Game Intelligence Analysis by Means of a Combination of Variance-Analysis and Neural Networks

Daniel Memmert¹ and Jürgen Perl²

¹Ruprecht-Karls-Universität Heidelberg, Institute for Theory and Practice of Training and Movement, University of Heidelberg, D-69120 Heidelberg, Germany

²Johannes Gutenberg-Universität Mainz, Institute of Computer Science, FB 17, University of Mainz, D-55099 Mainz, Germany

Abstract

In order to evaluate performance data from games, normally qualitative and quantitative methods are used separately. The aim of this contribution is to demonstrate that the combination of net-based qualitative analyses and stochastic quantitative analyses can improve the information output significantly. The stochastic approach reduces the total of recorded data to only a few statistical quantities, which are not necessarily data-specific. In contrast, neuronal networks – considering data to be high-dimensional points that correspond to neurones – can (e.g.) be used to extract specific striking features on the original data (see Schöllhorn & Perl, 2002).

This approach will exemplarily be demonstrated using data from a BISpsponsored project that was run by Roth and Memmert (2003). In this field-study, sport-specific training concepts were compared with non-specific ones, dealing (e.g.) with the game intelligence of about 150 children from two measuring points (MZP). The convergent reference numbers were determined by means of concept-oriented expert ratings (3 evaluators) using three game-test-situations with two rotations each (see Memmert & Roth, 2003).

Using dynamical adaptive neural networks ("DyCoN"; Perl, 2000) allows for simultaneous processing of 12-dimensional attribute vectors (2 MZP x 3 evaluator x 2 rotations) instead of 2-dimensional aggregated vectors – avoiding reduction of semantic structures and information.

This way, by means of

- visual evaluation of data distribution projected to the net structure
- analysis of inter- and intra-individual correspondences

useful information become available which can hardly or not be obtained from variance-analyses.

The existing evaluations suggest that DyCoN, similar to the case of convergent performance attributes, will also be successful in the divergent case.

KEYWORDS: GAME ANALYSIS, STOCHASTIC QUANTITATIVE ANALYSES, NEURAL NETWORK, GAME INTELLIGENCE, CREATIVITY