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Abstract

This article studies the legacy in the West of Abū al-Wafā’s Book on those Geometric Construc-
tions which are Necessary for Craftsmen. Although two-thirds of the geometric constructions in
the text also appear in Renaissance works, a joint analysis of original solutions, diagram lettering
and probability leads to a robust finding of independent discovery. The analysis shows that there
is little chance that the similarities between the contents of Abū al-Wafā’s Book and the works
of Tartaglia, Marolois and Schwenter owe anything to historical transmission. The commentary
written by Kamāl al-Dı̄n Ibn Yūnus seems to have had no Latin legacy either.

Résumé
Cet article étudie la descendance européenne du Livre sur les constructions géométriques néces-
saires aux artisans d’Abū al-Wafā’. Bien que deux-tiers des constructions géométriques ex-
posées dans ce livre apparaissent dans des œuvres de la Renaissance, l’analyse des solutions
originales, du lettrage des figures et des probabilités montre qu’il y a peu de chance que les simil-
itudes observées entre le livre d’Abū al-Wafā’ et les œuvres de Tartaglia, Marolois et Schwenter
résultent d’une transmission historique. Le commentaire rédigé par Kamāl al-Dı̄n Ibn Yūnus ne
semble pas avoir eu davantage de descendance latine.

Keywords: Geometric constructions, East-West diffusion, rediscoveries.
2010 MSC: 01A30, 01A35, 01A60.

1. Introduction

The present article is a study on East–West mathematical borrowings. The overall focus
is methodological. Results about the dependence of geometrical works are sought through a
threefold method, including an analysis of differences, a study of diagram lettering, and an index
of independence. This method is applied to Abū al-Wafā’s putative legacy in Europe.

A mathematician and astronomer from Khorāsān, Abū al-Wafā’ Muh. ammad ibn Muh.ammad
ibn Yah. yā al-Būzjānı̄ (1st Ramad. ān 328–387 H./10 June 940–997 or 998) is known for a collec-
tion of geometric problems entitled Kitāb fı̄ mā yah. tāju al-s. āni‘ min al-a‘māl al-handasiyya
(Book on those Geometric Constructions which are Necessary for Craftsmen). The treatise,
known in five Arabic MSS1, has been the subject of various studies (Woepcke, 1855; Suter,

1Istanbul, Ayasofya MS 2753; Cairo, Dār al-Kutub al-Mis.riyya MS 31024, MS 44795; Milan, Ambrosiana MS &68
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1922; Youshkevich, 1981; Hashemipour, 2007) and editions (Būzjānı̄, 1966, 1979, 1990, 1997,
2010). From information contained in the preface it is possible to date it to between 993 and
1008. 2 This treatise is a collection of 171 problems of geometry, divided into eleven chap-
ters.3 It includes 150 problems of plane geometry, two-thirds of which are echoed in Western
geometric treatises. If we compare the solutions, the impression is that almost all of them were
known in the Latin World (see Appendix C). Does this fact provide evidence of a diffusion of
Abū al-Wafā’s collection in Latin Europe?

2. Abū al-Wafā’s Putative Legacy

Focusing on the problem of transmission, the choice of Abū al-Wafā’s work is exciting be-
cause a conclusion about its Latin legacy has not yet been reached. As far as I know, the treatise
has not given rise to any full or partial translation throughout history.4 However the history of
geometric constructions is poorly documented in the Latin Middle Ages. This uncertain situation
has given rise to opposing assumptions about the sources of practical geometry as well as about
Abū al-Wafā’s legacy. The thesis of historical transmission is counterpoised against the thesis of
independent discoveries.

2.1. Woepcke’s hypothesis
Scholars have long admitted that Renaissance geometry was Arabic dependent. Identifying

the geometric constructions of Abū al-Wafā’ with those of European geometers would provide

sup; Uppsala, Universitetbibliotek MS Tornberg 324. The latter is entitled Kitāb al-h. iyal al-rūh. āniyya wa-al-asrār al-
t.abı̄‘yya fı̄ daqā‘iq al-ashkāl al-handasiyya (Book of Skilful Spiritual Devices and Natural Secrets on the Refinements of
Geometrical Figures). It has been ascribed to Abū Nasr al-Fārābı̄ (872–950) (Kubesov and Rosenfeld, 1969; Kubesov et
al., 1972; Sezgin, 1974). However, it has been convincingly argued that only the first and last pages are by al-Fārābı̄, the
rest of the treatise being a simple copy of Abū al-Wafā’s work. See Hogendijk (1993, 145), Özdural (2000, 193).

2There one can read: “I have accomplished what my Master, the Lord, shāhanshāh (King of the Kings), the victorious
ruler Bahā’ al-Dawla wa-Diyā’ al-Milla (Light of the Community) wa-Ghiyāth al-Umma (Asylum of the Nation)—may
God preserve his family, his power and his reign—ordered about the geometric constructions most used by artisans that
were discussed before him” Būzjānı̄ 1966, 56; 1997, 1), Ayasofya, MS 2753, fol. 2:1:
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The Būyid ruler was invested 10 Jumādā II 379 H./15 September 989. The second laqab Ghiyāth al-Umma was granted
to the ruler by caliph al-Qādir in 381 H./992. He did not yet have the third laqab Qiwam al-Dı̄n appearing on dirhams of
399H./1008. It has been argued that the old Sassānid title shāhanshāh proves the treatise to be written by a disciple after
Abū al-Wafā’s death in 388 H./998 (Özdural, 2000, 172). Admittedly, Bahā’ al-Dawla ruled over Fārs and Kirmān only
after the death of his brother S. ams.ām al-Dawla in Dhū al-Hijja 388 H./December 998. However, as this title was always
used in the context of military conquests, it could be that Bahā’ al-Dawla used it from the time he began to direct troops
upon Fārs, that is, from 383 H./993 (Donohue, 2003, 98). At that time, Abū al-Wafā’ was still alive. Should that be the
case, his treatise of geometry was written in the span of years 993–998.

3The introduction gives 13. Two chapters are missing: “On the division of scalene figures” and “On tangent circles.”
4Since latinized versions of Arabic names similar to that of Abū al-Wafā’ al-Būzjānı̄ survive, it is likely that any

existing translation would have been recognized by now. Ptolemy’s Almagest is often preceded by a prologue entitled
Bocados de Oro, written by Abū al-Wafā’ Mubāshshir ibn Fātiq. His name is transcribed “Albuguafe” in the incipit:
“Quidam princeps nomine Albuguafe in libro suo [. . . ]” We find similar mentions in Florence, BNCF, MS. Conv. Soppr.
J. III. 24, c. 1300; Toledo, Biblioteca Catedral, MS. 98-15, XIIIth c., Madrid, Biblioteca Nacional, MS. 10113, XIIIth c.
See Björnbo (1912, 104), Millás Vallicrosa (1942, 148).
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a further argument in favour of the diffusion of geometry across East–West borders. It would
be a sign of borrowing from Arabic mathematics. This is the thesis that Woepcke defends while
discussing constructions made with one opening of the compass:

The Renaissance geometers Cardan, Tartaglia and especially Benedetti, dealt with
such problems by imposing precisely the same condition that we find in Abū al-
Wafā’s treatise [. . . ] I am very inclined to believe that the very idea of treating this
question could well have been inspired by traditions coming from the East. 5

The same opinion is voiced in Abū al-Wafā’s biography, where it is said that “these con-
structions were widely circulated in Renaissance Europe” (Youshkevich, 1981, 42). Woepcke’s
and Youshkevich’s assessment is that, even if a historical tradition appears distorted because of
multiple reworkings, similarities ought to be interpreted as survivals of ancient treatises. This
hypothesis is supported by the many works that were available in the Middle Ages but have dis-
appeared since: Books V–VII of Apollonius’ Conics are extant in Arabic only; the Latin version
of the Elements which Adelard of Bath had access to is also lost, etc. It is not unreasonable to
think that the medievals had access to numerous other texts which are no longer at our disposal.

2.2. Henry’s hypothesis

On the other hand, we must pay attention to what are referred to as multiple rediscoveries:
“Sometimes the discoveries are simultaneous or almost so; sometimes a scientist will make a
new discovery which, unknown to him, somebody else has made years before” (Merton, 1973,
371). This is a widespread phenomenon in science and mathematics (Coolidge, 1940, 122).

As regards Abū al-Wafā’s geometric constructions, Charles Henry is the first to have sup-
ported the multiple rediscoveries thesis, while speaking of “problems that, by their very nature,
come to every civilization” (Henry, 1883, 514). Some historians of science have agreed with
this assessment on factual grounds: “The works of al-Khwārizmı̄, Thābit ibn Qurra and Ibn al-
Haytham were far from being all translated into Latin, and Medieval Europe knew nothing of
the work of al-Bı̄rūnı̄. European scientists were also unaware of most geometric constructions
by al-Fārābı̄ and by Abū al-Wafā” (Rashed, 1997, II, 162). Since geometrical problems start
from rational grounds, investigators are able to solve them independently in any region of the
world, provided they are sufficiently trained. Contrary to Woepcke’s opinion, constructions to
be made with one opening of the compass are found in several works prior to Cardan, Tartaglia
and Benedetti. For example, Leonardo Da Vinci gives instructions to proceed with “one (or a
given) opening of the compass”: “un solo aprire di sesto” (MS A, fol. 15v, 16v), “una data aprit-
ura di sesto” (Codex Atlanticus, fol. 551r) (e-Leo, 2010, s.v.). One possible explanation for this
resurgence is that using a fixed opening served a rational purpose, such as the need for precision.
This is why Abū al-Wafā’ himself recommends abandoning the compass and using fixed opening
callipers instead:

If there is a defect in one part, the movement varies when opening or closing the
compass [. . . ] What we have said refers to the accuracy of the compass, when the

5“Des géomètres de la Renaissance, Cardan, Tartaglia et surtout Benedetti, se sont occupés de ce genre de problèmes
en s’imposant précisément la même condition que nous trouvons énoncée dans le traité d’Aboûl Wafâ [. . . ] Je serais
très-porté à croire que l’idée même de traiter cette question pouvait bien leur avoir été inspirée par des traditions venues
d’Orient” (Woepcke, 1855, 225-226).
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drawing is small and the opening is less than two cubits. If we exceed this size, this
kind of compass is unfaithful during the construction. This is why we must speak of
the callipers, that is, a compass whose wheels are mounted on a rule. 6

So then, the cross-cultural identity of the geometric constructions performed with the fixed-
opening compass could simply be the result of a universal constraint. From this point of view,
the conclusion to be drawn is as simple as it is harsh: in geometry, striking resemblances are
possibly fortuitous. When two mathematicians faced with the same problem come up with the
same solution, they may have done so independently, unless there is evidence to the contrary.

2.3. The puzzle still unsolved

From the time of Woepcke’s and Henry’s opinions, no progress has been made on the issue
of whether or not Renaissance geometric constructions depend on Abū al-Wafā’s treatise. In
his critical edition of Chuquet’s Géométrie, L’Huillier does not consider the ten textual parallels
to Abū al-Wafā’ as “borrowings” (1979, 310-335, 387-399). Several years later, however, he
endorses the dependence thesis:

There is room to suppose that [practical geometry] was brought to the West by Arab
intermediaries (a point that seems to merit deeper studies) while becoming richer
with time. In particular, there are similarities between certain passages in Western
works and Arabic tradition known as misāh. a. But further similarities may be re-
vealed between the works of Abū al-Wafā’ and the major treatises of this stream
(L’Huillier, 2003, 188).

When a problem admits exact solutions, it is easy to subscribe to Henry’s hypothesis. This is
no longer the case when the problem has many approximate solutions (such as the construction
of the regular heptagon). How can one explain that geometers, separated in space and time,
tackling mathematical problems with different resources, picked out exactly the same solution?
The case is now in favour of Woepcke’s thesis.

Nevertheless, both opinions are poorly supported when judged by the standards of historical
scholarship. They are, at best, intimate convictions.

3. Devising a Test of These Hypotheses

The present article aims to provide objective criteria to test diffusion hypotheses by describing
a method applicable whenever no historical transmission is visible. To date, there have been three
main approaches to deducing a borrowing from historical sources.

