
T ie Code And Quest ions:
a Reengineering Pattern
Stéphane Ducasse(+), Serge Demeyer(*), Oscar Nierstrasz(+)

(+) University of Berne - SCG - http://www.iam.unibe.ch/~scg/

(*) University of Antwerp - LORE - http://win-www.uia.ac.be/u/sdemey/

Abstract. Reengineering is an inherent aspect of modern software development, with its em-
phasis on iterative and incremental development. The reengineering pattern presented in this paper
shows how you can support your understanding during system reengineering by linking your
questions or information about the code in the code itself.

This work has been funded by the Swiss Government under Project no. NFS-2000-46947.96 and
BBW-96.0015 as well as by the European Union under the ESPRIT program Project no. 21975
(FAMOOS).

Copyright© 2000 by Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz

Introduction

Legacy systems are not limited to the procedural paradigm and languages like Cobol. Even if
object-oriented paradigm promised the building of more flexible systems and the ease in their
evolution, nowadays object-oriented legacy systems exist in C++, Smalltalk or Java. These leg-
acy systems need to be reengineered to meet new requirements. The goal of the FAMOOS Es-
prit project was to support the evolution of such a object-oriented legacy systems towards
frameworks.

In this context, we used patterns as a way to record reengineering expertise. We wrote reverse
engineering patterns that record how to extract information of the legacy systems from the
code, the organization or the people [Deme99n] and reengineering patterns that present how
code can be transformed to support new requirements, to be more flexible or to simply follow
object-oriented design [Duca99c]. Tie Code and Questions is a third kind of reengineering
pattern, it is not only applicable during the reverse engineering phase but can also be used dur-
ing the reengineering of a software system.

e to
 ways

ple, or

-
have.
r who

 can.
ser

.
the
 code
 How-
piece
to un-

s you
Tie Code and Questions
Intent: Keep all your questions and answers about the code you are reengineering synchro-
nized with the code by storing them directly in the source files.

Context
You are reverse engineering the functionality of an application. You may have applied Refac-
tor to Understand and started to refactor the code. You may also have used Step Through The
Code to understand a functionality. However, as you did not develop the original code, there
are many design decisions which are not clear to you, and numerous questions arise as you pro-
ceed.

Problem
How do you keep track of your understanding about a piece of code and the questions that you
have, keep these remarks synchronized with the code during its future evolution, and share
them with the other members of your team?

This is a hard problem because:

• Most programmers do not like to write documentation or comments.
• Understanding code you do not write is really difficult due to the fact that we hav

understand symbolic information and models that can be represented in various
and styles.

• You want to record your understanding or questions about a piece of code as soon as they
appear. Otherwise you will forget them because at the time they may seem too sim
because later you will be concentrating on another part of the code.

• You need to record your understanding as physically close as possible to the code ele
ment it refers to avoid to spend time describing the context of the problem you
Moreover the information you are interested in only makes sense to a maintaine
has the code available.

• You want to be able to find the information you recorded as fast and as easy as you
• You want to write your understanding in a simple way with your favorite code brow

tools, so recording the information in a design document is not a practical solution
• You want to share the information you found principally with other team members in

future because this is likely that you or your team will pass over the same piece of
or you may get into the code later and you do not want to forget what you learned.
ever you only want to have this information available when you will read the same
of code and you do not want to spend meeting time reporting detailed information
concerned people.

Solution
While you are working on the code annotate it directly and immediately with the question
are facing.

mple,
n eas-

glish,
 in a
most

etween

he an-

g lan-
ments,
ts
 clients

 can
ed to as
 argu-
. You
tain-

ed for

 e-tags
r an in-
ple-

akes
ethod-
General Hints

• Use conventions to identify your annotations. In a team context, include, for exa
the initials of the developer that made the comments and the date. This way you ca
ily query them.

• Follow the corporate practices. If comments are written in a language other than En
continue if you can. However, if you have the choice never write your annotations
language different from that in which the source code is programmed (English in
cases). Otherwise, you create a different context and force the reader to switch b
them.

• When you discover the answer to any one of your questions, immediately update t
notation for the benefit of future readers.

