |L(Θk+1) − L(Θk)|/|L(Θk+1| < τ .
Here, L(Θk) represents the log-likelihood value at the
kth iteration and τ is the tolerance parameter. For all
the algorithms except Determinisitc Anti-annealing,
we set the tolerance variable τ = 10−10. For Deter-
ministic Anti-annealing, we set the tolerance parame-
ter to 10−6. Since anti-annealing is capable of speeding
up convergence at the later scheduling stages, we do
not need a conservative tolerance. For the first and
third experiment, the temperature schedule is set to
β = [0.8, 1.0, 1.2, 1.0], and for the second dataset we set
β = [0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.0]. As expected, we re-
quire slower temperature scheduling for a larger num-
ber of clusters. We estimate error with respect to the
true parameter values by summing up the symmetric
KL divergence between estimated and true Gaussian

1We also present additional results for image segmenta-
tion task in Appendix A.3.

parameters for each mixture component. In order to
measure the accuracy of clustering, we need to perform
an assignment task to match clusters. For this task, we
use the symmetric KL divergence between multivariate
Gaussians and then perform a minimum weighted bi-
partite matching that finds a one-to-one mapping that
minimizes the cumulative error with respect to true
clustering. The symmetric KL divergence is defined
as:

Ds [p, q] = DKL(p, q) +DKL(q, p). (5)

For two Gaussian distributions,

Ds [N (x|µi,Σi),N (x|µj ,Σj)] =
1

2
Tr

[

Σ−1
i Σj + Σ−1

j Σi

]

+
1

2
(µi − µj)

T
[

Σ−1
i + Σ−1

j

]

(µi − µj)− d

The approximate error for the estimated parameter
Θ̂ = {µ̂j , Σ̂j , α̂j}

K
j=1 with respect to the true parame-

ters Θ∗ is estimated as follows:

err(Θ̂,Θ∗) =

K
∑

j=1

Ds

[

N (x|µ̂j , Σ̂j),N (x|µ∗

πj
,Σ∗

πj
)
]

(6)
where {πj}

K
j=1 is the one-to-one mapping estimated by

minimum weight bipartite graph matching.

For each of the datasets, we apply all four algorithms
for Gaussian mixture model fitting. We execute each
algorithm 10 times on each dataset and observe the
rate of convergence both for the best case (minimum
error) and average case, as shown in Figure 7.2 For
EM and deterministic anti-annealing, we initialize the
means of mixture components with randomly chosen
sample points from the data. The mixing coefficients
and covariances are initialized to the uniform distribu-
tion (1/K) and the covariance of entire data respec-
tively. For BFGS and ECG, we initialize the parame-
ters with the outcome of a few EM iterations.

We experimented with the Dirichlet process Gaussian
mixture models on synthetic Gaussian mixture models
with high dynamic ranges in cluster sizes. We created
a two-component Gaussian mixture, where the larger
component consists of 50k points, and the smaller com-
ponent consists of only 100 points. Then, we applied
both the variational Bayes DPMM and the Determin-
istic Anti-annealing based DPMM. The VB-DPMM
incorrectly estimated five components, where four
components were fitted to the same Gaussian com-
ponent. On the other hand, Anti-annealing DPMM
resulted in the correct estimation of two components.
The reason is the winner-take-all behavior during the
anti-annealing.

2The plot showing the distribution of final log-likelihood
values is presented in the Appendix A.1.
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(a) Mixture of 2 Gaussians dataset (b) Mixture of 4 Gaussians dataset (c) MNIST digits-48 dataset
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(e) Minimum error (4 Gaussians)
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(f) Minimum error (MNIST digits-48)
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(g) Average error (2 Gaussians)
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(h) Average error (4 Gaussians)
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(i) Average error (MNIST digits-48)

Figure 7. The speed of convergence of all the four algorithms in terms of error from true parameter values.

(a) Variational Bayes DPMM (b) Anti-annealing DPMM

Figure 8. Comparison between traditional Variational Bayes DPMM against Deterministic Anti-annealing based DPMM.
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5.3. Discussion

The experimental results demonstrate that both the
deterministic anti-annealing method and BFGS signif-
icantly improve the speed of convergence compared to
traditional EM. For the minimum error case scenario,
BFGS outperforms deterministic anti-annealing by a
small margin. However, deterministic anti-annealing
is more stable on average and has better convergence
behavior. Both BFGS and ECG exhibit significant
amount of variability, particularly for the second (4
Gaussians) dataset. They often end up in poor degen-
erated local optima, where one or more of the mix-
ing coefficients are clamped to zero. Therefore, deter-
ministic anti-annealing outperforms BFGS on average.
Salakhutdinov et al. (2003) proposed a hybrid EM-
ECG algorithm, that estimates the entropy of cluster
memberships as a measure of missing information (in
other words, cluster overlap), and chooses to apply
ECG if the entropy value is larger than certain thresh-
old. Although the entropy-based method works well
for balanced but highly overlapping mixtures, it is not
general enough for the case of unbalanced mixtures.
The entropy value decreases with the increasing skew
in the mixing coefficients. Moreover, our experimental
results show that neither ECG nor EM works well for
such unbalanced overlapping mixtures.

6. Conclusion

The proposed Deterministic Anti-annealing scheme
has lots of potential for faster convergence for datasets
with smaller clusters. It offers several key advantages
such as: 1) more robust global convergence, 2) faster
convergence for small clusters via anti-annealing, 3)
simple to implement, no line search required, 4) pa-
rameter constraints are satisfied without requiring
reparameterization. Our experimental results demon-
strate that deterministic anti-annealing EM outper-
forms all the other three algorithms on average, both
in terms of speed and correctness of convergence.
However, the temperature scheduling of Determinis-
tic Annealing often requires some tuning (Rangarajan,
2000). A thorough study of temperature schedule can
be an interesting future direction. As a general guide-
line, the schedule should be guided by the complexity
of the data. The more complex the data, the more
slowly we should vary the temperature parameter.
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