The first way is to scrutinize the procedures which act as equivalents of textual parallels.
While discussing the construction of the regular heptagon by means of conic sections, Jan
Hogendijk says:

6Ayasofya, MS 2753, fol. 4:
ø
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In Manisa manuscript there is a geometrical construction of the root x of the cubic
equation x3 + p = qx2 +rx, p, q, r > 0 by Kamāl al-Dı̄n that resembles A [al-Sijzı̄’s
construction]. Kamāl al-Dı̄n discusses the construction [. . . ] mentioned by al-Sijzı̄,
and he even draws Figure 32. It is therefore extremely implausible that the similarity
between this construction and the construction of x3 + p = qx2 + rx by Kamāl al-Dı̄n
is mere coincidence (Hogendijk, 1984, 240-1).

Other historians base their conclusions on simplicity considerations. Jens Høyrup notes that
the scheme for the construction of the regular octagon given by Hero, De Mensuris, 206, contin-
uously survived from Abū al-Wafā’ to Roriczer (1484) and Serlio (1584). He writes:

It is difficult to believe that anyone would get the idea to draw this diagram if the
construction was not known already; and indeed, a much more intuitive diagram can
be drawn [. . . ] It appears that the construction of the octagon [W787] was known in
Classical Antiquity and by late medieval Gothic master-builders; it is near at hand
to assume some kind of continuity (Høyrup, 2006, 6).

Some other scholars think it more conclusive to base a judgment of dependence on similar-
ities restricted to transcription errors. This is the method used by Wilbur Knorr in his study of
al-Sijzı̄’s trisection of an angle:

Al-Sijzı̄ commits odd slips in his synthesis. For instance, he incorrectly terms as the
latus rectum (“right side”) what is in fact the diameter (or “inclining side”) of the
hyperbola [. . . ] Such errors might ordinarily be lodged against the scribe. But in the
present case al-Sijzı̄ himself is the scribe. This indicates that al-Sijzı̄ has copied his
method from a source without detecting these errors (Knorr, 1989, 287).

These strategies are not always implementable. Copying errors are the scribe’s affair. The
length of a geometric construction (Hartshorne, 2000, 21) does not necessarily prevent transmis-
sion. For example, the method to n-sect the line8 survived despite its 19 steps against the 14 steps
for Elements, VI, 9, etc. Other tests of diffusion hypotheses are conceivable.

As we are facing a problem sensitive to nationalist passions—so that today’s Arabs can claim
for themselves the origin of these constructions, while Europeans may deny this heritage, having
some political agenda in mind—we must tackle the problem with impartiality and independence.
It seems suitable to rely on “robustness” considerations (Wimsatt, 1981). I shall consider the
concept of robustness in relation to testability, where it means the multiple determination of
truth. A result is robust if it remains the same while the method to get it is replaced by another.
In sum, a result must be accepted if it is established by different routes. In the present case, I
shall be using three different tests of historical diffusion.

7W78 is an abridged form of “Abū al-Wafā’s solution 78.” The solutions of Ibn Yūnus, who provided a Commentary
on Abū al-Wafā’s treatise (see Section 8), are referred to by the letter Y, keeping a continuous numbering so as to insert
each construction at the right place in Abū al-Wafā’s list. Solutions not mentioned by Ibn Yūnus are referred to by an
asterisk, like W47*. A complete list of statements is given in Appendix A. Diagrams relating to selected problems are
included in Appendix B. In the tables of the main text, titles are abridged into initials, viz. PG for Practica Geometriae,
SDL for De Superficierum Divisionibus Liber, and the like.

8See Appendix A, construction W3.
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3.1. Defining the data

A geometric construction is basically the solution to a given problem. The available data
are the statements, procedures, demonstrations and diagrams, which illustrate how the procedure
is instantiated in a particular case. We shall ignore demonstrations since Abū al-Wafā’ omits
them all. Most geometric problems can lead to multiple types of solution because each style of
geometry (with the straightedge and the compass, with the straightedge vs. the compass alone,
with a variable opening vs. one opening of the compass, etc.) defines a special modus operandi.

Recent articles have tried to improve the algorithmic description of mathematical procedures
(Imhausen, 2002; Ritter, 2004; Høyrup, 2008). Although promising, I have not taken this path,
because geometric constructions provide opportunities that allow us to meet the issue of reliabil-
ity differently. Geometric constructions are basically procedures.

The main factor that leads to overinterpreting a text is scale. By choosing too broad a scale of
description, differences between two texts disappear, thus leading to the conclusion that they are
identical. Since Abū al-Wafā’s constructions are made with the ruler and compass, the choice of
the right scale is easy. I have taken as a unit step: “draw one straight line” or “draw one circle”,
basing myself again on Hartshorne (2000). Next, the original text is transcribed in unit steps,
whatever its verbal formulation.

3.2. Solutions echoed in the West (Test 1)

We now turn to the comparison of Abū al-Wafā’s collection to the geometrical works of the
Renaissance. With regard to the corpus covered, ancient works available either on paper or in
digital form were examined with particular attention being paid to practical geometries, which
are key sources for geometric constructions.9

The corpus being clarified, the first task is to determine the ratio of the number of Abū al-
Wafā’s constructions echoed in the Latin West to the total number of original constructions to be
found in his collection—having first removed those that do not allow for any conclusion to be
drawn because, for example, they could have arrived in Europe by other channels. The first test
(Section 4) consists in sifting the problems to identify the exact matching solutions. The higher
the number of geometric constructions echoed, the more probable the borrowing. Criticism of
this test will be discussed in Section 10.

The other two tests are run on the group of constructions identified by Test 1, without depart-
ing from robustness requisites.10

3.3. Diagram lettering (Test 2)

A second way to investigate geometrical legacy is to focus on the diagram lettering (Knorr,
1989; Netz, 1999). It should be noted that when a geometric construction is copied, the letters
are usually below the threshold of attention, and they are reproduced without difference. It
is unlikely that the scribe would take the trouble to change the letters, because he would thus
increase the risk of making an error. We consider the ratio of the number of identical letters to

9Digital libraries, such as the ones of the IMSS or the MPIWG, provide a rich set of over 300 ancient works of
geometry. A list of practical geometries published in Western languages until the late XVIIth century has been drawn
upon for the present study. Between 998 and 1600, available texts represent 45 works out of 49 (0.92); beween 998 and
1650, they represent 65 works out of 74 (0.88); between 998 and 1700, they represent 78 works out of 119 (0.66).

10Test 2 and Test 3 are different, and yet dependent on Test 1: it makes no sense to compare the lettering, or calculate
a probability, on constructions that do not match each other.
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the total number of letters used in both diagrams. The higher the ratio, the more probable the
transmission.11

One case of quite well established transmission (setting aside the uniqueness of the diagram)
is the reappearance of Tūsı̄’s couple—a planetary model based on a circle rotating inside a larger
circle—in Copernicus’ work. One of the major arguments for diffusion is precisely the identity of
the letters used in Tūsı̄’s Tadhkira fı̄ ‘ilm al-hay’a (Memoir on Astronomy) (Istanbul, MS. Laleli
2116, fol. 38b) and in Copernicus’ De Revolutionibus Orbium Coelestium, fol. 67r (Copernicus,
1543; Hartner, 1973). Five letters out of six are identical and, with regard to the single remaining
difference, letters Z/F are very similar in Arabic script Saliba (2007, 200).12

There is a need for defining a stricter test on diagrams with only a few letters. Since A, B,
G are used first in the lettering of geometric diagrams in both Greek and Arabic, we shall asume
that the matches are significant only from the threshold of three letters. Test 2 is implemented in
Section 6. Criticisms of this test will be discussed in Section 10.

3.4. Index of independence (Test 3)

A third way to estimate Abū al-Wafā’s legacy in the West is to apply probability theory to his-
torical borrowings. Source-author hereinafter refers to the mathematician whose constructions
give rise to a possible legacy. Target-author is the one who is presumed to have borrowed from
the source. Solution is the name given to any triplet (statement, diagram, procedure). Available
is the term used here to refer to a construction attested at the time the target-treatise was com-
posed. The number of available solutions is estimated by the number of solutions that existed
prior to time t. Identical is the name given to geometric constructions that use the same proce-
dure described in unit steps (Section 3.1). Furthermore, I asume that any author is free to either
reproduce an available solution or invent a new one.

The overall idea is that probability theory can be applied to the study of transmission when-
ever the facts are equiprobable events. Obviously, this is a drastic simplification that can hold
only under special conditions that need to be carefully stipulated. I shall discuss this issue further
in Section 10.

Suppose the target-author picks one solution among n available geometric constructions. The
probability of drawing the solution at random is equal to 1/n. If the target-author solves a set of
problems, and if we can consider each problem as an independent event, then the probabilities
multiply each other and after a certain number of correspondences, the result will come below a
likelihood threshold. For example, if the target-author solves three problems, each admitting ten
solutions, and if he gives the solutions mentioned by the source, the chance of an independent
discovery is 1

10 ·
1

10 ·
1
10 = 1

1000 . The more numerous the solutions, the more possible it is to decide
on the solution’s legacy.

Suppose again a problem with ten solutions. Put the solutions in a bag and make successive
draws with replacement. For one solution to appear almost certainly, we must make 28 draws
from the bag (see Section 7). If the number of draws before the solution appears is well below

11I have kept the original lettering of diagrams. As regards Arabic treatises, I have adopted system ALA-LC (1997)
throughout the article, except in procedures, where T. , H. , D. , Š, Ġ are given in DIN-31635 (Arabica).

12The six letters are {A, B, G, D, H, Z}. The ratio r is 5/6 = 0.833, r ∈ [0, 1]. Since this discovery, other diffusion
arguments have been used, including Arabic/Byzantine terminology, historical contexts and intercultural contacts, see
Ragep (2007), Saliba (2007, 193-232). There is as yet no conclusive evidence regarding the actual channel of diffusion
to Europe (Guessoum, 2008). The most promising route is Gregory Chioniades.
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that number, there is a negligible chance that the solution occurred by chance. Hence, the solution
is a case for historical transmission.

To carry out this analysis we must count: the solutions available to the target (n), the solu-
tions given by the target (m), the original solutions given by the source (k), and the solutions
common to the source and target (`). The index of independence will be calculated by using the
quadruplets (n,m, k, `) (see Section 5).

4. Solutions Echoed in the West (Test 1)

In this section, the first test is applied in order to identify the entire set of Abū al-Wafā’s
original constructions echoed in the Latin West.

4.1. Obvious solutions
Some problems must be cast aside, because they have obvious solutions. Abū al-Wafā’s trea-

tise contains eleven problems of this kind, plus three problems whose solutions are a combination
of solutions given elsewhere.13

WE. Check the right angle (identical to WC)
WF. Check the right angle: Method 2: Egyptian triangle
W9. Draw a parallel to a line through a given point: Method 2
W22*. Trisect an arc (equivalent to W19+W10)
W29. Describe a regular hexagon
W49. Inscribe a regular enneagon in the circle (equivalent to W36+W20)
W56. Circumscribe a circle to a regular hexagon
W80. Circumscribe a square to a regular octagon
W81. Divide a triangle in two parts by a line passing through the vertex
W88. Double or triple the area of a triangle by a line passing through the vertex
W125. Make a square of nine squares
W126. Make a square of four squares
W127. Make a square of sixteen squares
W128. Make a square of two squares

Four out of sixteen problems which deal with the composition and decomposition of squares
lead to obvious solutions. Only one problem, W134: Split a square into ten squares14 is echoed
in a European work, namely (Ozanam, 1694, 297). Clavius (1591, 342) treated problems W125-
139 but using an algebraic approach that owes nothing to Abū al-Wafā’.