Annotations

• Record your annotations by using the commenting convention of the programmin
guage (referred to as comment-based annotations). Some programming environ
like that of Eiffel, allow you to specify different levels of visibility for your commen
and your code; where possible, assign a private scope to your comments so that
cannot see the annotations.

*/ strange code by SD-3/12/99

Why is metaclass checked to store category? /*

• If you are working with an Integrated Development Environment (IDE) where you
query method senders, use special methods dedicated to the annotations (referr
method-based annotations). These methods take a single annotation string as an
ment that represents your comment, and typically have an empty implementation
can then use the querying and browsing facilities of your IDE to identify classes con
ing annotations, or specific locations where the annotations occur, without the ne
any additional tools or special text pre-processing.

this.strangeCode("SD-3/12/99 Why is metaclass checked to store

category?")

Discussion

The comment-based approach is better-suited for a text-based environment having
search functionality supported by emacs. The method-based approach is better suited fo
tegrated environment like that of Smalltalk or Sniff+ that supports querying of method im
mentors or senders.

The less you change the code, the less likely it is that you will introduce errors. This m
the comment-based version safer than the method-based version. However using a m
based approach allows you to easily produce a log file.

ou can
s sev-

bigu-
ue, and
ng on,
 using,

. If the
 great
t cer-

 you are
ght du-
hod.)
A Counter example. Envy [Knig01], an integrated team and configuration manager in
Smalltalk, offers the possibility to add notes to methods and classes in addition to usual com-
ments. However, using such notes to annotate the application is not really efficient because

1. the notes are not physically close to the code: the programmer has to click on a button
to see the notes and the UI does not reflect the fact that a note had been attached, and

2. more important, there is no support for querying the notes.

What Happens to the Answers?

When the answer of a question is found, the author of the question should be alerted. If the ques-
tion is crucial it is worth to put the answer in the code with the question. When the annotations
are used to help in steering the development for further work by identifying possible defects or
bad code, the annotations will naturally be removed when the code to which they are related is
fixed.

Checking the Quality of the Answers

As with any other kinds of documentation, it may happen that wrong answers exist. One way to
deal with this situation is to check regularly the annotations with the part of the team involved
and to use this moment of communication to build a correct understanding of the functionality.

Keeping vs. Removing the Annotations

What options do you have when you want to release a new version?

• Comment-based annotations. If your client does not have to see the code, then y
leave the comment-based annotations in the code. The Eiffel environment provide
eral views of the code that are especially useful in such situations.

• Method-based annotations. A good compiler will not generate any code for unam
ous calls to messages with empty bodies. Nevertheless, if performance is an iss
the overhead of the empty calls cannot be tolerated for the system you are worki
choose the comment-based approach or convert the method calls into comments
for example, a perl script.

In either case you should seriously consider simply leaving your comments in the code
software is valuable enough for you to invest effort into reengineering it, the likelihood is
that someone in the future will again have to extend and modify it. That person will almos
tainly benefit from the questions and answers you have identified.

Examples

You define a method dedicated to the annotation in the common ancestor of the classes
trying to understand. (If your application classes do not share a common ancestor you mi
plicate the method definition, or, better yet, you may define a separate class for this met

In the Moose Environment. The following Smalltalk code defines in the class MSEAb-

stractRoot (root of the Moose environment) the method strangeCode: that takes a string as
argument. The default implementation is empty.

at you

e
t (here

i-

sed for
MSEabstractroot>>strangeCode: aString

"empty method body"

Annotations are then included in selected methods (shown in italics in the code). These anno-
tations do not replace the methods’ comments but rather contain specific questions th
asked yourself while trying to understand the system:

assessClassAttributesFor: aClassDef smalltalkClass: aSTClass

"Try to find out the properties of the given class (i.e., category

sourceAnchor, declaredAbstract, ...)"

| category |

(self saveComments and: [aSmalltalkClass comment isEmpty not])

ifTrue: [aClassDef addComment: aSmalltalkClass comment].

category := self assessClassCategoryFor: aSmalltalkClass
isMetaClass: isMetaClass.

self saveSourceReference

ifTrue:

[aClassDef sourceAnchor:

(MSEUtilities browserCategoryToSourceAnchor: category)

].

self strangeCode:
’SD:3/12/99.Why is metaclass checked to store category?’.

self saveCategory & isMetaClass not

ifTrue: [aClassDef setNamedPropertyAt: #category put: category].

aClassDef isAbstractKnown

ifTrue: [aClassDef isAbstract: false]

Here, the annotation includes the author initials, the date it occurs and the question.

