
Some Patterns of Component and
Language Integration

Uwe Zdun
New Media Lab, Department of Information Systems

Vienna University of Economics and BA, Austria
zdun@acm.org

Integration is an important concern in many software systems. In this paper, we present
a number of patterns that are used to improve the integration of a system with compo-
nents or code that is written in different languages than the system itself. Component
integration is necessary when (foreign) components should be used within a system.
The challenge of integrating components into a system is that heterogeneous kinds of
components exist, perhaps without distinct interfaces or other component boundaries.
The task of the component integration code is to provide suitable, stable invocation
interfaces and to compose the components with the system. Sometimes, however, invo-
cation and composition of components is not enough, but a deeper language integration
is required. Examples of what might be need are automatic type conversions between
languages, preserving the destruction order of the other language, automatic forward-
ing of invocations into the other language, and runtime integration of foreign language
components. The patterns, presented in this paper, are successful solutions in these ar-
eas. Each of these patterns plays an important role in different integration architectures.
We will give examples from the areas of distributed systems, reengineering projects,
scripting languages, and aspect-oriented programming systems. There are many others
fields where the patterns are used as well.

Introduction

Integration of software systems is needed in many situations. Just consider two enterpriseSoftware
Integration applications that need to be integrated after a fusion of the companies took place. Or, consider

a reengineering project in which a terminal-based legacy system should be re-engineered to
the Web – and thus must be integrated with a modern application server. The capability of the
system’s architecture to integrate foreign components and to be integrated with other systems
is thus considered as an important quality attribute [BCK98]. There are many integration
concerns to be considered when integrating software architectures, including:

• integration of data, data models, and queries,

• integration of various software components,

• integration of various programming languages,

• integration of distributed systems,

• integration of system with legacy systems, and

• integration of different software paradigms such as the object-oriented and procedural
paradigm.

In this paper, we present patterns that describe successful solutions in some of these areas.Pattern
Language
Outline

These patterns are not a complete pattern language for the broad field of software architecture
integration – rather, they are an excerpt working in the area of component, language, and
paradigm integration mainly. There are also many patterns from other pattern collections that
interact closely with the patterns presented in this paper.

The patterns presented in this paper are applied where simple, ad hoc integration solutions
fail. Thus the main audience of the patterns are experienced software architects and develop-
ers.

Patterns for Component and Language Integration

In this section, we provide short thumbnails for the patterns and important external patterns,
as well as a pattern map as an overview.

The following patterns are presented in this paper:Pattern
Thumbnails

• A   is a language that is implemented within another language
(called “host language”). It uses  [GHJV94] implemented in that host lan-
guage as implementations of its language elements. The   lets the
 be assembled in scripts, and it provides an  [GHJV94] or an-
other interpretation mechanism such as an on-the-fly compiler for these scripts.

• A   is an object implemented as part of a component that rep-
resents another component. The wrapped component is imported into the wrapping
component, and the   handles all details of the import. For the
integration it utilizes other patterns, such as   [SSRB00] or 
[GHJV94]. The   is an accessible white-box representing the com-
ponent within another component’s scope, where adaptations such as interface adapta-
tions or version changes can take place.

• An    [GNZ00] implements an object systems as a  [BMR+96]
in another system. This way we can extend systems written in non-object-oriented lan-
guages with object-oriented concepts, integrate different object concepts, and extend
existing object concepts. A part of an    is a  
[GNZ01] that forms a  [GHJV94] to the object system; all invocations into the
   from the rest of the system are sent to its  
and dispatched here to the objects in the object system.

• An    converts types at runtime from one type to another.
There are two main variants of the pattern: One-to-one converters between all type
bindings and converters utilizing a canonical format to/from which all supported types
can be converted.    can, for instance, be used in a 

 to convert types to/from the host language, in   to convert be-
tween the   halfs, and in   to convert invocations to
the types of the wrapped component and vice versa.

• A   is an object that is split across two languages. The   is
treated logically like a single instance, but it is implemented by two physical entities,
one in each language. That is, both halfs can forward invocations to the other half,
access the inner state of the other half, and usually – to a certain extent – the user-
defined class hierarchies of each half is mimicked by the respective other half.

There are a number of external patterns, documented elsewhere, that play an important roleExternal
Patterns for the patterns described in this paper. We want to explain some of these patterns briefly:

• A  [GHJV94] encapsulates an invocation to an object and provides a generic
(abstract) invocation interface.  alone only allow for adaptation by changing
the association link to a . In the   pattern the 
abstraction is extended with a binding of  to language elements and an in-
terpretation mechanism for that language.

• The important interpretation step in a   can be implemented using
another pattern from [GHJV94], the  pattern. In general an 
defines a representation for a grammar along with an interpretation mechanism to in-
terpret the language.

• The pattern   [VKZ04] describes how to specify interfaces of
an object so that external clients of the object can reliably access the object. The pat-
tern is originally described in the context of distributed systems: In this context an
  specifies the interface of a remote object for remote clients,
but can also be used in other scenarios. Generating type conversion code from an -
  is the most important alternative solution to using an 
 .    can also be applied according to an
 .

• A   [GNZ01] receives symbolic invocations – for instance pro-
vided in form of strings – and redirects these invocations to objects implementing the
invocation behavior. This way, for instance, a dynamic object dispatch mechanism
can be implemented. A   can also be used to integrate some non-
object-oriented invocation interface with an object system. The  
pattern is an inherent part of an   : It is used to dispatch the invo-
cations of    to its objects.

Figure 1 shows an overview of the patterns described in this paper and the relationships
explained above.

Command Language

Some code needs to executed by other code and needs to be exchangeable at runtime. InContext
static languages you cannot simply exchange code. In such situations,  provide

contains CommandInterpreter

command
language

interpretation

Automatic Type Converter

Object System Layer

Component WrapperSplit Object Command Language

contains
commands

integrate with
host language

can be
implemented as

integrate with
object-oriented system

can be
command of the

command language

Interface Description
alternative: generated
type conversion code

static conversion
of invocations

dynamic conversion
of invocations

dynamic conversion
of invocations

dynamic conversion
of split object

invocations

Message Redirector

Figure 1: In the pattern map the most important relationships of the patterns are represented
by labeled arrows.

a standard solution used in object-oriented and procedural systems: They encapsulate the
implementation of an invocation and provide a generic, abstract invocation interface.

Using many  without further support can be cumbersome in some cases,Problem
where the  have to be composed in various different ways. Such situations
occur frequently, when using  for composing components or configuring a
system, because in these situations a large number of different  need to be
composed. Runtime composition of the  is not possible if the composition
solution is hard-coded in static, compiled languages such as C, C++, or Java.

Consider the following scenario: A system is built from a number of C components. Differ-Scenario
ent customers require different components running in different configurations. The system
needs to be composed and configured flexibly according to these customers’ requirements.
Rapid configuration to the customers’ demands is needed. This is hard to achieve, however,
because changing the system means programming in C, recompilation, and restart of the sys-
tem.