4.2. Solutions independently transmitted to the West
Twenty-nine geometric constructions in Abū al-Wafā’s collection were taken from earlier

works, and consequently could have been known to Renaissance geometers from independent
sources. In these cases, there is no need to consider the work of Abū al-Wafā’s in the transmission
process.15 The twenty-nine constructions are distributed between four ancient authors as follows:
Euclid (21), Hero of Alexandria (3), Pappus (3) and Ptolemy (2):

13See for instance Appendix B: W29, W56.
14See Appendix B: W134 for a diagram.
15See Appendix B: W13, W23A, W79.
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WA. Make a right angle (Euclid, Elements, I, 11)
WB. Make a right angle: Method 2 (Hero, Geometrica, 439)
W1A. Bisect a line (Euclid, Elements, I, 10)
W1B. Bisect an arc (Euclid, Elements, III, 30)
W4. Bisect an angle (Euclid, Elements, I, 9)
W5. Draw a perpendicular to a given line from an outside point (Euclid, Elements, I, 12)
W6. Draw a perpendicular to a plane from an outside point (Euclid, Elements, XI, 11)
W7. Describe an angle equal to a given angle (Euclid, Elements, I, 23)
W10. Find the missing center of a given circle (Euclid, Elements, III, 1)
W11. Find the missing center of a given circle: Method 2 (Hero, Geometrica, 439)
W13. Draw a tangent to a circle by an outside point (Euclid, Elements, III, 17)
W14. Draw a tangent to a circle by a point on circumference (Euclid, Elements, III, 19)
W18. Describe a triangle equal to a given triangle (Euclid, Elements, I, 22)
W19. Trisect a right angle (Pappus, Collectio, IV, 32)
W21. Trisect a right angle: Method 2 (Pappus, Collectio, IV, 38)
W23. Duplicate the cube (Hero’s solution; Pappus, Collectio, III, 9)
W26. Describe an equilateral triangle whose side is given (Euclid, Elements, I, 1)
W27. Describe a square whose side is given (Euclid, Elements, I, 46)
W36. Inscribe an equilateral triangle in the circle (Euclid, Elements, IV, 2)
W37. Circumscribe an equilateral triangle to the circle (Euclid, Elements, IV, 3)
W38. Inscribe a square in the circle (Euclid, Elements, IV, 6)
W43. Inscribe a regular pentagon in the circle (Ptolemy, Almagest, I, 10)
W46. Inscribe a regular hexagon in the circle (Euclid, Elements, IV, 15)
W48. Inscribe a regular octagon in the circle (Euclid, Elements, XII, 12)
W51. Inscribe a regular decagon in the circle: Method 2 (Ptolemy, Almagest, I, 10)
W52. Circumscribe a circle around a scalene triangle (Euclid, Elements, IV, 5)
W54. Circumscribe a circle around a square (Euclid, Elements, IV, 9)
W57. Inscribe a circle in any given triangle (Euclid, Elements, IV, 4)
W79. Inscribe a regular octagon in a square: Method 2 (Hero, De Mensuris, 206)

Furthermore, Abū al-Wafā’ transmits two Arabic constructions that could have been known
through multiple sources, because some of the earlier constructions on which he comments dif-
fused separately in the West. The method for n-secting the line (W3), derived from al-Nayrı̄zı̄’s
Commentary on Euclid’s Elements, was available through Gerard of Cremona’s translation, as
well as through Albertus Magnus’ and Bacon’s commentaries (Tummers, 1984; Busard, 1974).
The construction of the parabola (W25) given by Abū al-Wafā’ is a borrowing from Ibrāhı̄m
ibn Sinān’s Maqāla fı̄ rasm al-qutū‘ al-thalātha (Epistle on the Drawing of the Three Sections)
(Neugebauer and Rashed, 1999; Rashed and Bellosta, 2000). Many European authors have repro-
duced this construction: Werner, Libellus super Elementis Conicis, prop. XI; Cavalieri, Specchio
Ustorio, fol. 9r; Milliet de Chales, Cursus seu Mundus Mathematicus, I, 297; Orsini, Geometria
Practica, XX, 9, etc.

W3. N-sect a straight line (al-Nayrı̄zı̄, CEE, I, 31)
W25. Draw the pattern of a parabolic mirror: Method 2 (Ibn Sinān, EDTS, 268)

4.3. Solutions recovered through intermediate sources
Another set of solutions consists of constructions that Abū al-Wafā’ borrowed from ancient

works, which are now lost but whose contents have been preserved through intermediate sources.
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This is the case of Euclid’s lost Book on the Division of Figures (Hogendijk, 1993), which was
known through multiple sources. Renaissance geometers could access Euclid’s constructions
through Abraham bar H. iyya’s Sefer ha-Meshih. ah ve-ha-Tishboret, translated into Latin by Plato
of Tivoli in 1145, Muh. ammad al-Baghdādı̄’s De Superficierum Divisionibus Liber, presumably
translated by Gerard of Cremona,16 Leonardo Fibonacci’s Practica Geometriae, composed in
1220–1, and its Italian adaptation by Cristofano di Gherardo di Dino (Arrighi, 1966). A few
constructions could also have been spread through Jordanus Nemorarius’ Liber de Triangulis
(Clagett, 1984) and John of Muris’ De Arte Mensurandi (Busard, 1998).17 In total, they consist
of twenty seven geometric constructions:

W82. Divide a triangle in two parts by a side point, BD=BJ/2 (Fibonacci, PG, 112)
W84. Divide a triangle in two parts by a parallel to a given side (PG, 119)
W85. Divide a triangle in three parts by two parallels to a given side (PG, 122)
W90. Divide a parallelogram in two parts through a vertex (PG, 122)
W91. Divide a quadrilateral in two parts through a vertex (PG, 138)
W92. Divide a quadrilateral in two parts through a side point, with HZ//BJ (PG, 138)
W93. Case 2: HZ not parallel to BJ (PG, 138)
W94. Case 3: BH. outside the quadrilateral (bar H. iyya, LE, 148)
W95. Divide a trapezium in two parts by a parallel to its base (Fibonacci, PG, 125)
W96. Divide a parallelogram in two parts through a side point (PG, 123)
W97. Cut off one third of a parallelogram through a side point, AH. =AD/3 (PG, 124)
W98. Case 2: AH. <AD/3 (PG, 124)
W99. Case 3: AH. >AD/3 (PG, 124)
W100. Case 4: H. H<BR (PG, 125)
W102. Divide a trapezium in two parts through a side point, AH=HD (PG, 126)
W103. Case 2: AH,HD (PG, 127)
W104. Divide a parallelogram in two parts through an outside point (PG, 124)
W106. Cut off a given part of a trapezium through a side point, AH=AD/3 (PG, 135)
W107. Case 2: AH,AD/3 (PG, 133)
W108. Case 3: AH<AZ (PG, 136)
W109. Divide a trapezium in two parts through a point outside the figure (PG, 129)
W111. Cut off one third of a trapezium, with BH=BD/3 (PG, 140)
W112. Case 2: BH,BD/3 (PG, 141)
W113. Cut off one third of a quadrilateral by a side point, HZ//BD (PG, 140)
W114. Case 2: HZ not parallel to BD (PG, 140)
W118. Draw two parallels cutting off one third of the circle (PG, 146)
W119. Divide a circular sector in two parts (PG, 148)

4.4. Solutions with no following in the West

Solutions with no following consist of a set of fifty-one geometric constructions, among
which are simple solutions, such as WD: Raise a perpendicular at the endpoint of a line, redrawn
by Ibn Yūnus in a somewhat shaky diagram.18

16MS. British Museum, Cotton Tiberius B.IX, was afterwards copied by John Dee in 1559 and published by Federico
Commandino in 1570 (Rose, 1972).

17Appendix B provides W82, W85, W103, W114.
18See Appendix B: WD.
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WD. Raise a perpendicular at the endpoint of a line: Method 2
WG. Check the right angle: Method 3
W16. Draw a parallel DH to the basis BJ of a triangle, equal to HB
W17. Draw a parallel DH to the basis BJ of a triangle, with DH=BH+BZ
W24. Draw the pattern of a parabolic mirror
W28B. Describe a regular pentagon whose side is given: Method 2
W30, 32. Describe a regular heptagon whose side is given
W33. Describe a regular enneagon whose side is given
W34, 35. Describe a regular hexagon whose side is given
W39, 40, 41, 42. Inscribe a square in the circle: Methods 2–5
W44, 45. Inscribe a regular pentagon in the circle: Methods 2–3
W49. Inscribe a regular enneagon in the circle
W58, 59, 61. Inscribe an equilateral triangle in a square
W65, 66, 67. Circumscribe a square around a scalene triangle
W74. Circumscribe an equilateral triangle around a regular pentagon
W75. Inscribe a square in a regular pentagon
W76. Circumscribe a square around a regular pentagon
W77. Inscribe a regular pentagon in a square
W86. Divide a triangle in three parts by two parallels to a given side: Method 2
W87. Double or triple the area of a triangle by a parallel to its side
W89. Draw a half or a third triangle inside a given triangle
W101. Cut off one third of a parallelogram through a side point, H. H>BZ
W110. Cut off a given part of a trapezium through a point outside the figure19

W115. Cut off one third of a quadrilateral by a side point, BH. outside the quadrilateral
W120. Divide a square in two parts, putting aside a strip of width DH.
W121. Divide a square in three parts, putting aside a strip of width MN
W122. Divide a triangle in two parts, putting aside a strip of width DJ
W123. Divide a triangle in three parts, putting aside a strip of width DJ
W124. Divide a trapezium in two parts, putting aside a strip of width DH
W129. Make a square of eight squares
W130. Make a square of thirteen squares
W131. Make a square of ten squares
W132. Split a square in eight squares
W133. Split a square in eighteen squares
W134. Split a square in ten squares
W135. Split a square in twenty squares
W136ABC, 137. Make a square of three squares
W138. Make a square of any given number of squares
W139. Divide a square whose side is given in two squares

4.5. False resemblances
In recent decades, scholars have paid increasing attention to scientific diagrams. We have

now a better idea of the synoptic, mnemonic and explanatory functions of scientific illustrations.

19W110 was known to Fibonacci, but he did not develop it: “Nec non et diuidemus ipsum quadrilaterum ab omni
puncto dato super aliquod laterum ipsius, et etiam ab omni puncto dato infra, uel extra,” that is: “Also we will divide the
quadrilateral from any point on whichever side, and even from any point within or outside [the figure]” (Boncompagni,
1862, 134).
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This is particularly true in mathematics (Netz, 1999; De Young, 2005; Saito, 2006). The
latter two authors have found in manuscript diagrams a way to trace the different Euclidean tra-
ditions. However, this applies only to a strictly delimited corpus. No conclusion can be reached
from figures only, because similar geometric diagrams may be used for different problems. For
example, consider the following diagrams by Pico (1597, 28) and Marolois (1616, 70).

Pico Marolois

The similarity between Pico’s and Marolois’ diagrams does not prove a borrowing from
Pico, for the diagrams actually serve very different purposes. Pico asks about the chord of the
arc BDC, given the circle ABDC and diameter AD, while Marolois aims to show that rectangle
AB×BC is equal to rectangle BF×BD. Circle ABDC is to be drawn during the construction. The
example of the Pico and Marolois diagrams shows that, for each problem, a careful examination
of the statement, procedure and diagram is needed. There are eight problems leading to false
resemblances.20 They must be considered as problems without a following in the West:

W2. Bisect the line: Method 2 (unlike Schwenter, GPN, 410)
W15. Draw a parallel ZH. to triangle’s basis BJ, ZH. =BH (unlike Euclid, E, VI, 4)
W31. Describe a regular octagon whose side is given (unlike Schwenter, GPN, 203)
W53*. Circumscribe a circle around a scalene triangle: Method 2 (unlike Pico, TM, 28)
W60. Inscribe an equilateral triangle in a square: Method 3 (unlike Fiorentino, TGP, 160)
W63. Circumscribe a triangle around a square (unlike Fibonacci, PG, 223)
W64. Circumscribe a square around an equilateral triangle (unlike Marolois, OM, 48)
W71. Inscribe an equilateral triangle in a scalene triangle (unlike Huygens, TM, 24)

4.6. Matching solutions

The removal of the solutions described in Sections 4.1 to 4.5 from the list of all solutions
given by Abū al-Wafā’, reveals which of Abū al-Wafā’s geometric constructions were echoed in
Renaissance works. The latter constructions all provide an exact match of statement, procedure
and diagram with constructions produced by Abū al-Wafā’. These geometric constructions are to
be found in a wide range of treatises, from ancient works, such as those of Leonardo Fibonacci,
Jordanus Nemorarius and Campanus of Novara, to modern practical geometries, such as those of
Tartaglia and Marolois, very popular in the seventeenth century.