In Squeak. The following code shows the definition of the flag: method in Squeak 2.7. Here
in addition to the query of the sender of the method flag:, the developers use the fact that th
Smalltalk environment supports also the browsing of symbols passed as argumen
#noteForJohn, i.e., it is possible to browse all the remarks named #noteForJohn).

Object>>flag: aSymbol

"Send this message, with a relevant symbol as argument, to flag a
message for subsequent retrieval. For example, you might put the
following line in a number of messages:

self flag: #returnHereUrgently

Then, to retrieve all such messages, browse all senders of
#returnHereUrgently."

Figure 1 shows on the top pane all the senders of the flag: message in the Squeak2.7 env
ronment. The bottom pane then shows the code of the method removeEmptyRows that contains
a call to the method flag: highlighted. The argument of the method flag: here #noteToJohn
indicates that this is a note for john. Then besides the invocation of flag: the author puts a com-
ment explaining what are the problems. Here, we see both the method-based, mainly u
cross-references integrated into the environment, and comments.

-
lletin
 you
nd dis-

e the
g your
t to de-
d this
e in-

f keep-
ons,
ly take
h time
Tradeoffs

Pros

To see the advantages of applying Tie Code and Questions, let’s compare it with the alterna
tive solution of writing your questions and information into a separate log file or using a bu
board system like a Wiki Wiki Server to share them with your team. With a bulletin board
can easily prepare a list of questions to ask to the original developers of the application a
cuss them with the other members of your team. However, Tie Code and Questions has the
following advantages:

Minimize Context Description. By applying Tie Code and Questions, you will exploit
the context given by the programming language and the code. This way you will minimiz
need to describe the context of your questions and keep your effort low while documentin
questions and annotations. With other approaches you will have to spend an extra effor
scribe the context of your annotations.You will certainly include some method bodies an
will be redundant with the code itself. Moreover, you will spend time documenting volatil
formation.

Automatic Synchronization . By applying Tie Code and Questions, you keep the code
and the annotations in close physical proximity, and you thereby improve your chances o
ing them in sync. While modifying the code, you will more naturally modify the annotati
or remove them it they become obsolete. With other approaches, you will have to real
care to keep the code and the questions in sync. You will have to update the log file eac

Figure 1: The result of asking all senders of the flag: message in Squeak.

ic and

t
ations
 of this
d.

e use
en the
the related code changes. Moreover, as your log will be not an official document it will be even
more difficult to allocate time to keep it synchronized with the code.

Improving Team Communication. Tie Code and Questions ensures that team mem-
bers will always read the annotations in sync with the current version of the code they are work-
ing on. A log file can be shared with other members of your team. However, you must manage
different versions of the log file for each version of the code, and every team member must
spend extra effort to be sure that he or she has the right log file for the working version of the
application.

Ease of Finding . Tie Code and Questions should be applied with tools that supports
searching facilities like e-tags for emacs or method calls in integrated environment. In this case
Tie Code and Questions ensures that you will be able to query and find quickly the informa-
tion you are looking for. Moreover as the tools you use for developing are the base for applying
Tie Code and Questions you will not have to use external tools for recording and finding your
information.

Cons

Heavy Development Process. Some development processes impose strong constraints
such as not allowing the removal of methods. When such constraints are applied the results of
annotations that cannot be removed from the code can produce too much noise.

Difficulties

Finding the Right Amount of Annotation. As with any kind of comments, you should
take care to introduce just the right amount of detail. Terse or cryptic annotations quickly lose
their value, and verbose annotations will distract the reader from the code itself. Normally the
code should communicate its intention, and the methods or class comments are there to clarify
implementation details [Beck97a]. That’s why the annotations should contain only specif
precise remarks.