Composition in static, compiled languages, such as C, C++, or Java, is inflexible for situationsForces
where runtime behavior modification is required, because programming, recompilation, and
restart are required for each change.

It is hard to implement simple, domain-specific languages, for instance for rapid configura-
tion of software systems written in those languages, because this requires writing a parser,
preprocessor, and interpreter for that language. Even if an existing parser, as for instance, an
XML parser can be reused, still the mapping of language elements to implementations needs
to be programmed by hand. For simple configuration options this is easily done, but for more
complex languages that can handle behavior definitions, this can quickly result in a complex
task.

The code of multiple, consecutive  invocations might be hard to read, just consider
the following simple example:

if (expressionCommand.execute().toBoolean()) {

result = command1.execute();

command2.value = result;

command2.execute();

}

Express  composition in a  , instead of calling the Solution
directly using an API. Each  is accessed with a unique command name. The
host language, in which  are implemented, embeds the  .
In the host language, the  ’  or compiler is invoked at
runtime to evaluate the  expressed in the  . Thus 
can be composed freely using   scripts, even at runtime.

A part of the   is either an  [GHJV94] or an on-the-fly com-Discussion
piler. Note that often byte-code compilers are used for  . A byte-code
compiler can also be part of an . From a language user’s perspective all these
alternatives look the same: The user operates in a language that is interpreted at runtime.

Almost all elements of a   are , what means that a 
’ syntax and grammar rules are usually quite simple. There are some additional
syntax elements, as for instance grouping of instructions in blocks, substitutions, and opera-
tors:

• Grouping of instructions in blocks is required to build larger instruction sets, such as
method bodies, lists of arguments, and so forth. Most often brackets are used to delimit
grouping in blocks.

• Substitutions are required in a   to hand over the results of one
 to another. Other substitutions than command substitution are also possible,
e.g. variable substitution or character substitution.

• Assignment operators are an alternative to command substitutions to hand over the
results of one  to another. Also other operators can be implemented.

• The end of instructions has to be found during parsing. Usually either line ends or
special characters (like “;”) are used to mark an instruction end. A grouping can also
mark an instruction end.

These   elements are usually evaluated by the  before the
 are evaluated. In general, the  evaluates one instruction after another
according to grouping and instruction end rules. Then it performs substitutions, if necessary.
Finally it finds the  in the instruction and invokes it with the rest of the instruction
as arguments.

Note that all further syntactic elements, as well as the semantics of the  ,
must be well-defined, as in any other programming language. Finding the optimal syntax
and semantics for a particular   is beyond this pattern description because
these issues depend on the concrete, domain-specific tasks the   is used
for. When the   pattern is chosen as foundation of an integration archi-
tecture there is one important rule, however: Before building a   from
scratch, one should always consider to reuse an existing language that supports command

execution, for instance, an extensible scripting language or an existing domain-specific lan-
guage. It is often much easier to adapt an existing language infrastructure to the concrete
requirements of a software system than building a language implementation from scratch.

Consider again the above simple example. Using a   we can provide the
dynamic expression by variable substitution (with ‘$’) and pass the result of command1 as an
argument to command2 (with ‘[...]’). These changes shorten the resulting code and make it
much more readable:

if {$expression} {

command2 [command1]

}

  code is typically expressed as strings of the host language, in which the
  is implemented. From within the host language, code can be evaluated
in the  , and the results of these evaluations can be obtained. A central
strength of the   is that scripts can be (dynamically) assembled in strings
and (also dynamically) evaluated later in time. In other words, we can write dynamically
assembled and evaluated programs in host languages that do not support this feature natively.
For instance, we can put the above script into a host language string, change this string at
runtime, and evaluate it later in the program.

StringBuffer s = new StringBuffer("if {$expression} {command2 [command1]}");

...

// later change the script (here: append logging code)

script.append("\nputs \"evaluating expression: \$expression\"");

...

// later evalute the script

interpreter.eval(script.toString());

 of a   are typically implemented in the host language and
bound to command names. The command names and implementations are registered in the
 of the  . When the  evaluates a , it
looks up the implementation, registered for a command name, and invokes it.

Usually all language elements of the   are implemented in the same way
as user-defined . For instance, control statements, such as if or while, are im-
plemented as pre-defined . An if- can be realized by first evaluating
the expression given as first argument. If this expression returns true, the “then” part of the
if-statement is evaluated in the . An example is shown in Figure 2.

Sometimes interaction between code in the   and the host language is
necessary. Defining  and using eval, as in the examples above, is one simple
way of language integration. “Deeper” language integration is supported by the pattern 
. For all kinds of interaction, type conversion between the   and
the host language is necessary. This can be done by letting the user deal with type casting
manually, or it can be automated using the pattern   .

Consider again the following scenario: When using a   for integratingScenario
Resolved multiple C components, we can flexibly assemble these components and change the -

  scripts even at runtime. Once a C component is integrated in the 

command1Impl

command2Impl

1) eval script

2) lookup "if"

3) invoke "if ..."

4) subst "$expr"

5) eval body

6) lookup "doCmd2"

7) invoke "doCmd2"

if {$expression} {
 command2
}

Command Language

Host Language

Client Interpreter

ifCommandImpl

Figure 2: A script get executed by the command language interpreter

, it can be used without C programming or recompilation. For instance, the three
 in the example in Figure 2 are implemented in the host language and can be freely
composed using scripts. These scripts can be provided as stand-alone scripts to the 
’ , read from files for instance. Alternatively, they can be evaluated
as strings of the host language using the host language API of the  .

  composition is very flexible because   scripts canConsequences
be evaluated and changed at runtime.   are thus well suited for rapid
prototyping and for implementing domain-specific languages. Any data can be treated as
program code of a  .

A   is primarily designed for being easily extensible with  im-
plementations. Thus it is simple to extend the   with new components,
typically written in another language. This is usually done by registering  with
command names in the  ’ . In many  
solutions exist for automating the integration of components into the  
as new . How this is realized depends on the language features of the host lan-
guage in which the   is implemented. For instance, a wrapper generator
can be used. Or, if supported, reflection can be used for performing a runtime lookup of the
 implementation.

 composition in the host language is very efficient because  execution only
requires one additional invocation in the host language. In contrast, a  
means a more severe overhead because it requires an additional dispatch of each invocation
in the  , as well as the interpretation of   scripts.

Because the two languages have quite different tasks, each language can be designed for
its particular task: The host language for writing efficient and reliable system components,
and the   for flexible component composition and other integration tasks.
When using a   together with a host languages, developers have to learn
two languages. Often, this is not a great problem: Many   are easy to
learn because they a have a simple syntax and only a limited number of language elements is
required for  composition and configuration.

Implementing a   from scratch might be a substantial effort, depending
on the language features required. Thus reusing an existing language infrastructure (such
as an existing scripting language or domain-specific language) should be considered before
implementing the language from scratch.

Using a   consumes resources. Invocations that are sent through the -
  have a weaker performance than directly invoked . The language
implementation requires additional memory, too.