Consider the problem W62: Inscribe an equilateral triangle in a square, and compare Abū al-
Wafā’s solution (Būzjānı̄, 1966, 86; 1997, 63) with the one given by Pacioli (1494). Statements,
procedures and diagrams are exactly the same:

The description of W62 in unit steps (see Section 3.1) is as follows:

20See Appendix B: W2, W15, W53*, W60.
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Abū al-Wafā’s W62: On how to inscribe an [equi-
lateral] triangle in the square [. . . ] If we want
to draw this figure, we circumscribe around the
square ABJD a circle corresponding to the diame-
ters BD, AJ, cutting at point H. Take D as a center.
By drawing an arc of radius DH up to the points
H and Z, we get the chords BZ and BH. , cutting
AD and DJ at points T. and Y. These two points
will be on the equilateral triangle BT. Y, which is
inscribed in the square ABJD.

Pacioli: Let ABCD be a square, in which there
are four sides. Draw the greatest equilateral tri-
angle fitting in it [. . . ] Otherwise. Around the
said square, circumbscribe a circle and draw the
two diameters AB and CD. Then, from the point
A, extend a half-diameter. It will reach the point
E [on the one side] and the point F on the other
side. I say that the greatest triangle in the circle
is BEF and his sides cut the sides of the square at
points G H, which make up the triangle.
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Eglie il q̄drato ABCD q̄le e 4 faccia mettoui dētro
el magiore triangolo che vi capa eq̄latero [. . . ]
Aliter pa al ditto quadro circunscriui vn cerchio
e tira li 2 diametri AB e CD. Poi dal ponto A
stendi mezzo diametro. Finira in ponto E e dal
altro canto in ponto F. Dico el magior triangolo
nel cerchio esser BEF e li soi lati taglian li lati
del quadro in ponti G H quali fan il triangolo”
(Pacioli, 1494, fol. 62r).

(0) Square ABJD [given]
(1) Line BD
(2) Line AJ
→ point H

(3) Circle H, HA
(4) Circle D, DH
→ points Z, H

(5) Line BZ
(6) Line BH.
→ points T. , Y

(7) Line BT.
(8) Line BY
(9) Line T. Y
→ triangle BT. Y �
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Abū al-Wafā’s possible influence in the West is deducible only from such solutions, i.e. those
solutions in which the statements, diagrams and procedures that appear in Abū al-Wafā’s text
have identical counterparts in a Renaissance text. These constructions make up a set of twenty-
one (out of one hundred and fifty), viz. nineteen solutions, plus two variants of construction W12,
intervening in constructions W22* and W52B*.21

WC. Raise a perpendicular at the endpoint of a line
W8*. Draw a parallel to a line through a given point
W12. Find the missing center of a given circle22

W20. Trisect an acute angle23

W22*. Find the missing center of a given circle
W28A. Describe a regular pentagon whose side is given
W47*. Inscribe a regular heptagon in the circle24

W50*. Inscribe a regular decagon in the circle
W52B*. Find the missing center of a given circle
W55. Circumscribe a circle around a regular pentagon25

W62. Inscribe an equilateral triangle in a square: Method 5
W68, 69. Inscribe a square in a scalene triangle
W70. Inscribe a square in an equilateral triangle
W72. Circumscribe an equilateral triangle around a scalene triangle
W73. Inscribe an equilateral triangle in a regular pentagon
W78. Inscribe a regular octagon in a square26

W83. Divide a triangle in n parts by a line through a side point
W105. Cut off one third of a parallelogram through a point outside the figure.
W116. Describe a double square around a given square27

W117. Describe a half square within a given square28

The conclusion of the first test is that only 23 out of 82 original solutions by Abū al-Wafā’
were echoed in the Latin world. The ratio is low (0.28).

21See Appendix B: W12, W20, W47*, W52B*, W72, W78.
22W12 is identical, in figure and procedure, to Leonardo Fibonacci’s method: “Si in circulo trigonum describatur,

cuius tres anguli periferiam cinguli contingant, possibile est per notitiam ipsius trigoni laterum dyametrum inuenire,”
that is: “If a triange is inscribed in a circle so that its three vertices touch the circumference, then the diameter of the
circle can be found by the lengths of the sides of the triangle” (Boncompagni, 1862, 102).

23W20 is a variant based on Archimedes’ Book of Lemmas, 8. Diagram and operations are identical to those given by
Jordanus Nemorarius’ De Triangulis (Curze, 1887; Clagett, 1984, IV, 20) and Campanus’ Preclarissimus Liber Elemen-
torum Euclidis (Campanus, 1482, IV, 16).

24W47* is a variation on the construction of the regular heptagon by Hero, Metrica (Hultsch, 1878, 155). Draw the
diameter ADJ. Draw an arc of center A and radius AD, cutting the circle at B and E. Chord BE will cut the diameter AJ
at point Z. From B as a center and BZ as radius, draw point H. BH is the seventh part of the circle. When BH is carried
along the circumference, it will form the heptagon BHTIKLM.

25W55 provides an original solution. Euclid (2000, IV, 14), finds the center of the pentagon by bisecting the angles,
not the sides of the pentagon, as Abū al-Wafā’ does.

26Despite the fact that diagram W78 has been placed within the Heronian tradition (Høyrup, 2006), the procedure of
De Mensuris corresponds to Abū al-Wafā’s solution W79, not W78.

27Though deriving from Euclid’s Elements, II, 14, W116 leads to an original solution. Since Abū al-Wafā’ contents
himself with rough indications concerning how to make the square concentric, both Tartaglia’s and Schwenter’s solu-
tions are admitted.

28See note 27.
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5. Common Part to Tests 2 and 3

In Section 4, we wondered if Abū al-Wafā’s solutions were known in the Latin world, without
specifying to whom they were known. If his solutions were actually transmitted, we would
have expected several European authors to have reproduced many of them. In fact, only a few
Renaissance works contain a significant part of the geometric constructions devised by Abū al-
Wafā’. Abū al-Wafā’s constructions are not in the works of Cardano (1545) and Benedetti (1553),
who give only a few identical constructions to his. As far as I know, the maximum number of
constructions is to be found in Niccolò Tartaglia’s Quinta Parte del General Trattato (1560),
Samuel Marolois’ Opera Mathematica (1616) and Daniel Schwenter’s Geometria Practica Nova
(1618). I shall now limit myself to these three works.

This choice has the effect of eliminating solutions W12, W20, W47*, W72, W78 found in
other works. What remains makes up a set of sixteen specific solutions:

Abū al-Wafā’s Constructions Tartaglia Marolois Schwenter
WC. Raise a perpendicular at the endpoint of a line • •

W8*. Draw a parallel to a line through a given point • •

W22*. Find the missing center of a circle • • •

W28A. Describe a regular pentagon whose side is given •

W50*. Inscribe a regular decagon in the circle •

W52B*. Find the missing center of a circle • •

W55. Circumscribe a circle around a regular pentagon • •

W62. Inscribe an equilateral triangle in a square •

W68. Inscribe a square in a scalene triangle •

W69. Inscribe a square in a scalene triangle: Method 2 •

W70. Inscribe a square in an equilateral triangle •

W73. Inscribe an equilateral triangle in a regular pentagon •

W83. N-sect a triangle by a line through a side point • •

W87. Double the area of a triangle by a parallel to its side •

W105. Cut off 1
3 of a parallelogram by an outside point •

W116. Describe a double square around the given one • •

W117. Describe a half square within the given one • •

These sixteen remaining geometric constructions will now be described, and all relevant in-
formation collected in order to work out the diagram lettering (Test 2) and index of independence
(Test 3). These tests will be critically discussed in Section 10. For each construction:

(1) I first provide the statement of the problem;
(2) Then, I give the quadruplet (n,m, k, `), which provides the number of solutions available

to the target (n), the number of solutions given by the target (m), the number of solutions devised
by the source (k), and the number of solutions that belong to both the source and target (`). These
data are necessary to calculate the index of independence;29

(3) Finally, I describe the geometric constructions common to the source and target in unit
steps, as explained in Sections 3.1 and 4.6.

29The numbers n, k,m, ` are counted throughout the corpus defined in Section 3.2.
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Abū al-Wafā’ WC Bachot, GP, n.p.

WC. Raise a perpendicular at the endpoint of a given line. Marolois (9, 2, 2, 1), Schwenter
(9, 3, 2, 1). This basic problem attracted nine different solutions prior to 1616: WC; WD; Egyp-
tian triangle; Triangle 5-12-13; Hero, Geometrica (Hultsch, 1878, 435); al-Nayrı̄zı̄, Elements, I,
11; Cremona, Elements, I, 11; Boulenger (1690, 41); Clavius (1591, 33). Abū al-Wafā’ draws
two circles of centers A and J, that cut each other at the point D. Extend line JD beyond H. Make
DH equal to DJ. Draw line HA, it will be perpendicular to line AJ, as required.

Abū al-Wafā’ W8* Marolois, OM, 14

W8*. Draw a parallel to a line through a given point. Marolois (7, 2, 1, 1), Schwenter
(7, 4, 1, 1). We know of some fifteen different solutions, including seven constructions prior to
1616-18: W8*; Aristotle, Posterior An. I, V, 74a; Euclid (2000, I, 31); Pappus (1878, VII, 106);
Tartaglia (1560, fol. 3v, 4r); Ryff (1600, 61). Abū al-Wafā’s construction W8* is as follows:
From point D of BJ, describe the arc AH. From A taken as a center and with the same opening,
draw the arc DH. . Make AH equal to DH. . Then the line H. A will be parallel to BJ.

Abū al-Wafā’ W22* Ardüser, GTP, 26v

W22*. Find the center of a circle. Tartaglia (7, 4, 3, 2), Marolois (7, 1, 3, 1), Schwenter
(7, 4, 3, 2). They were seven solutions prior to Tartaglia’s Quinta Parte: W12; W22*; W52B*;
Euclid (2000, III, 1); Hero, Geometrica (Hultsch, 1878, 435); Pappus (1878, VII, 96); Chuquet,
Géométrie, fol. 256r (L’Huillier, 1979). Both Abū al-Wafā’s solutions have been used in Europe.
Solution W22* is as follows: Draw on the circle the chords AB and JD. Raise two perpendiculars
at their bisection points. These lines will cut each other at a point H, the center of the circle.
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Abū al-Wafā’ W28A Schwenter, GPN, 197

W28A. Describe a regular pentagon whose side is given. Schwenter (10, 3, 2, 1). This
problem gave rise to ten solutions prior to Schwenter’s books: W28A; W28B; Abū Bakr (Rodet,
1883, four solutions); Hösch (1844, 96); Bovelles (1547, fol. 20r); Bachot (1598, two solutions).
Solution W28 is as follows: At point B, draw a perpendicular line BJ equal to AB. Bisect AB at
the point D. Make DH equal to DJ. Point Z, belonging to the pentagon’s triangle ABZ, is such
that AZ=BZ=AH. With the opening AB, draw the arcs AH. and ZH. , cutting each other at H. , draw
the arcs BT. and ZT. , cutting each other at T. . ABT. ZH. is the pentagon we require.

Abū al-Wafā’ W50* Marolois, OM, 42

W50*. Inscribe a regular decagon in the circle. Marolois (3, 1, 1, 1). Once the constructions
of the decagon with a given side are eliminated, as well as the algebraic solutions, we are left
with three solutions prior to 1616–18: W50*; Ptolemy, Almagest, I, 9; Bachot (1598). W50*
simply consists of inscribing a regular pentagon in the circle, as in W43, then bisecting the sides
of the pentagon to get a regular decagon.