Supporting programmers to write comments. Most of the time programmers do no
like to write comments or documentation. One way of motivating them is to use the annot
during meeting or code review to support the communication in the team. The advantage
approach is that it is not forcing people to write comments, so this aspect can be stresse

When not to Apply

• If the tool you use to develop does not support querying facilities, evaluate first if th
of another tool for expressing your queries does work, i.e., if you can switch betwe
two easily and connect the result to your current development tool.

raged
w can
g about

 but to
ing of
ced by

rn has
am used

s were
n-

eniX.
ethod

 new
this in-
 the ac-
the tag

ents

 the sys-
tanding
tay mo-
l of an-
Rationale

This pattern has its roots in literate programming [Reen89]. Literate programming puts the em-
phasis on keeping the code and its documentation physically close. The physical proximity re-
duces the effort spent in keeping the code and its documentation in sync.

Related Patterns

Arranging the Furniture [Tayl00a] is a pattern proposing to help newcomers to feel like home
when they arrive in a new project. The pattern solution is : “An adopter should be encou
to ‘move in’ by cosmetically arranging the code.” The present pattern is more about ho
maintainers or developers use simple code annotations to improve their understandin
code details and keep it close to and synchronized with the code elements they refer to.

Known Uses
• The Squeak development team used this technique not to keep track of questions

communicate between developers. This way every developer had an understand
the status of strange aspects of the code. In this team the comments were introdu
invoking method flag: defined in the class Object.

• During the development and the maintenance of the Moose environment, the patte
been applied to register questions about the strange aspects of the system. The te
the methods codeToBeChanged: and strangeCode: implemented into the application
root class to annotate with two different meanings.

• During the development of the game Skweek in assembler possible improvement
tagged using dummy labels named gorbi. Hence the editor and the debugger could ide
tify them easily.

• A slightly different but related use of the pattern is applied by the company MediaG
A systematic code tagging mechanism was introduced. The idea is to include in m
comments information identifying the motivation of the code changes (bug fixes,
development, new release), the name of developer, the time of the actions. From
formation the dependencies between the applications were extracted. To increase
ceptance of the tagging procedure with the developers, a free field was added to
where the developers could write what they wanted.

• During the writing of this pattern, the authors directly entered questions and comm
as “conditional text”.

Resulting Context

You are registering the questions or the aspects of the system you are maintaining inside
tem thus reducing the effort spent to keep the code and your questions or early unders
of the application in sync. However, success is not guaranteed: First, the team should s
tivated to annotate the code and second, you should pay attention to keep a similar leve
notation.

or Re-
es of
nz

o Ob-
e on
E, Oc-

gram-
ber

rotect-
te and
References
[Beck97a]Kent Beck, Smalltalk Best Practice Patterns, Prentice Hall, 1997.

[Deme99n] Serge Demeyer, Stéphane Ducasse and Sander Tichelaar, “A Pattern Language f
verse Engineering,” Proceedings of the 4th European Conference on Pattern Languag
Programming and Computing, 1999, Paul Dyson (Ed.), UVK Universitätsverlag Konsta
GmbH, Konstanz, Germany, July 1999.

[Duca99c]Stéphane Ducasse, Tamar Richner and Robb Nebbe, “Type-Check Elimination: Tw
ject-Oriented Reengineering Patterns,” WCRE'99 Proceedings (6th Working Conferenc
Reverse Engineering), Francoise Balmas, Mike Blaha and Spencer Rugaber (Eds.), IEE
tober 1999.

[Reen89] Trygve Reenskaug and Anna Lise Skaar, “An Environment for Literate Smalltalk Pro
ming,” Proceedings OOPSLA '89, ACM SIGPLAN Notices, volume 24, number 10, Octo
1989.

[Tayl00a] Paul Taylor "Capable, Productive, and Satisfied: Some Organizational Patterns for P
ing Productive People," in Pattern Languages of Program Design 4 N. Harrison, B. Foo
H. Rohnert (Eds.), Addison-Wesley, 2000.

	Tie Code And Questions: a Reengineering Pattern
	Tie Code and Questions
	References