Some known uses of the pattern are:Known Uses

• Most scripting languages, such as Tcl, Python, and Perl are implemented as 
. That is, the language elements of the scripting language are implemented
in another language; the languages named above are implemented in C. The -
 of the scripting language maps the command names in the scripts to the re-
spective implementations in C. The scripting languages can thus be extended with new
language elements implemented either in C or in the scripting language.

• A domain-specific language is a programming language tailored specifically for an ap-
plication domain rather than providing a general purpose language. Many interpreted
domain-specific languages are implemented as  . This is because
  are easy to implement, easy to extend, or simply because another
 ’  is used for implementing the domain-specific lan-
guage.

• The aspect-oriented framework of JAC [PSDF01] implements a  
for aspect composition and configuration. This way, operations of an aspect component
can be provided as  implementations and invoked from the configuration file.
Each aspect can define its own “little” configuration language. This aspect can be
configured with custom parameters and behavior without the need for programming
and re-compilation.

Component Wrapper

A system is composed from a number of black-box components. Component configurationsContext
and other component variations are handled by parameterization using the components’ in-
terfaces.

You require a flexible composition of the system’s components. When using black-boxProblem
components, component variations can only be introduced using parameterizations or
exchange of the component. Parameters have to be foreseen by the component develop-
ers and thus are not well suited for unanticipated changes. Exchanging the component
often means re-writing the component from scratch. For flexible composition, some so-
lution is required that lets us deal with unanticipated changes for a component without
sacrificing the black-box property.

Consider the following scenario: A company has two related products, one implementedScenario
in C and one in C++. Both are monoliths, each consisting of a number of hard-wired sub-
systems. Consider the systems should be evolved into a product line, consisting of a number

of products. It should be possible to flexibly assemble products according to customer de-
mands. That is, it should be possible to compose new products from the existing system
components. Often composition requires little extensions and changes to the existing compo-
nents. The product line architecture should provide some concept for integrating components
into products and for extending individual components in the context of a product with new
state or behavior.

If the component’s source code is available, one way to cope with unanticipated changesForces
is to change the component itself. This is problematic because the black-box property of
the component should not be violated: Black-box reuse eases understandability because the
component can be reused without intimate knowledge of the component’s internals. The com-
ponent’s internal implementation can even be replaced by another implementation, allowing
us to get independent from implementation details. These are central reasons for using the
component-based approach – and thus should not be sacrificed without need.

Components – especially third-party components – change over the time. Even though the
black-box abstraction aims at stable interfaces, often the interfaces change. The client’s de-
veloper should be able to cope with these changes without a necessity to seek for component
accesses through the whole client’s source code.

In many situations, one and the same client version has to deal with several component ver-
sions. Then adaptations to interfaces and to relevant internal implementation details have
to take place within the same client implementation. With techniques such as preprocessor
directives or if/switch control structures this may result in hard to read code.

Usually a client of a black-box component should be independent of the internal implemen-
tation of the component. But sometimes implementation details of the component implemen-
tation, such as access to shared resources, performance issues, and memory consumption, do
matter and need to be accessed somehow.

Let the access point to a component, integrated into a system, be a first-class object ofSolution
the programming language. Indirection by a   object gives the appli-
cation a central, white-box access point to the component. Here, the component access
can be customized without interfering with the client or the component implementation.
Because all components are integrated in the same way, a variation point for white-box
extension by component’s clients is provided for each black-box component in a system.

The   provides access to a component using the object abstraction ofDiscussion
the component’s client. A simple case is that both the component implementation and the
component client use the same object abstraction; however, this is not always the case. In
fact, a major goal of the   pattern is to integrate components, written in
different paradigms and languages, using the same integration style. To reach this goal, the
  pattern can use some other patterns within its internal implementation
(there are many other integration styles though):

• In the simple case that another object-oriented component is integrated, the -
  can use the  pattern [GHJV94]. A  is a placeholder object
for another object offering the same interface. Note that a   inter-
face can also be different to the component’s interface or only provide an excerpt of
it, as for instance an “exported” interface. If two different object-oriented languages
with slightly different object and type concepts are integrated, adaptations and type

conversions can take place on the  .

• When we want to integrate a procedural paradigm component into an object-oriented
implementation, we apply the   pattern [SSRB00]. It uses one or more
objects to represent a procedural component. The wrapper object forwards object-
oriented messages to the procedures (or functions).

• If a   is also used, the   can be exposed as
 of the  . As a consequence,   can
then be flexibly assembled using   scripts. That is, two variability
mechanisms are combined here: The   allows for variation of the
individual components and their integration in the system; the  
scripts allow for flexibly composing multiple   in the system.
The   is exposing the component’s export interface as operations
of the , one for each exported functionality of the component. The arguments
of the  in the   script are used to dispatch the correct
  operation.

In each of the three variants, the   can expose the same interface as
the wrapped component (then it is a ), or a different one. When changes to types of
the interface are necessary during an invocation by a  , the 
 can either contain the conversion code or use an    for
the conversion.

  are used to provide a uniform way of wrapping black-box compo-
nents. The component client does not know about the style of wrapping or other implemen-
tation details. Moreover, the indirection to a   object provides an acces-
sible white-box on client-side. This placeholder provides a central access point to the com-
ponent.  [GHJV94],  [GHJV94],   [Zdu03b],
and other kinds of extensions, variations, or customizations optionally can be added to the
 . Only changes that necessarily have to interfere with the component’s
internals cannot be handled this way.

  can easily be generated, if the component’s interface is electronically
documented with an   [VKZ04]. The default implementation of such
generated   just forwards the invocation to the component, but the client
is able to extend the generated code. Using techniques, such subclassing, polymorhism,
or   [Zdu03b], we can avoid that re-generated code overwrites client
extensions of the  .

Using   we can modularize the aspect “integration of another compo-
nent”. Thus   are well suited to be applied together with an aspect-
oriented approach [KLM+97]. That is, an aspect composition framework can be used to
weave the aspect represented by the   into the system.

Consider again the following scenario: Two monolithic products should be evolved intoScenario
Resolved a product line architecture. This can be done in an incremental fashion using 

: They are used to decouple the components of the legacy systems step by step.
Figure 3 shows that   are implemented as part of the product line, and
instantiated by a new product. There is one   for each of the export

Language: C++ Language: C

1) do something

3) an invocation

Service
Object 1

Service
Object 3

Component Wrapper 1
(Wrapper Facade)

Component Wrapper 2
(Wrapper Facade)

Component Wrapper 3
(Proxy)

Service
Object 2

Legacy
Component 2

Legacy
Component 1

2) do it

Language: C++

Legacy
Component 3

4) an invocation

Figure 3: A number of component wrappers are integrated into a C++/C system: Some are
wrapper facades, some are proxies

interfaces of the products. For the C product the pattern   is used, for the
C++ product we use a . In the example we can see that one  
performs an interface adaptation; the  only forwards the invocation. On the 
 individual products, composed from the existing components, can add behavior or
state to the components.