Abū al-Wafā’ W52B* Galli Bibiena, AC, 10

W52B*. Find the missing center of a circle. Tartaglia (7, 4, 3, 2), Schwenter (7, 4, 3, 2). The
problem gave rise to seven constructions, all before 1560: W12; W22*; W52B*; Euclid (2000,
III, 1); Hero, Geometrica (Hultsch, 1878, 435); Pappus (1878, VII, 96); Chuquet, Géométrie,
fol. 256r (L’Huillier, 1979). W52B* is as follows: From A and B, taken as centers, draw two
circles cutting each other at the points D and H. Similarly, from centers A and J, draw two other
circles intersecting at Z and H. . Lines DH and ZH. will cut at point T. , the center of the circle.
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Abū al-Wafā’ W55 Peletier, UG, 39

W55. Circumscribe a circle around a regular pentagon. Marolois (2, 1, 1, 1), Schwenter
(2, 1, 1, 1). Only two geometric constructions have been described prior to 1616–18: Euclid
(2000, IV, 14) and Abū al-Wafā’, W55. The latter is as follows: From points A and B taken as
centers, draw two arcs cutting at Z and H. . From points B and J taken as centers, draw two arcs
intersecting at Y and K. Lines ZH. and YK cut each other at the point L, which is the center of
the circle circumscribed around the regular pentagon ABJDH.

Abū al-Wafā’ W62 Pacioli, S, 62r

W62. Inscribe an equilateral triangle in a square. Marolois (5, 1, 5, 1). We know about eight
different solutions for this problem, including five prior to Marolois’ and Schwenter’s treatises:
W58; W59; W60; W61 and W62. Solution W62 is as follows: first circumscribe a circle around
the square ABJD: draw the diameters BD and AJ cutting at H, which is the center of the circle.
Then, with an opening DH from D taken as a center, draw an arc that will cut the circle at points
Z and H. . Draw BZ and BH. , intersecting the sides of the square at T. and Y. Draw the line T. Y.
BT. Y is the triangle required.

Abū al-Wafā’ W68 Marolois, OM, 46
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W68. Inscribe a square in a scalene triangle. Marolois (6, 2, 2, 1). This problem led
to six known solutions prior to 1616–18: W68; W69; Ibn Yūnus, Sharh. , fol. 44v (two solu-
tions);Tartaglia (1560, fol. 17v, two solutions). Solution W68 is as follows: At the endpoint B,
drop the line BD perpendicular and equal to BJ. Join AD, cutting BJ at H. Draw HZ perpendic-
ular to HB cutting AB at the point Z. Extend ZH. parallel to BJ. Draw H. T. perpendicular to BJ.
The square HZH. T. is inscribed. Marolois draws a slight variant, in which he applies the same
procedure to an equilateral triangle. Nevertheless, he does not take advantage of symmetry to
simplify the diagram.

Abū al-Wafā’ W69 Tartaglia, QP, 18r

W69. Inscribe a square in a scalene triangle. Tartaglia (4, 1, 2, 1). This problem, which is
identical to W68, gave rise to four documented solutions prior to 1560: W68; W69; Ibn Yūnus,
Sharh. , fol. 44v (two solutions). Solution W69 is as follows: At the endpoint B, raise the line BD
perpendicular and equal to BJ. From the vertex A, drop the line AH perpendicular to BJ. Join
DH, cutting AB at a point Z. Draw ZT. perpendicular to BJ, and ZH. parallel to BJ. The square
ZH. YT is inscribed in the scalene triangle ABJ, as required.

Abū al-Wafā’ W70 Tartaglia, QP, 16v

W70. Inscribe a square in an equilateral triangle. Tartaglia (3, 1, 1, 1). This problem
possessed three solutions prior to 1560: W70; Ibn Yūnus, Sharh. , fol. 44v and 45r. Abū al-
Wafā’s solution W70 is as follows: describe the square BDHJ on the base BJ. Then bisect the
base BJ at point Z. Draw the lines ZD and ZH, cutting the sides of the triangle at the points T.
and H. . Join T. H. . Draw the perpendiculars H. K and T. Y. As a result, the square H. T. YK is inscribed
in the equilateral triangle ABJ, as required.
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Abū al-Wafā’ W73 Marolois, OM, 49

W73. Inscribe an equilateral triangle in a regular pentagon. Marolois (1, 1, 1, 1). There
was only one solution prior to 1616. Solution W73 is as follows: From the vertex B, draw the
perpendicular BZ to the base DH. Bisect BZ at H. . Draw the circle of center H. and radius H. B.
From Z as center and with the same opening, draw an arc cutting the pentagon at the points T.
and K. Draw BT. and BK, cutting AH at M and JD at N. Join MN. The triangle BMN is inscribed
in the pentagon ABJDH, as required.

Abū al-Wafā’ W83 Tartaglia, QP, 26r

W83. Divide a triangle in n equal parts by a line through a side point. Tartaglia (1, 1, 1, 1),
Schwenter (2, 1, 1, 1). This problem has only two solutions: one prior to 1560: W83, the other
in 1599: Pomodoro (1624, XXI, 5). Solution W83 is as follows: Join A to point D. Divide BJ in
n equal parts, viz. at H, Z, and H. . Draw parallels to AD through H, Z, H. . They will cut the sides
of the triangle at L, K, and Z. . The four triangles DBL, DLK, DKZ. , DZ. J have the same area.
Abū al-Wafā’ concludes: “We will have the same construction if we want to divide the triangle
in three, in five, or in any equal parts” (Būzjānı̄, 1966, 95; 1997, 79).

Abū al-Wafā’ W87 Tartaglia, QP, 6r

W87. Double or triple the area of a triangle by a line parallel to one side. Tartaglia
(2, 1, 1, 1). Only two different solutions are documented: W87 and Clavius (1591, 343). Abū
al-Wafā’ duplicates the triangle as follows: extend JA of length AD equal to 2JA. Describe the
semicircle JHD on JD. Raise the perpendicular AH to JD at A, that will cut the semicircle at
H. Make JH. equal to AH. Through H. , draw H. Z parallel to AB. Extend JB up to the point of
intersection Z. Thus, the triangle H. ZJ is twice the triangle ABJ.
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Abū al-Wafā’ W105 sim. Tartaglia, QP, 33v

W105. Cut off one third of a parallelogram by a line passing through a point outside the
figure. Tartaglia (1, 1, 1, 1). This problem of Euclidean origin had little following, being omitted
by Fibonacci. There is no other solution than Abū al-Wafā’s construction W105: On the base of
the parallelogram, make BH. equal to BJ/3. At point H. , raise H. Z parallel to AB, cutting off one
third of the figure. Draw the diagonals ZJ and DH. , cutting each other at point [S], the center of
the parallelogram. From the outside point H, extend line HT. SY to the point Y of the base. Then
DJYT. will cut off one third of ABJD. The only difference in Tartaglia’s construction is that he
determines the center S by bisecting the parallel to ZH. joining the midpoints of lines DZ and JH.
(Tartaglia, 1560, fol. 33v).

Abū al-Wafā’ W116 Tartaglia, QP, 6r.

W116. Describe a double square around a given square. Tartaglia (2, 2, 1, 1), Schwenter
(2, 1, 1, 1). Two solutions were devised before the sixteenth century: W116 and Villard, Carnet,
fol. 39r (Bechmann, 1991). W116 is as follows: extend the base JB up to H, with BH=2JB.
Describe, on the diameter JH, a semicircle JZH. Extend BA up to Z. Add to the square’s sides a
width equal to AZ/2. The resulting square will be the double of the square ABJD.

Abū al-Wafā’ W117 Ardüser, GTP, 130r

W117. Describe a half square within a given square. Tartaglia (2, 2, 1, 1), Schwenter
(2, 1, 1, 1). This problem gave rise to two solutions: W117 and Villard, Carnet, fol. 39r (Bech-
mann, 1991). W117 is as follows: extend the base BD of BH=BD/2. Describe on DH the
semicircle DZH, cutting the side AB at Z. Remove from each side of the square a width equal to
AZ/2. The resulting square will be half of the square ABJD. Tartaglia has an overall view of the
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problem: “Similarly, from any given equilateral triangle, we may draw another one equal to the
half of that, and so wanting [. . . ] the fourth, or fifth, etc.”30

6. Diagram Lettering (Test 2)

In this section, Abū al-Wafā’s lettering is compared to the one used by European geometers.
Two hypotheses are worked out separately. In case of phonetical matching [phon] between Latin
and Arabic letters, multiple correspondence is admissible for the letters jı̄m {G, J}, hā’ {E, H},
wāw {U, W} and yā’ {I, Y}. In case of numerical matching [num], the letters follow the Levantine
alphabet called abjad, except for one or two irregularities and the letter wāw, which is unused by
Abū al-Wafā’. The series is ’alif 1 {A}, bā’ 2 {B}, jı̄m 3 {C}, dāl 4 {D}, etc. (Table 1).

Cstr. Tartaglia (1560) Marolois (1616) Schwenter (1618)
Phon Num Phon Num Phon Num

WC 1/5 1/5 0/5 0/5
W8* 1/8 1/8 1/6 2/6
W22* 1/9 1/9 0/10 1/10 3/8 4/8
W28A 2/8 2/8
W50* 0/6 0/6
W52B* 1/8 2/8 0/14 2/14
W55 0/10 0/10 0/10 0/10
W62 2/9 1/9
W68 1/13 2/13
W69 3/10 4/10
W70 5/10 8/10
W73 4/11 2/11
W83 4/10 1/10 6/12 5/12
W87 0/7 0/7
W105 1/15 1/15
W116 1/6 1/6 0/6 0/6
W117 1/6 1/6 0/6 0/6

Ratio 0.209 0.234 0.125 0.111 0.160 0.200

Table 1. Abū al-Wafā’s Diagram Lettering

The number of matching letters is small in each case, the best matching being in the case of
Tartaglia who reproduces an average of c. 2.1 letters out of 9 per diagram (num). Thus the second
test does not provide evidence of transmission.

7. Index of Independence (Test 3)

In this section, an attempt is made to apply probability theory to the study of borrow-
ings vs. multiple discoveries. For the sake of simplicity, I assume geometric constructions to
be equiprobable and independent events—a condition which is not always fulfilled in the real

30“Similmente di ogni dato triangolo equilatero potremmo designarne vn’altro eguale alla mita di quello et cosi
volendo [. . . ] il quarto, ouero il quinto, ecc.” (Tartaglia, 1560, fol. 6v-7r).
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world.31 With this assumption, I then define an index of independence for the constructions pre-
senting the most striking resemblances to those of Abū al-Wafā’. Such a test is usable only if the
number of matches is high, which is precisely the case here, for many geometric constructions
by Abū al-Wafā’ were echoed in the Latin West.

Random draws

Consider the problem of finding the center of a circle, a construction which is necessary for
solutions W22*-52B*. We know n = 7 solutions prior to 1560 (they are described in Section 5).
Niccolò Tartaglia mentions m = 4, Abū al-Wafā’ gives k = 3, among which ` = 2 are common
to Tartaglia and Abū al-Wafā’. Put the seven solutions in a bag. Then pick four solutions (the
same number mentioned by Tartaglia) at random. What is the chance that the draw contains at
least the ` = 2 solutions by Abū al-Wafā’?

There are
(

n
m

)
=

(
7
4

)
= 35 ways to pick m = 4 geometric constructions out of seven at random.

In addition, there are
(

n−k
m−2

)
=

(
4
2

)
= 6 ways to pick m = 4 solutions including the two solutions

given by Abū al-Wafā’. Since the conclusion would be the same if we had picked any other pair
of solutions given by the source, we multiply this number by

(
k
`

)
=

(
3
2

)
= 3, and proceed similarly

with three solutions. The chance that the draw contains at least the two solutions given by Abū
al-Wafā’s is

((
3
2

) (
4
2

)
+

(
3
3

) (
4
1

)) / (
7
4

)
= 22

35 .
The probabilities that Tartaglia picks out Abū al-Wafā’s solutions for the other problems are

calculated similarly, p(I)69 = 1
2 , p(I)70 = 1

3 , p(I)83 = 1, p(I)87 = 1
2 , p(I)105 = 1, p(I)116 = 1,

p(I)117 = 1.32 Then, according to the multiplication theorem, the probability of drawing the N
solutions {W22* . . . W117} all together is, for all j 6 m:

p(I)X/Y =

N∏
i=1


k∑

j=`

[(
ki

ji

) (
ni − ki

mi − ji

)] / (
ni

mi

) (1)

That is, in Tartaglia’s case:

p(I)W/T =
22
35
·

1
2
·

1
3
· 1 ·

1
2
· 1 · 1 · 1 ≈

1
19

(2)

The chance of an independent reconstruction by Marolois is calculated in the same manner
(using the data from Section 5). Since Marolois (1616, 13) mentions the n-section of the straight
line by Tartaglia (1560, fol. 22rv), he had access to the Quinta Parte. W22* is thus removed and
the calculation is as follows:

p(I)W/M =
5

12
·

2
7
·

1
3
·

1
2
· 1 ·

3
5
· 1 =

1
84

(3)

We proceed in the same manner with Schwenter. Since Tartaglia’s n-section is quoted again
by Schwenter (1618, 73), we must remove W22*, W52B*, W83, W116, W117 to give:

p(I)W/S =
7

12
·

4
7
·

8
15
·

1
2
≈

1
11

(4)

31For discussion, see Section 10.
32We read p(I)69 as the probability that Tartaglia picks solution W69 at random.
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Significance

To determine whether these probabilities are significative, we must compare them to the
number of draws αX/Y that could be made between the source X and target Y .

We can asume a “draw” is equivalent to either a treatise or an author. I choose the second op-
tion, for the solutions given by one author are stable—for example, most of Tartaglia’s geometric
constructions appear in his Quinta Parte. We can therefore equate a draw to a geometer.

Since basic problems have a small number of solutions (see Section 5), the more a problem
is studied, the more the solution given by X has a chance to be randomly rediscovered by Y . As
noted in Section 3.4, the number of draws needed for a given solution to appear with certainty in
a series of draws with replacement is known. Suppose there exists a bag containing n solutions.
On any draw, the chance of not drawing a given solution is (n− 1)/n. After q draws, this number
becomes p = ((n − 1)/n)q. If we want to be almost certain (p = 0.95) that this event will appear
in successive draws, then we need q = ln (0.05)/ ln (n − 1/n) draws. In order to move away from
the critical zone, I reject the hypothesis of an independent reconstruction if the number of draws
α is well below q—say the same order of magnitude as n. The question thus comes down to
comparing the index of independence p(I)X/Y to the number of geometers αX/Y who have existed
between the source X and target Y , and who therefore could have drawn a solution:

1. p(I)X/Y < 1/αX/Y means that there were not enough draws between the source X and
target Y to rediscover the solution by chance. In this case, identical solutions advocate for
a historical transmission.

2. p(I)X/Y > 1/αX/Y means that there were a lot of draws between the source X and target
Y so that the geometers could have rediscovered the solution by themselves at random. In
this case, an independent reconstruction cannot be rejected.

The number of geometers active between the tenth and the sixteenth century can be estimated
from biographical records. Geometric constructions appear in treatises of either pure or practical
geometry. To establish the list of geometers active in this given span of time, we can use the
convenient Chronological List of Mathematicians (Joyce, 1995), which compiles previous data
from W.W. Rouse Ball, C.C. Gillispie, R.S. Westfall, J. O’Connor and E.F. Robertson. From the
Chronological List we first remove the names of those who have not contributed to geometry
(arithmetic, algebra, trigonometry, etc.) and then add the names of translators and commentators
of the Elements, as well as the names of all authors who have composed practical geometry
treatises.

Next, we look for the number of geometers that may have informed Renaissance mathe-
matics. In other words, we look for all Arabic-, Hebrew- and Latin-speaking geometers. By
reclassifying the authors by the date of their first geometric work, we get a fairly accurate picture
of the number of “draws”. We count in the said list: αW/T = 104, αW/M = 165, αW/S = 168.
Hence:

p(I)W/T =
1
19
�

1
104

p(I)W/M =
1

84
�

1
165

p(I)W/S =
1
11
�

1
168

(5)

The probability of drawing Abū al-Wafā’s solutions at random is greater than 1/α in each
case. Therefore, the conclusion of the third test is that it is likely that European geometers
reached the solutions independently. Finally, since the partial findings of Tests 1 and 2 also yield
negative results, the three tests taken all together dismiss Woepcke’s diffusion hypothesis.
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8. Ibn Yūnus’ Commentary

Kamāl al-Dı̄n ibn Yūnus (5th S. afar 551–14th Sha‘bān 640 H./30 March 1156–17 Feb. 1242)
is known for his Sharh. al-a‘māl al-handasiyya li Abū al-Wafā’ (Commentary on the Geometric
Constructions by Abū al-Wafā’), henceforth called his Commentary. A professor of mathematics
in Mosul, Ibn Yūnus was in contact with the Latin world through his answers to the scientific
questions posed by Emperor Frederick II to Arabic scholars,33 as well as through several students,
such as ‘Alam al-Dı̄n or Theodore of Antioch, who afterwards attended the cosmopolitan court of
Sicily (Ibn Khallikān, 1944; Kedar and Kohlberg, 1995; Burnett, 1995; Raynaud, 2007). Insofar
as Abū al-Wafā’s collection of problems was unknown in Latin Europe, as we have just seen, and
since many of his constructions appear in Ibn Yūnus’ commentary, this latter work would seem
to provide a possible mechanism for the diffusion of Arabic geometric constructions to the West.

8.1. Solutions echoed (Test 1)

Ibn Yūnus’ Commentary is very similar to Abū al-Wafā’s except in two respects: (1) Ibn
Yūnus provides proofs for every construction, whereas Abū al-Wafā’, in order to make his work
more fitting for craftsmen, omits them:34; (2) Ibn Yūnus has a keen interest in conic sections. He
uses them for the trisection of the angle (Y25GH), for the construction of the regular heptagon
(Y47BCD), and stresses the fact that Abū al-Wafā’ should have given exact solutions, based on
conic sections, rather that approximate solutions. Nevertheless, for the most part, the problems
studied by Ibn Yūnus are identical to the ones solved by Abū al-Wafā’, with few constructions
added or removed. As before, we proceed by considering the differences between the two texts.
There are six specific constructions by Abū al-Wafā’ not treated by Ibn Yūnus:

W8*. Draw a parallel to a line through a given point
W22*. Find the center of a circle and trisect an arc
W47*. Inscribe a regular heptagon in the circle
W50*. Inscribe a regular decagon in the circle
W52B*. Circumscribe a circle around a isosceles triangle
W53*. Circumscribe a circle around a isosceles triangle: Method 2

We must remove thirteen propositions that do not involve constructions in plane geome-
try: Y21CD, Y23DEHIJK, Y25BJKL (properties of conics), Y70D (similar triangles), Y124D
(polyhedra). Two further propositions are illegible in Mashhad’s MS:35 Y23G (conics), Y124C
(division of areas). Ibn Yūnus’ collection includes two constructions of Greek origin:36

33The questions solved by Ibn Yūnus are discussed by, among others, Ibn Khallikān, who writes: “In the year 633
H./1236, when I was in Damascus, a number of questions on arithmetic, algebra and geometry were posed to a man
of this city, expert in mathematics. Unable to solve them, he copied them all on a roll of parchment and sent them
[to Kamāl al-Dı̄n ibn Yūnus], then in Mosul. A month later, he received a response in which all the obscurities were
clarified and all the difficulties were explained” (Ibn Khallikān, 1944, 471).

34“I left out all the motives and demonstrations. This will make [the constructions] easier for craftsmen and will pave
the way to them.” Istanbul, Ayasofya MS 2753, fol. 2:
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35Since statements of problems are rubricated, many of them now appear in a very faint color. Some figures are

almost entirely erased. The text and the figures are too faded for propositions Y23G and Y124C to be readable.
36See Appendix B: Y25I.
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Y23F. Duplicate the cube: Method 2 (Eutocius, CA, II, 9)
Y25I. Trisect an acute angle: Method 5 (Pappus, CM, IV, 36)

We must also remove from Ibn Yūnus’ collection several constructions that could have been
known in the West by intermediate sources: Y23C, dealing with the construction of the parabola,
which is a slight reworking of Ibn Sinān’s Epistle on the Drawing of the Three Sections (Rashed
and Bellosta, 2000), Y47BCD, dealing with the construction of the regular heptagon by means
of conics, inherited from either Abū al-Jūd’s or al-Sijzı̄’s works (Hogendijk, 1984).37

Y23C. Describe a parabolic mirror: a variant of W25 (Ibn Sinān, EDTS, 268)
Y47B. Inscribe a regular heptagon in the circle (Abū al-Jūd, BCHC, Lem. 1)
Y47C. Continuation: draw the triangle of the heptagon (Abū al-Jūd, BCHC, Lem. 2)
Y47D. Continuation: draw the regular heptagon (Abū al-Jūd, BCHC)

Twenty constructions had no following in Western geometrical treatises, including three false
resemblances: Y23DE, Y45B, which must be considered as problems without a following.38

Y21B. Trisect an acute angle: Method 3
Y23DE. Properties of the parabola (diff. Nemorarius, DT, I.12)
Y25CDEF. An instrument to draw the hyperbola
Y25GH. Trisect an acute angle by means of the hyperbola
Y28CDE. Describe a regular pentagon whose side is given: Method 3
Y45B. Inscribe a regular pentagon in the circle: Method 4 (diff. Mydorge, PG, 221)
Y70B. Inscribe a square in an equilateral triangle: Method 2
Y70C. Circumscribe a scalene triangle around an equilateral triangle
Y71B. Inscribe an equilateral triangle in a scalene triangle: Method 2
Y95B. Divide a trapezium in two parts by a parallel to its base: Method 2
Y122B. Divide a triangle in two parts, putting a strip aside: Method 2
Y123B. Divide a triangle in n parts, putting a strip aside
Y124B. Divide a trapezium in two parts, putting a widening strip aside

Consequently, Ibn Yūnus’ specific solutions, which are identical to Latin geometric construc-
tions, are limited to the following two:

Y69B. Inscribe a square in a scalene triangle: Method 3 (Marolois, OM, 46)
Y69C. Inscribe a square in a scalene triangle: Method 4 (Tartaglia, QID, 202)

Ibn Yūnus Y69B Marolois, OM, 46

37See Appendix B: Y47C.
38Appendix B includes a reproduction of diagram Y23D.
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Y69B. Inscribe a square in a scalene triangle: Method 3. Marolois (6, 1, 2, 1). There
were six solutions prior to 1616. Samuel Marolois gives one. Ibn Yūnus gives two. Solution
Y69B was adapted from al-Sijzı̄’s Anthology of Problems (Crozet, 2010, 61-62) but European
geometers were unaware of his work. Solution Y69B is as follows: from any point D taken on
AB, draw a perpendicular DH. Make DZ parallel to BJ, with DZ=DH. Join the points B and Z,
and extend the line BZ untill it cuts AJ at point H. . Draw H. K parallel to BJ, then trace H. T. and
KL perpendicular to H. K. Thus, the square KLT. H. is inscribed in the triangle ABJ. 39 Both Ibn
Yūnus and Marolois study the problem on a diagram that overspecifies the scalene triangle in an
equilateral triangle.

Ibn Yūnus Y69C sim. Tartaglia, QID, 202

Y69C. Inscribe a square in a scalene triangle: Method 4. Tartaglia (4, 2, 2, 1). There were
four solutions available prior to 1560. Tartaglia mentions two solutions. Ibn Yūnus gives two.
Ibn Yūnus’ Y69C is as follows: in triangle ABJ, draw AD perpendicular to BJ. Draw AH parallel
to BJ, with AH=AD. Draw a line JH that will cut the side AB at the point Z. Draw ZT. parallel
to BJ, then ZH. and T. K perpendicular to BJ. Square H. ZT. K is inscribed in the triangle ABJ as
required. 40 Tartaglia uses a variant in which he takes AE=AD/2 and thus he draws the oblique
line to the midpoint D instead of the point B.

Considering the work of both Abāl-Wafā’ and Ibn Yūnus, the conclusion of the first test is
that only 18 geometric constructions out of 82 were echoed in the Latin world, that is, 16 from
Abū al-Wafā’ and 2 by Ibn Yūnus.