Using   customizability of black-box components is enhanced. Dif-Consequences
ferent styles of wrapping are conceptually integrated from a component client’s perspective.
Application developers can flexibly adapt and change component interfaces at a central ac-
cess point. For instance, slight version changes in component version can be hidden by the
  so that clients do not have to contain the adaptation code (such as
#IFDEF directives). In other words,   reduce tangled code caused by
component integration, composition, and configuration.

Using   an external component is used as an internal, first-class entity
of the object system. That is, once integrated, all external and internal components look the
same for component clients. The component use is decoupled from the internal realization.
Therefore, the component itself is exchangeable with another implementation.

The indirections to the   reduce performance slightly. More classes and
flexibility hooks can result in a higher complexity of the application and thus reduce under-
standability.   introduce additional code. Thus there is more code to test
and understand. Due to the indirection and the additional code, system’s using 
 might be slightly harder to debug.

Some known uses of the pattern are:Known Uses

• In [GZ02] we present a case study of a reengineering project for a document archive
system implemented in C. We use   for migrating the existing C
implementation into a component architecture in a stepwise manner.

• SWIG [Swi03] is a wrapper generator that can generate   for C
and C++ components in various other languages. SWIG uses language bindings and
header files as  .

• VCF [OGJ03] integrates components from various Java component models, namely
COM+, CORBA, EJBs, and Java Beans. A  provides a common denominator
interface of the technologies to clients. For integration of the component models, the
approach uses a plug-in architecture that is based on a number of  -
.

Object System Layer

Parts of a system implementation are realized in a language that does not support object-Context
orientation, such as C, Tcl, or Cobol. Or the implementation is realized in an object system
that does not support desired object-oriented techniques. For instance, C++ or Object Cobol
do not implement reflection or interception techniques.

Suppose you want to design with object-oriented techniques and use the benefits of ad-Problem
vanced object-oriented concepts, but you are faced with target programming languages
that are non-object-oriented, or with legacy systems that cannot quickly be rewritten, or
with target object systems that are not powerful enough or not properly integrated with
other used object systems, say, when COM or CORBA is used. But the target language
is chosen for important technical or social reasons, such as integrating with legacy soft-
ware, reusing knowledge of existing developers, and customer demands, so it cannot be
changed. One solution is to translate the design into a non-object-oriented design, and
then to implement that design. If this mapping is manual then it will be error-prone and
will have to be constantly redone as the requirements change.

Consider the following scenario: Legacy applications are often written in procedural lan-Scenario
guages, such as C or Cobol. A complete migration of a system to a new object-oriented
language often makes the integration with the existing legacy components difficult and forces
a re-implementation of several well functioning parts. The costs of such an evolution are
often too high to consider the complete migration to object technology at all. Most often the
costs are even very hard to estimate in advance.

There are a number of situations in which we require some integration with an object-system,Forces
as for instance:

• Many modern systems are based on object-oriented concepts, but still legacy systems
offering no support for object-orientation need to be supported.

• When two or more different object-oriented languages need to be integrated, we can
use   for integration. However, we should avoid to implement
this integration for each individual   on its own.

• The need for integration of object concepts might also occur in only one object-oriented
language when foreign object concepts need to be integrated. For instance the CORBA
or COM object systems are not exactly the same as the object systems of object-
oriented languages, such as C++ or Java, in which they are used. This problem arises
for all kinds of technologies that introduce object concepts, as for instance distributed
object systems, application servers, transaction monitors, and relational and object-
oriented databases.

• Many applications use an object system of a mainstream programming language, such
as C++, Java, or Object Cobol. Those object systems do only implement standard
object-oriented techniques. Thus extensions of object concepts, such as interception
techniques, reflection and introspection, role concepts, or aspect-orientation are not
provided natively.

To integrate object-oriented systems with non-object-oriented systems, or to integrate dif-
ferent object systems, we require some mapping of the language concepts. Such mappings
should be reusable so that a programmer does not require to perform the integration over and
over again.

Build or use an object system as a language extension in the host language and thenSolution
implement the design on top of this   . Provide a well-defined in-
terface to components that are non-object-oriented or implemented in other object sys-
tems. Make these components accessible through the   , and then the
components can be treated as black-boxes. The    acts as a layer of
indirection for applying changes centrally.

An    requires some dispatch mechanism that translates invocations in theDiscussion
host language into invocations to the objects of the   . This can be done
using a   [GNZ01]. It acts as a  [GHJV94] to the whole 
  and is not bypassed. For instance, the   invocations might
be string-based messages, which are translated into the respective invocations.

The    can be part of a  , if the  
implements an object system. Then the   ’   is
part of the  ’ . Once a script is parsed, the 
uses a   to indirect the invocation to the implementation of the 
 element. A typical integration of the patterns    and 
 uses one object per , and the command name is used as an object ID for
the    object.

The   pattern is used, if the    needs to be integrated with a
host language object system. Using   foreign paradigm elements, such
as procedural APIs, can be integrated into the   ’ object system.

Besides the conceptual integration with host language concepts, an   
also must deal with other potential mismatches of the host language and the  
’ model. For instance, mismatches in the threading models or mismatches in transac-
tion contexts must be resolved.

The    can be used to introduce extensions of the object concept of an
object-oriented language. Typical examples are the introduction of runtime dynamic object
and class concepts such as   [JW98], role concepts, or  
[Zdu03b].

Many technologies integrated into a system, implement an   , as for in-
stance distributed object systems, application servers, transaction monitors, and databases. If
needed, an    can also be introduced as a superset of (a part of) two or
more object concepts to integrate them. For instance, the    of technolo-
gies that are implemented in multiple languages, such as distributed object frameworks, are

primarily used for integrating the object concepts of these languages.

Procedural Language

Object System
Layer

Object 1
Component 1

Object 2

OO Language

Service
Object 3

Service
Object 2

Message
Redirector Component 2

Component 3

Service
Object 1 1) invoke "Object 3 ..."

2) lookup "Object 3"

3) invoke Object 3

4) foward invocation

Figure 4: An object system layer is embedded in a procedural language

Consider again the following scenario: Procedural components should be composed usingScenario
Resolved object-oriented concepts. An    can be used for this purpose, as depicted

in Figure 4. This has the benefit that we do not have to translate the system into an object-
oriented language completely. Instead existing components can be incrementally evolved;
others can stay in the procedural language and be integrated into the   
using  .

When using an   , the flexibility of the application can be improved, sinceConsequences
the    allows us to introduce variation points and to implement high-level
language constructs, such as interception, reflection, and adaptation techniques.

The complexity of the application can be reduced, because – in scenarios where they are
really needed – more high-level concepts, such as roles, interceptors, or aspects can simplify
the program code and avoid complex workarounds.

Complexity of the application can also rise, if the client has to maintain the  
. Then issues such as garbage collection, object destruction, relationship dynamics,
reflection, etc. have to be programmed by hand. But this problem can be avoided by using an
existing    as a library.

Performance can be decreased due to additional indirections.

The   ’s conventions and interfaces have to learned by the developers in
addition to the system’s APIs.

Some known uses of the pattern are:Known Uses

• Object-oriented scripting languages implemented in C, such as Python or XOTcl [NZ00],
provide an    for C. These languages provide a C API – that means
the object models can be accessed and used from C for using object-oriented abstrac-
tions in C programs.

• The Redland RDF library [Bec04] implements a simple    for C to

use object-oriented abstractions for RDF nodes, models, streams, and other elements of
the library. The library implements classes, object IDs, constructors, and destructors.

• Procedural implementations of object-oriented middleware, such as C or Tcl imple-
mentations of CORBA or Web Services, provide the object abstractions of the middle-
ware in the procedural language. Thus in the distributed context these implementations
provide an   .

Automatic Type Converter

Languages or systems supporting different types are used in one system.Context

When two different type systems need to be integrated, it is necessary to convert corre-Problem
sponding types. An   can be used to describe the type differences,
and the corresponding type conversion code can be generated. Conversion code for each
particular invocation can only be generated, however, if the signatures of all operations
are known during generation. Sometimes operation signatures are not known before
runtime. In many integration situations it is also necessary that it is easy to add new
type bindings rapidly.

Consider the following scenarios:Scenarios

• In Web Services frameworks remote invocations and other messages are transferred
using SOAP [BEK+00] as a XML-based payload format. In SOAP, invocations con-
taining parameter and return types are encoded in string format. To be interpreted by
a programming language the SOAP messages must be converted to programming lan-
guage native formats. From an   we can generate a client proxy
and server stub that perform the type conversion. This, however, does only work, if
the types are known before runtime; for dynamic deployment of services we basically
have two choices: We can generate a server stub while the system runs or and perform
type conversions at runtime.

• A   is embedded in a statically typed language. The 
 is given in form of scripts that are interpreted at runtime. That is, all types
to be accessed by the   need to be dynamically convertible to and
from strings. To ease type integration, it should be simple to integrate new types.

Different languages support different types that cannot be exchanged directly. This problemForces
also arises for other systems supporting types – not only for programming languages. For
instance, most distributed object frameworks support their own type system to integrate across
languages or platforms. Systems supporting dynamic types – for instance using the pattern
  [JW98] – require some way to cast the dynamic types into other dynamic types or
static types of the host language. Some languages and typed systems only support canonical
types, such as strings. To integrate them with a strongly typed system, we need to convert the
types to the canonical format and vice versa.

When an   of all operation signatures exists, an option is to generate
the type conversion code. This option is for instance often chosen in the proxies and stubs

generated by many distributed object frameworks. However, this does not work for more
dynamic or complex type conversion situations. For instance, generation is not as well suited
for dynamic typing or runtime deployment because here the operation signatures are not
known before runtime of the system. Note that runtime generation of conversion code is
possible – it is just more complex than writing simple wrappers.

Also, in many cases, it is necessary to provide a very simple kind of type conversion because it
should be easily extensible: Only the type binding and the conversion code should be needed
to be specified.

Provide an    as a means to convert an instance of a particu-Solution
lar type supported by the    to a particular target type, and
vice versa. The    is either extensible with new type bindings
for one-to-one transformations, or converts every type to a canonical format, such as
strings, and can convert the canonical format to any supported type. If no user-defined
type binding is found, the    should execute a default conver-
sion routine.

In general, an    should be able to deal with all kinds of conversionsDiscussion
that occur at runtime because manual intervention is not possible at runtime and a conversion
that fails leads to a runtime error. That is, all kinds of    should
always provide a default conversion routine that takes place when no custom type binding is
defined. Hooks for type conversion are provided so that users can extend the type converter
with additional conversions.

There are two main variants of   :

• There might be a canonical format, such as strings, void* in C/C++, Object in Java,
supported by the    and a number of other types. The -
   can convert any type to the canonical format and the canonical
format to any type. This way, any type can be converted into any other type by a
two-step conversion. Note that it is the developer’s responsibility to provide sensible
canonical representations of the various types which allow for conversion without in-
formation loss and which are efficient. Also, it is the developers burden to request
only sensible conversions. For instance, converting a whole database into a in-memory
string representation is problematic; it might be better to convert a database handle only.
The system must be designed in a way so that continuous back-and-forth conversions
are avoided, where possible.

• An alternative to using a canonical format is to use direct, one-to-one conversion. This
is usually faster because only one conversion is required. The drawback of this variant
is that we might have to write more converters: If each type can be mapped to each
other type, we have to write N∗M converters, instead of N converters needed to support
a canonical format. Therefore, one-to-one conversion is often chosen if there is only
one target type for each type. A second reason for using one-to-one conversion is that
specialties of the individual types must be considered during conversion, for instance,
because information would get lost during conversion to a canonical format. Finally,
a third reason for choosing one-to-one conversion might be the better performance
because conversion to/from the intermediate canonical representation can be avoided.

An    can also be used for more than two types. Thus, for instance,
it can also be used to implement polymorphism for   and other dynamic typing
solutions. The    can convert an object to all types, supported by its
classes, and delivers the casted type, as requested by the client. This is for instance useful if
an    is combined with an    or  .

A   implemented in a host language usually requires an  
. In this scenario, the canonical format variant is often supported because the -
  scripts are represented as strings, and these strings can be used as a canonical
format. Thus the    is used as a mechanism to exchange data, spec-
ify operation parameters, and receive operation results between a   and
its host language.

An    is a flexible alternative to type conversion code generated
from an  . In many cases, generated type conversion code uses the -
   internally. An    can also use 
 as an aid in the type conversion decision.

The pattern   [VZ02] is a similar pattern describing content integration
– it also can be used with a canonical format or using one-to-one integration. If the content
of a   is typed, an    can be used as part of a
  used for the type conversion task.

Type
Converter

Command Language

2) convert string "Service1" to object ID

5) convert string "Service2" to object ID

Host Language

1) invoke "Service1 operation Object2"

3) invoke "operation Service2"

Client

4) invoke "Object 2 ..."

Service
Object 1 6) invoke "..."

Service
Object 2

Service
Object 3

Interpreter

Figure 5: A host language client invokes an command language object and the interpreter
performs automatic type conversions

Consider again the following scenarios:Scenarios
Resolved

• In a Web Service framework we usually can map every programming language type to
one type in the  . Thus here we can use a one-to-one converter
between   type, transmitted over the network, and the type of the
programming language.

• A   needs to be integrated with a statically typed language. The
  uses scripts consisting of strings. Thus we need a converter for
each host language type to strings and from strings to each host language type. In Fig-
ure 5 a solution using a string representation as a canonical format is sketched. Each
   object internally has two representations: A string repre-
sentation and an internal representation containing the target type of the statically typed

host language. The    class provides an operation for con-
verting the internal representation to strings, an operation for converting strings to the
internal representation, getter/setter operations for both representations, and operations
for discarding one of the two representations. At each point in time, at least one of the
two representations must be valid.