39Mashhad, MS 5357, fol. 44v:3:
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8.2. Diagram lettering (Test 2)

A second way to estimate Ibn Yūnus’ legacy in Latin Europe is to compare the diagram
lettering of Ibn Yūnus’ Commentary to the ones used in European treatises. I use the conventions
defined in Section 6. As we can see from Table 2, the number of letters which are the same is
small in each case. The best matching is again in the case of Tartaglia, who reproduces less than
2.9 letters out of 10 per diagram (num). Accordingly, the second test yields a negative result.

Cstr. Tartaglia (1560) Marolois (1616) Schwenter (1618)
Phon Num Phon Num Phon Num

WC 1/5 1/5 0/5 0/5
W55 0/10 0/10 0/10 0/10
W62 0/9 1/9
W68 1/13 2/13
W69 4/10 4/10
Y69B 3/11 1/11
Y69C 2/9 7/9
W70 2/10 8/10
W73 4/11 2/11
W83 2/10 1/10 6/12 1/12
W87 0/7 0/7
W105 1/15 1/15
W116 1/7 1/7 0/7 0/7
W117 1/9 1/9 0/9 0/9

Ratio 0.168 0.298 0.152 0.118 0.133 0.022

Table 2. Ibn Yūnus’ Diagram Lettering

8.3. Index of independence (Test 3)

Since Abū al-Wafā’s treatise was unknown in Europe, and Ibn Yūnus reproduces most so-
lutions of this collection, the calculus of probability just consists in removing from Tartaglia’s
index of independence (Eq. 2) constructions W22*-W52B*, not mentioned by Ibn Yūnus, and in
multiplying this number by the probability of Ibn Yūnus’ unpublished construction Y69C.

p(I)Y/T =
1
2
·

1
3
· 1 ·

1
2
· 1 · 1 · 1 ·

5
6
≈

1
14

(6)

We proceed in the same manner with Samuel Marolois, by removing the two constructions
W8* and W50*, not mentioned by Ibn Yūnus, from Marolois’ index of independence (Eq. 3),
and by multiplying this number by the probability of Ibn Yūnus’ construction Y69B. We get:

p(I)Y/M =
5

12
·

1
2
· 1 ·

3
5
· 1 ·

1
3

=
1

24
(7)

We interpret these numbers by referring to the Chronological List of Mathematicians, in the
same way as we did in Section 7. We find αY/T = 73 and αY/M = 134. Thus:

p(I)Y/T =
1

14
�

1
73

p(I)Y/M =
1
24
�

1
134

(8)
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The third test tells us that European geometers could have found the solutions of these prob-
lems independently. Finally, since Tests 1 and 2 yield negative results, the three tests provide ad-
justed findings. They suggest rejecting the conclusion that Ibn Yūnus’ Commentary intervened
in the history of East–West diffusion of Abū al-Wafā’s geometric constructions. Therefore, sur-
prising as it may seem, Ibn Yūnus’ treatise probably had no more influence than Abū al-Wafā’s.

9. A Counter-Proof: Fibonacci’s Legacy

To establish the reliability of the threefold method we have applied to Abū al-Wafā’s legacy,
we must check that the tests do not yield negative results in all cases. Let us proceed to a counter-
test on Tartaglia’s dependence on Fibonacci’s Practica Geometriae (Boncompagni, 1862; Hughes,
2008). We choose the part of Tartaglia’s work dealing with the division of triangles and quadri-
laterals. This choice is interesting because, in the time of Tartaglia, Euclid’s Division of Figures
had been long lost and Fibonacci’s solutions can be seen as original by substitution.

Test 1: Solutions echoed
First put aside the obvious solution W90: Divide a parallelogram in two parts through one

of its vertices. Fibonacci reproduced twenty five constructions from Euclid’s Division of Fig-
ures.41 Tartaglia provided sixteen constructions identical to Fibonacci’s. The ratio of transmitted
solutions is thus 16/25 = 0.64.

W82. Divide a triangle in two parts by a line through a side point (PG, 112; QP, 25r)
W84. Divide a triangle in two parts by a parallel to a given side (PG, 119; QP, 23v)
W88. Double or triple the area of a triangle by a line passing through the vertex (PG, 110; QP, 23v)
W91. Divide a quadrilateral in two parts through a vertex (PG, 138; QP, 35v)
W95. Divide a trapezium in two parts by a parallel to its base (PG, 125; QP, 24r)
W96. Divide a parallelogram in two parts through a side point (PG, 123; QP, 32r)
W97. Cut off one third of a parallelogram through a side point, Case 1 (PG, 124; QP, 32r)
W98. Case 2 (PG, 124; QP, 32v)
W102. Divide a trapezium in two parts through a side point, Case 1 (PG, 126; QP, 34r)
W103. Case 2 (PG, 127; QP, 34r)
W104. Divide a parallelogram in two parts through a point outside the figure (PG, 124; QP, 33r)
W106. Cut off a given part of a trapezium through a side point, Case 1 (PG, 135; QP, 34v)
W107. Case 2 (PG, 136; QP, 34v)
W108. Case 3 (PG, 136; QP, 35r)
W114. Cut off one third of a quadrilateral through a side point, Case 2 (PG, 140; QP, 39r)
W118. Draw two parallels cutting off a part of the circle, e.g. the third (PG, 146; QP, 43v)

Test 2: Diagram lettering
Compare now the letters used by Fibonacci and Tartaglia to mark the diagrams W82 to W118.

Phonetical and numerical hypotheses are studied separately. In the case of numerical matching,
except for one or two errors, Greek letters appear in the following order: A 1 = {A}, B 2 = {B},
Γ 3 = {C}, ∆ 4 = {D}, E 5 = {E}, Z 6 = {F}, etc. Each diagram is investigated, then the ratio of
identical letters from all diagrams is calculated (Table 3).

41Fibonacci’s geometric constructions of Euclidean origin are: W82, W84, W88, W90–W93, W95–W100, W102–
W104, W106–W109, W111–W114, W118, W119.
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Cstr. Tartaglia (1560) Cstr. Tartaglia (1560)
Phon Num Phon Num

W82 4/6 6/6 W84 2/5 4/5
W88 3/4 4/4 W91 2/7 4/7
W95 1/7 4/7 W96 3/9 3/9
W97 4/8 4/8 W98 4/8 4/8
W102 1/6 3/6 W103 1/8 5/8
W104 3/8 3/8 W106 2/8 4/8
W107 1/10 2/10 W108 1/8 3/8
W114 0/7 1/7 W118 2/7 2/7

Ratio 0.293 0.483

Table 3. Fibonacci’s Diagram Lettering

The numerical hypothesis applied to Fibonacci yields a result twice higher than in the case
of Abū al-Wafā’s (num). Tartaglia has c. 3.5 letters out of 7 per diagram, even though he sys-
tematically changes the lettering of the vertices of all quadrilaterals. While Fibonacci marks the
letters ABCD counterclockwise from the top left-hand corner of the diagram, Tartaglia marks
AB on the top side and CD on the bottom side of the quadrilateral, from left to right. Despite
this choice—which removes exactly three letters from the diagram—the similarity ratio is high.
Thus, even assuming that personal choice might interfere with the original lettering of diagrams,
the invariance of several letters seems to be a good indication that a transmission occurred.

Test 3: Index of independence
To calculate the index of independence, we need the quadruplet (n, k,m, `) for the construc-

tions echoed by Tartaglia. We proceed as in Sections 7 and 8.3.42 Hence:

p(I)F/T =
1
3
·

1
2
·

1
2
·

1
2
·

1
2
·

1
2
·

1
2
·

1
2
·

1
2
·

1
2

=
1

1536
= 6.5 × 10−4 (9)

It remains to estimate the number of geometers active from 1220 to 1560. According to the
Chronological List of Mathematicians, there were αF/T = 42. Assuming that Fibonacci faithfully
reproduced Euclid’s constructions, I also count all the geometers active between –300 and 1560.
They were αE/T = 157. Thus:

p(I)F/T = 6.5 × 10−4 �
1
42

p(I)E/T = 6.5 × 10−4 �
1

157
(10)

To sum up, Tartaglia borrowed many solutions from Fibonacci (16/25 = 0.640) and repro-
duced c. 3.5 letters out of 7 per diagram (56/116 = 0.483). The most discriminating criterion is
Test 3, which produces a chance of independent discovery (1/1536 = 6.5 × 10−4) much smaller
than that resulting from the works written from Fibonacci—if not from Euclid—to Tartaglia.

42 W82 (3, 1, 1, 1). The other solutions are Hero’s Metrica Γ3, 146, and al-Baghdādı̄’s DSL, II. – W84 (2, 1, 1,
1). The other solution is the Anonimo Fiorentino, TGP, 123. – W88 (1, 1, 1, 1). – W91 (2, 1, 1, 1). There is another
solution by al-Baghdādı̄, DSL, XVI. – W95 (2, 1, 1, 1). al-Baghdādı̄, DSL, XII. – W96 (2, 1, 1, 1). The other (under-
specified) solution is al-Baghdādı̄, DSL, VIII. – W97 (2, 1, 1, 1). al-Baghdādı̄, DSL, XI. – W98 (2, 1, 1, 1). There is
another (underspecified) solution by al-Baghdādı̄, DSL, VIII. – W102 (1, 1, 1, 1). – W103 (2, 1, 1, 1). al-Baghdādı̄,
DSL, VIII. – W104 (1, 1, 1, 1). – W106 (1, 1, 1, 1). – W107 (1, 1, 1, 1). – W108 (1, 1, 1, 1). – W114 (2, 1, 1, 1).
al-Baghdādı̄, DSL, IX. – W118 (1, 1, 1, 1).
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Since the three tests walk side by side, the result is robust: Tartaglia’s Quinta Parte is based
on Fibonacci and, after two millenia, still appears dependent on Euclid.43

10. Can We Be Confident in the Method?

As with any other method, the strategy of inquiry presented in these guidelines may be subject
to criticism. In this Section, I will examine one by one possible objections and provide replies.

Test 1. Some scholars think the number of problems echoed is a decisive criterion; others
not. According to the method developed in this article, the number of problems reproduced is
only the target’s affair. In any case, however, the criterion should not be used alone. This is
because it would contradict a rather well established fact at the East–West crossroads, namely
that Copernicus inherited Tūsı̄’s couple (Section 3.3).

Test 2. Some scholars believe that the lettering of diagrams cannot serve as a criterion be-
cause geometric constructions were used by craftsmen, and thus were subject to an oral trans-
mission that did not preserve the diagram lettering. If we accept the objection, we must admit
likewise that only basic constructions were orally transmitted. But this is false. Some of the
constructions studied in this article are complex ones: W20, W28A, W47*, W68, W69, W83,
W116, W117. Had they been subject to oral teaching only, they would have disappeared.

Test 3. Some scholars might be reluctant to accept the application of probability theory to
the study of cultural transmission, because such seemingly clinical methods are thought to be
insensitive to the subtlety of human affairs. Clearly, any transmission includes the appropriation
and subsequent transformation of older material. Concepts are acclimated, and methods are
adapted to new environments. Nevertheless, it is clearly the case that mathematical contents are
not completely distorted by appropriation. Otherwise sources would be unrecognizable and all
attempts to restore lost works, such as those of Apollonius (Hogendijk, 1986), Euclid (Archibald,
1915; Hogendijk, 1993) or al-Hajjāj (De Young, 1991), would be doomed to failure.

Being new, Test 3 requires a more detailed examination. To better understand the following
discussion, let us recall the four relations that can bias the result in favor of transmission:

(1) n ↑ ⇔ p(I)X/Y ↓ (2) m ↓ ⇔ p(I)X/Y ↓

(3) k ↓ ⇔ p(I)X/Y ↓ (4) α ↓ ⇔ 1/α ↑

Insofar as the extant works are only a part of what existed in book or manuscript form, any
corpus is partial. As a result, some solutions may not be detected. The number of solutions is
always a lower limit. Suppose one finds new authors. According to relation (4), a higher αmakes
it more difficult to establish transmission. On the other hand, finding new authors increases the
chance of detecting new solutions. According to relation (1), when n increases, the chance of an
independent rediscovery reduces and it is easier to prove transmission. Therefore, any increase
in the number of authors has opposing effects: it favors both the thesis of transmission and the
thesis of independent rediscovery. The two relations balance one another.