An    is in many scenarios slower than a solution generated from anConsequences
  because it performs the conversion at runtime, whereas the generated
solution only performs a single cast. The benefit of an    is that
it is more flexible than generated solutions: This way dynamic typing can be supported.
Type mappings can be changed at runtime. Also, the type mappings in an  
 are easy to extend.

Some known uses of the pattern are:Known Uses

• The scripting language Tcl uses an    for converting the
string-based scripts to native types in C and vice versa. Strings are used as a canonical
format.

• IONA Artix is a Web Service framework that supports conversion between different
protocols (HTTP, IIOP, Websphere MQ, Tuxedo, etc.) and payload formats (SOAP,
Tuxedo’s FML, GIOP, etc.). To increase conversion performance, Artix uses one-to-
one converters. An    for each converter is needed to recog-
nize the types in one payload format and translate them into the target format.

• Apache Axis is a Web Service framework that uses    for
one-to-one conversion between programming language types in Java and the payload
format SOAP.

Split Object

Two languages need to be used together in one system.Context

To integrate two languages one can write simple wrappers that allow for invocationsProblem
in the other language. However, pure wrapping poses some problems in more complex
language integration situations. A wrapper provides only a “shallow” interface into a
system, and it does not reflect further semantics of the two languages. Examples of such
semantics are class hierarchies or delegation relationships. Further, a wrapper does
not allow one to introspect the system’s structure. The logical object identity between
wrapper and its wrappees is not explicit. Complex wrappers that are implemented
manually are hard to maintain.

Consider the following scenario: One language embeds another language, such as a -Scenario
  that is embedded in a host language for configuring host language objects.
That is, the   requires access to its host language, and vice versa. Here
“access” means, for instance, performing lookups, invocations, creations, and destructions of
objects and methods.

A main driving force for considering deeper language integration than  Forces
it that it is cumbersome to write wrappers for each and every element that requires language
integration. To a certain degree, wrappers can be generated, but still we would require custom
code for each language integration situation. Instead it should be possible to reuse language
integration code. Automation and reuse would also foster maintainability: In general, com-
plex wrapping structures can quickly get quite complex and thus hard to maintain. Especially
scattering wrapping code across the functional code should be avoided.

Simple wrappers are usually realized by a single indirection, and thus they are relatively fast
and consume only little extra memory. A deeper language integration needs to be compared
to simpler wrapper solutions with regard to resource consumption.

A   is an object that physically exists as an instance in two languages, butSolution
logically it is treated like one, single instance. Both   halfs can delegate invo-
cations to the other half. The   halfs mimic the user-defined class hierarchy
of the counterpart, variables are automatically traced or shared, and methods can be
wrapped. Depending on the language features of the two languages, these function-
alities can either be implemented by extending the language’s dispatch process, using
reflection, or using program generation.

There are different ways how a   half can communicate with its counterpart in theDiscussion
other language:

• A method can be provided, for instance by a superclass of all  , that al-
lows for sending an invocation to the other half. The invocation parameters are usually
provided as arguments using a generic type (such as strings or Object in Java) and con-
verted using an   . Depending on the language features, the
method implementation on the other split object half can be looked up using reflection,
using a dynamic dispatch mechanism, using a registration in a method table (provided
by the developer), or using a generated method table.

• A wrapper generator can generate a method on a split object half for each exported
method of the other split object half. This generated method is a simple forwarder to
the other split object half. The invocation parameters can be provided using the correct
types, required by the counterpart, if possible, or an    is
needed for conversion. This variant is very efficient because it requires no dynamic
lookup.

• If the language’s dispatch mechanism can be extended and method dispatch is per-
formed at runtime, we can implement an automatic forwarding mechanism. Whenever
a method cannot be found for the split object half, the “method not found” error is not
raised directly, but it is first tried to find the method on the other split object half. If this
succeeds, the method is invoked there, otherwise the error is raised. In this variant, the
same means for method lookup as in the first alternative can be used.

• In dynamic languages (e.g. a  ), wrapper methods can also be gen-
erated at runtime. Again, these methods are simple forwarders, as in the second alter-
native, but the means for method lookup, described in the first alternative, are used.

Note that only in the first variant clients recognize that the object does not itself implement
the method; in the following three variants the client can use the same invocation style as

used for methods implemented in the same language.

In many cases, split object halfs will mimic the user-defined class hierarchy of the other half.
For instance, when you generate forwarder methods to the other split object half, you face
the problem of name clashes: Methods on different classes of one object might have the same
name. This problem does not arise, if every class for which a forwarder method is generated,
exists within both languages. For this to work, to a certain extent, we need to integrate
the class concepts of the two languages. For instance, if one language supports multiple
inheritance, and the other not, we need to simulate multiple inheritance in the other language.
To mimic a class hierarchy in a procedural language or integrate different class concepts in
two object-oriented languages, you might consider implementing a simple  
.

From the   we can automatically forward invocations into the host lan-
guage. In turn, ordinary host language invocations bypass the   in the 
. Thus, from within the host language, we have to use the ’ eval
method to access a  . To avoid this additional invocation style, the pattern 
 [Zdu03b] can be used to replace host language invocations with indirections to 
.

Command Language

Object 1

Object 1

Host Language

2) lookup "Object1"

Client

1) eval "Object1 log"

Interpreter

3) invoke "log"

4) invoke "log"

Figure 6: Invoking a split object through the command language

Consider again the following scenario: When integrating a   with aScenario
Resolved host language, we can provide a method for invoking the   from the host

language. The   object, in turn, provides an automatic forwarding mech-
anism to invoke the host language half of a  . As an example, Figure 6 shows
a host language client that needs to invoke a host language object Object1. This object is a
 : Instead of invoking this object directly, the counterpart in the  -
 is invoked first, which forwards the invocation back into the host language. This way
the   can intercept the invocation.

  can be used to deeply integrate two object systems. Concepts realized in oneConsequences
object system can be used from within the other object system. The language integration code
in the   implementation can be reused. Thus language integration is easier to apply
and the code is easier to maintain than integration code based on   only.
  can be used as a model to automate wrapper generation for two languages.

Working with two languages might make debugging more difficult because you have align the
debugging information in the two languages and maybe even integrate debugging tools. On
the other hand,   can even be used to provide debugging information for other
languages (see [Zdu04] for examples).

  pose a memory and performance overhead. This overhead can be minimized
by not using dynamic lookup and dispatch mechanisms, but generative techniques instead.
Generated code is hard to change at runtime (if this is possible at all); that is, using generative
techniques means less flexibility.

Some known uses of the pattern are:Known Uses

• The network simulator [UCB00a] and Open Mash [Ope00] are two projects that are
implemented in C++ and use OTcl [WL95] for configuring and customizing the C++
applications. The integration of the two languages is performed by a  
solution called Tclcl [UCB00b].

• In [Zdu04] it is demonstrated how to use   for dynamically performing
maintenance tasks, such as component testing, feature tracing, and variation and con-
figuration management. For instance, the language Frag [Zdu03a] is used to configure
and compose AspectJ [KHH+01] aspects dynamically to perform these tasks in Java.

• The Redland RDF library contains an C-based   . The Perl inter-
face to that system uses a hand-build   solution: When a Perl wrapper is
created, the respective C-based object is created as well – thus object IDs are mapped
one to one. Similarly, the C destructors are automatically invoked in the correct order
upon destruction of the Perl wrapper object.

Known Uses and Technology Projections

In this section we discuss some known uses and examples for the patterns in an integrated
manner. We rather concentrate on a few interesting technology projections than discussing
all known uses; there are simply too many. In this section, we present examples from the
areas of distributed object frameworks, reengineering, scripting languages, and dynamic as-
pect configurations. There are many other systems in each of these areas using some of the
patterns, described in this paper.

Apache Axis

We want to discuss the Web service framework Apache Axis as an example of a distributed
object framework. In many other distributed object frameworks similar concerns occur and
similar solutions are applied.

The  [VKZ04] of the Web service framework needs to convert the types of re-
mote invocations into strings to be transported across the network using the SOAP protocol,
and on server side it needs to convert the strings into the respective types again. In Axis the

XML Schema Data (XSD) types are used, and WSDL files are used as an  -
. Thus Axis only requires one-to-one conversion between programming language
types and the string representation of the XSD types. This is done using an  
. This way type conversion is flexibly extensible with new type converters.

In Axis a type converter consists of a factory for a serializer and de-serializer, as well as
an implementation of serializer and de-serializer. Besides primitive types which can use a
simple converter because type conversion is supported by Java, Axis can convert many more
complex types, such as arrays, dates, calendars, DOM documents, object references, vectors,
beans, and others. In a class containing the type bindings, these   
are mapped to the XSD types. According to the  , Axis can lookup the
Java type converter corresponding to an XSD type and perform the conversion automatically.

A Web service framework usually supports heterogeneity of backends implementing the ser-
vice. For instance, a service might be implemented as a Java class, a procedural library, an
EJB component, a COM component, and many others. Axis provides a “provider” abstrac-
tion. One provider class for each type of backend service is provided. The provider can be
dynamically configured for particular invocations, and the framework can be extended with
new providers for new types. This is a variant of the pattern  : Each
backend component type can be flexibly integrated, and we can manipulate the mapping by
either providing new provider types or by configuring the provider objects.

A distributed object framework is an implementation of a canonical object system, often im-
plemented in many languages. Thus is can be used as an    to provide
objectified access to non-object-oriented languages, as well as a unified access to the object
systems of the language supported. The object concepts of this    are usu-
ally described by a language for  , such as WSDL for Web Services
and IDL for CORBA.

Reengineering a Document Archive System

In [GZ02] we present a case study of reengineering a large-scale documented archive system,
implemented in C, to an object-oriented architecture. An important concern was incremental
evolution of the system. Here, the pattern   played a central role: The
idea was to start off with simplistic wrappers, in particular   for the original
procedural components – these were more or less similar to the original subsystems of the
system. As the reengineering project continues, different component versions have to be
supported, interface changes have to be handled, and components with other wrapper styles
have to be integrated as well.   provide a way of unifying wrapping
styles and handling extensions or adaptations.

To objectify the system, we applied the pattern   . A simple object system
was provided with which the components can be treated in an object-oriented manner and
easily integrated with the object systems of distributed object systems (in [GZ02]: CORBA).

New requirements impose changes on the wrappers constantly. Such extensions or adapta-
tions can be transparently handled by   [Zdu03b]. Here, the pattern
   is beneficial again, because the   of the 
  can be used to apply the interceptors. It can also trigger an  

, where necessary.

TclCL and XOTcl/SWIG

TclCL [UCB00b] is an integration of OTcl [WL95] and C++. It utilizes   for
language integration. TclCL is used in:

• Mash [Ope00] is a streaming media toolkit for distributed collaboration applications
based on the Internet Mbone tools and protocols.

• The Network Simulator (NS) [UCB00a] supports network simulation including TCP,
routing, multicast, network emulation, and animation.

In both projects, TclCL is applied to utilize the two language concept: The  -
OTcl is used for high-level tasks, such as configuration, testing, and others, and C++ is
used for the efficient implementation of the core tasks as C++ . The user-defined
OTcl classes mimic the C++ class hierarchy. This is mainly done because the C++ vari-
ables/methods can be dynamically registered for OTcl in the C++ constructors of the respec-
tive classes. The OTcl counterpart remembers the capabilities of the C++ half, and thus can
forward invocations implemented on the C++ half into the other language. OTcl is an 
  that adds dynamic object-oriented language concepts to the static languages C
and C++.

XOTcl [NZ00] is the successor of the language OTcl. We have implemented a C++/XOTcl
binding using the wrapper generator SWIG [Swi03]. This project has similar goals and a
similar architecture as the TclCl solution explained above. The main difference is that in
this solution the variable/method bindings are not registered in the C++ constructors, but are
generated from an   (the SWIG header file – which is similar to a C++
header file).

As Tcl extensions, both OTcl and XOTcl use strings in scripts to represent primitive data
types. Internally, all primitive data types of XOTcl, such as ints, floats, doubles, booleans,
strings, lists, and XOTcl objects are presented by so-called Tcl Objs. These are 
 which contain data structures for a string representation and an internal rep-
resentation for the respective type implemented in C. Also they contain conversion routines
for each type to strings and for strings to each type – also implemented in C. Tcl Objs use an
abstract interface – using C function pointers – so that the Tcl  can automatically
convert each type without knowing any more details of the types.

Configuring Aspects using Split Objects

A more sophisticated   solution [Zdu04] is implemented in Frag [Zdu03a]. Frag
is a Tcl variant that can be completely embedded in Java. It is implemented on top of Jacl
[DR03], a Tcl interpreter implemented in Java. Frag also exploits   for language
integration, but in contrast to the OTcl and XOTcl solutions explained above, it does not
use registration or generative programming for access of the other split object half, but Java
Reflection. Frag thus can be embedded in Java as a   and be dynamically
connected to Java classes.

Within Frag, there is a Frag class JavaClass provided. This class is used for wrapping a Java
class with a Frag object. When an object is derived from this class or any of its subclasses, a
  consisting of a Java half and a Frag half is created.

All   in Frag inherit from a class Java. The method dispatcher of the class Java
is responsible for forwarding all invocations that cannot otherwise be dispatched to the Java
half. dispatcher is automatically invoked as a default behavior, when a method cannot be
dispatched in Frag. Both, wrapping a Java class and forwarding invocations, is implemented
using Java reflection. Internally, primitive Java types are automatically converted to and from
strings. Non-primitive Java types have to be used as   in order to be accessed
from Frag.

When the goal is to configure a Java application, typically the Frag script are used from
within Java. However, Java invocations require the developer to know which objects are
 . Consider a Java object circle is defined as a   and the following
Java invocation is performed:

circle.setRadius(2.0);

This Java invocation bypasses the   Frag. What would be needed instead
is an invocation sent through the  :

frag.eval("circle setRadius 2.0");

The pattern   [Zdu03b] provides a solution. For different languages different
tools exist that can perform static hook injections. For instance, for Java we can use AspectJ.
The following aspect associates statically with a Frag . It contains one advice
that is invoked before the constructors of user-defined classes. It calls makeSplitObject to
create a   half in Frag. All other methods of the user-defined classes are inter-
cepted by an around advice. The method invokeSplitObject sends the invocation to the
  half first, and if next is invoked, it is sent to the Java implementation as well.

abstract aspect FragSplitObject {

static Frag frag;

...

protected static void makeSplitObject(

JoinPoint jp, Object o) {...}

protected static Object invokeSplitObject(

JoinPoint jp, Object o) {...}

abstract pointcut splitObjectClasses(Object obj);

pointcut theConstructors(Object obj):

splitObjectClasses(obj) && execution(new(..));

pointcut theMethods(Object obj):

splitObjectClasses(obj) &&

execution(* *(..)) &&

!execution(String toString());

before(Object obj): theConstructors(obj) {

makeSplitObject(thisJoinPoint, obj);

}

Object around(Object obj) : theMethods(obj) &&

!cflow(execution(* invokeSplitObject(..))) {

return invokeSplitObject(thisJoinPoint, obj);

}

}

Note that this aspect excerpt is simplified. The actual aspect implementation in the Frag
distribution is more complex because it treats all Java primitive types by separate pointcuts
and advices. (This terminology stems from AspectJ and is explained in detail in [KHH+01]).

The aspect is defined as an abstract aspect. In concrete aspects the pointcut splitObjectClasses
is refined. Here, the classes can be defined by the user to which the aspect is applied. For
instance, we can apply the split objects to the classes Circle and Square:

public aspect FragSplitObjectABC

extends FragSplitObject {

pointcut splitObjectClasses(Object obj):

this(obj) &&

(within(Circle) || within(Square));

...

}

The default behavior of this aspect is that all invocations are sent through the 
, but the invocations are not altered. By re-defining the classes in the dynamic
Frag language, one can dynamically compose the internals of the aspect. Thus, here we
have applied the   pattern for integrating AspectJ aspect with the Frag 
. That is, we can compose and configure aspect implementations dynamically at
runtime. The same Frag code used for specifying a Java aspect can also be used to specify
an aspect in another language (e.g. Tcl, C, or C++). We only have to use another aspect
framework for weaving the aspect.

Conclusion

In this paper, we have presented a number of patterns for software architecture integration
from the specific areas of language integration and component integration. The patterns play
a central role in a huge number of integration architectures. There are many external patterns
and many patterns missing in this broad area yet in order to provide a full pattern language
for this important field.

Acknowledgments

Many thanks to Charles Weir for his attention as a EuroPLoP 2004 shepherd and his construc-
tive comments. Also, thanks to the participants of the EuroPLoP 2004 writers’ workshop who
provided valuable feedback.

References

[BCK98] L. Bass, P. Clement, and R. Kazman. Software Architecture in Practice.
Addison-Wesley, Reading, USA, 1998.

[Bec04] Dave Beckett. Redland RDF application framework. http://
www.redland.opensource.ac.uk/, 2004.

[BEK+00] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F.
Nielsen, S. Thatte, and D. Winer. Simple object access protocol (SOAP) 1.1.
http://www.w3.org/TR/SOAP/, 2000.

[BMR+96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-
orinented Software Architecture - A System of Patterns. J. Wiley and Sons
Ltd., 1996.

[DR03] M. DeJong and S. Redman. Tcl Java Integration. http://www.tcl.tk/software/
java/, 2003.

[GHJV94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[GNZ00] M. Goedicke, G. Neumann, and U. Zdun. Object system layer. In Proceedings
of EuroPlop 2000, Irsee, Germany, July 2000.

[GNZ01] M. Goedicke, G. Neumann, and U. Zdun. Message redirector. In Proceedings
of EuroPlop 2001, Irsee, Germany, July 2001.

[GZ02] M. Goedicke and U. Zdun. Piecemeal legacy migrating with an architectural
pattern language: A case study. Journal of Software Maintenance and Evolu-
tion: Research and Practice, 14(1):1–30, 2002.

[JW98] R. Johnson and B. Woolf. Type object. In R. C. Martin, D. Riehle, and
F. Buschmann, editors, Pattern Languages of Program Design 3. Addison-
Wesley, 1998.

[KHH+01] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold.
Getting started with AspectJ. Communications of the ACM, October 2001.

[KLM+97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J. M. Lo-
ingtier, and J. Irwin. Aspect-oriented programming. In Proceedings of
ECOOP’97, Finnland, June 1997. LCNS 1241, Springer-Verlag.

[NZ00] G. Neumann and U. Zdun. XOTcl, an object-oriented scripting language. In
Proceedings of Tcl2k: The 7th USENIX Tcl/Tk Conference, Austin, Texas,
USA, February 2000.

[OGJ03] J. Oberleitner, T. Gschwind, and M. Jazayeri. Vienna component framework
enabling composition across component models. In Proceedings of the Inter-
national Conference on Software Engineering (ICSE 2003), Portland, Oregon,
USA, May 2003.

[Ope00] Open Mash Consortium. The open mash consortium.
http://www.openmash.org, 2000.

[PSDF01] R. Pawlak, L. Seinturier, L. Duchien, and G. Florin. JAC: a flexible framework
for AOP in Java. In Reflection 2001: Meta-level Architectures and Separation
of Crosscutting Concerns, Kyoto, Japan, Sep 2001.

[SSRB00] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann. Patterns for Con-
current and Distributed Objects. Pattern-Oriented Software Architecture. J.
Wiley and Sons Ltd., 2000.

[Swi03] Swig Project. Simplified wrapper and interface generator. http://
www.swig.org/, 2003.

[UCB00a] UCB Multicast Network Research Group. Network simulator - ns (version 2).
http://www.isi.edu/nsnam/ns/, 2000.

[UCB00b] UCB Multicast Network Research Group. Tclcl. http://www.isi.edu/nsnam/
tclcl/, 2000.

[VKZ04] M. Voelter, M. Kircher, and U. Zdun. Remoting Patterns, 2004. to be pub-
lished in Wiley’s pattern series.

[VZ02] O. Vogel and U. Zdun. Content conversion and generation on the web: A
pattern language. In Proceedings of EuroPlop 2002, Irsee, Germany, July
2002.

[WL95] D. Wetherall and C. J. Lindblad. Extending Tcl for dynamic object-oriented
programming. In Proc. of the Tcl/Tk Workshop ’95, Toronto, July 1995.

[Zdu03a] U. Zdun. Frag. http://frag.sourceforge.net/, 2003.

[Zdu03b] U. Zdun. Patterns of tracing software structures and dependencies. In Pro-
ceedings of EuroPlop 2003, Irsee, Germany, June 2003.

[Zdu04] U. Zdun. Using split objects for maintenance and reengineering tasks.
In 8th European Conference on Software Maintenance and Reengineering
(CSMR’04), Tampere, Finland, Mar 2004.