43We can also test Fibonacci’s dependence on Abū al-Wafā’ in a similar manner. The Practica Geometriae (hereafter
PG) has thirty constructions identical to constructions in Abū al-Wafā’s collection. Test 1 tells us that eight solutions
from Euclid’s Division of Figures (herafter DF) were taken up by Fibonacci. These constructions are as follows: DF,
17: PG, 140; DF, 19: PG, 115; DF, 20: PG, 121; DF, 26: PG, 116; DF, 27: PG, 121; DF, 32: PG, 131; DF, 33: PG,
137; DF, 34: PG, 140. Since these constructions were omitted by Abū al-Wafā’, there is no need to proceed any further:
this means Abū al-Wafā’s collection was unknown to Fibonacci, who had access to Euclid’s Division of Figures through
another (unknown) Arabic intermediary source.
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The solutions are not necessarily independent events in the real world. We may guess that,
once the target-author has taken one solution from a given source, the chance of picking oth-
ers from the same source is increased. This would be the case if the solutions were an undif-
ferentiated set. In practice, however, they answer separate problems. Suppose Tartaglia had
access to two treatises L,G, each providing different solutions to three problems A, B,C, say,
L = {a, b, c} and G = {α, β, γ}. If these events are independent, P(a) = P(b) = 1

2 , therefore
P(a ∩ b) = P(a) P(b) = 1

4 . Suppose the events are dependent. Knowing that Tartaglia picked a
from L, what is the chance he also picks b? The reduced set is {ab, aβ}, there is one favorable
case {ab}, thus P(b | a) = 1

2 and P(a ∩ b) = P(a) P(b | a) = 1
4 . Since P(a) P(a | b) = P(a) P(b) is

the definition of independence, geometric constructions can be seen as independent events.
However, it could be that the same solution comes into play in different problems. This is an-

other case of dependence. Suppose a basic micro-construction—such as to draw a perpendicular,
to bisect an angle, etc.—is used in the course of a macro-construction. Abū al-Wafā’s collection
is quite special in this respect, because micro-constructions are explicitly described only once.
After that, they are just foreshadowed. For instance, six different methods to raise a perpen-
dicular are described, but Abū al-Wafā’ does not mention which one he uses in the subsequent
macro-constructions W28A, W68, W69, W70, W73, W87. Similarly, the method of drawing
parallel lines is not clearly referred to in macro-constructions W83, W87, W105. Consequently,
one can pick any solution ensuring that constructions are independent events at all times.

Available solutions are not always equiprobable events. Some solutions are more accessi-
ble, or attractive, than others. In such circumstances, probability calculations are inapplicable.
I maintain, however, that we can proceed with the simplification presented in Section 7. To
account for the attractiveness of certain solutions, we would need to operate at the level of all
known geometrical works. It would then be possible to know how many times a given solution
was reproduced. However, such rewriting would result in restricting the number of solutions.44

According to relation (1), when n reduces, the probability p(I)X/Y increases, thus strengthening
the case for a transmission. Since the bias favors the theory of transmission, the present method
is more reliable when it tends to deny a legacy than when it aims to establish one. Therefore, in
the context of the study of Abū al-Wafā’s legacy, Test 3 produces an acceptable result.45

11. Conclusions

1. The fact that two-thirds of Abū al-Wafā’s constructions were echoed in the West suggests
that his collection was known—especially the constructions to be made with one opening of the
compass. But, unlike many other Arabic treatises that were known in the Latin Middle Ages

44Although problem W3 gave rise to a dozen solutions from antiquity to the late classical period, nobody has repro-
duced John of Murs’ solutions to n-sect the line (Busard, 1998, 147-148). If we were to take into account the attractive-
ness of geometric constructions, then we should remove these two solutions, and n would be reduced accordingly.

45 There is a more detailed test of the conclusion that Renaissance geometers could have found Arabic constructions
by themselves. Suppose one challenges the thesis of independence vis-à-vis Abū al-Wafā’. On the one hand, one might
have doubts about the number of solutions. Take p(I)W/T = 1/104 instead of 1/19 and reintroduce this number in Eq. 1.
The minimum number of solutions needed for a borrowing is: 5 W83 (Tartaglia), 2 W73 (Marolois), 16 W55 (Schwenter).
The only way to reject the conclusion would be to find at least 4−1 = 3 (Tartaglia), 2−1 = 1 (Marolois) and 16−2 = 14
(Schwenter) new solutions. On the other hand, one might consider that too many authors in geometry were included in
the list. Accordingly, it would be necessary to remove 104 − 19 = 85 (Tartaglia), 165 − 84 = 81 (Marolois) and
168 − 15 = 157 (Schwenter) geometers from the list to reject the conclusion. This task is out of reach.
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through direct appropriation or translation,46 Abū al-Wafā’s collection seems not to have had the
same destiny. The best candidate for reviving this legacy—i.e. Marolois—provides disappointing
results: he has only a few solutions identical to Abū al-Wafā’s, his diagram lettering is different,
and the index of independence is too high.

2. The impression that Abū al-Wafā’ left a legacy is based on several factors. Resemblances
exist in many Renaissance works, but when a single author is picked out, the number of identical
problems reduces to eight or nine at best. Before the Renaissance these problems did not give
rise to many solutions (n); European geometers provided many solutions (m); and Abū al-Wafā’
gave only a few original solutions (k).

3. As to the way the approach described in this article can contribute to the methods in history
and sociology of science, it is noteworthy that the three tests can be applied with no knowledge
whatsoever of the historical process of diffusion. The approach is especially useful in the case of
unattested relationships. If the tests yield a positive result, it is worthwhile searching for material
evidence of the transmission. Otherwise, there is no need to engage in further investigation.

4. The index of independence enables us to distinguish between cases which, at face value,
appear similar. Despite Marolois and Schwenter having the same number of constructions in
common with Abū al-Wafā’—and despite Schwenter being professor of Arabic at the University
of Altdorf—Marolois’ index (1/84) is much more discriminating than that of Schwenter (1/11).
This counter-intuitive result appears because the index of independence is not based on similarity
alone—which, regrettably, is the only element available to qualitative inspection.

The exploratory method described in this article requires improvements. However, several
factors suggest that the general methodology is valid. First, it achieves robust results, which can
be waived only by rejecting outright all three tests together. Second, the results are unambigu-
ously tied to specific works. It is not claimed that the results can be extrapolated to a geographical
area or period, and other works can still be subjected to the tests.

In short, the present findings urge sociologists and historians of science not to rely too heavily
on appearances when drawing conclusions about the diffusion of mathematics.
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AppendixA. A List of Abū al-Wafā’s problems in plane geometry

Chap. I. Introduction47

WA. Make a right angle (I.v)
WB. Method 2 (I.vi)
WC. Raise a perpendicular at the endpoint of a line (I.vii)
WD. Method 2 (I.viii, var. AJ drawn)
WE. Check the right angle (I.ix, var. one more line)
WF. Method 2 (I.x, var. one more line)
WG. Method 3 (I.xi, var. one more line)

Chap. II. Basic constructions
W1A. Bisect a line (II.ia)
W1B. Bisect an arc (II.ib)
W2. Bisect a line: Method 2 (II.ii)
W3. N-sect a straight line (II.iii)
W4. Bisect an angle (II.iv)
W5. Draw a perpendicular to a given line from an outside point (II.v)
W6. Draw a perpendicular to a plane from an outside point in the space (II.vi)
W7. Describe an angle equal to a given angle (II.vii)
W8*. Draw a parallel to a line through a given point (II.viii)
W9. Method 2 (II.ix)
W10. Find the missing center of a given circle (II.xa)
W11. Method 2 (II.xb)
W12. Method 3 (II.xi)
W13. Draw a tangent to a circle by an outside point (II.xii)
W14. Draw a tangent to a circle by a point of the circumference (II.xiii)
W15. Draw a parallel ZH. to the basis BJ of a triangle, equal to BH (II.xiv, two figs.)
W16. Draw a parallel HD to the basis BJ of a triangle, equal to BH (II.xv)
W17. Draw a parallel HD to the basis BJ of a triangle, with HD=BZ+BH (II.xvi)
W18. Describe a triangle equal to a given triangle (II.xvii)
W19. Trisect a right angle (II.xviii)
W20. Trisect an acute angle (II.xix)
W21. Method 2 (II.xx)

Y21B. Trisect an acute angle: Method 3
W22*. Trisect an arc (II.xxi)
W23. Duplicate the cube (II.xxii)

Y23C. Draw the pattern of a parabolic mirror: variant of W25
Y23F. Duplicate the cube: Method 2
Y23G. [Illegible diagram]

W24. Draw the pattern of a parabolic mirror (II.xxiii)
W25. Method 2 (II.xxiv)

Y25C. An instrument to draw the hyperbola
Y25D. Continuation
Y25E. Continuation

47Krasnova’s numbering in Roman numerals with variant, if any, is given at the end of the line. (Krasnova, 1966).
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Y25F. Draw the hyperbola
Y25G. Trisect an acute angle: Method 4
Y25H. Continuation
Y25I. Trisect an acute angle: Method 5

Chap. III. Construction of polygons
W26. Describe an equilateral triangle whose side is given (III.i)
W27. Describe a square whose side is given (III.ii)
W28A. Describe a regular pentagon whose side is given (III.iii)
W28B. Method 2 (III.iv, var. BDJHY downside up)

Y28C. Method 3
Y28D. Continuation
Y28E. Continuation

W29. Describe a regular hexagon whose side is given (III.v)
W30. Describe a regular heptagon whose side is given (III.vi)
W31. Describe a regular octagon whose side is given (III.vii)
W32. Method 2 (III.viii)
W33. Describe a regular enneagon whose side is given (III.ix)
W34. Describe a regular hexagon whose side is given (III.x, var. BJD upside down)
W35. Method 2 (III.xi)

Chap. IV. Inscription of polygons in the circle
W36. Inscribe an equilateral triangle in the circle (IV.i)
W37. Circumscribe an equilateral triangle to the circle (IV.ii)
W38. Inscribe a square in the circle (IV.iii)
W39. Method 2 (IV.iv)
W40. Method 3 (IV.vi)
W41. Method 4 (IV.v)
W42. Method 5 (IV.vii)
W43. Inscribe a regular pentagon in the circle (IV.viii)
W44. Method 2 (IV.ix)
W45. Method 3 (IV.x)

Y45B. Method 4
W46. Inscribe a regular hexagon in the circle (IV.xi)
W47*. Inscribe a regular heptagon in the circle (IV.xii, var. BH missing)

Y47B. Method 2: find the side of the heptagon by means of conics
Y47C. Continuation: draw the triangle of the heptagon
Y47D. Continuation: draw the regular heptagon

W48. Inscribe a regular octagon in the circle (IV.xiii)
W49. Inscribe a regular enneagon in the circle (IV.xiv)
W50*. Inscribe a regular decagon in the circle (IV.xva)
W51. Method 2 (IV.xvb)

Chap. V. Circumscription of the circle around polygons
W52A. Circumscribe a circle around a scalene triangle (V.i)
W52B*. Circumscribe a circle around an isosceles triangle
W53*. Method 2 (V.ii)
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W54. Circumscribe a circle around a square (V.iii)
W55. Circumscribe a circle around a regular pentagon (V.iv)
W56. Circumscribe a circle around a regular hexagon (V.v)

Chap. VI. Inscription of the circle in polygons
W57. Inscribe a circle in any given triangle (VI.i)

Chap. VII. Inscription of polygons with each other
W58. Inscribe an equilateral triangle in a square (VII.i, different fig.)
W59. Method 2 (VII.ii)
W60. Method 3 (VII.iii)
W61. Method 4 (VII.iv)
W62. Method 5 (VII.v)
W63. Circumscribe a triangle around a square (VII.vi)
W64. Circumscribe a square around an equilateral triangle (VII.vii)
W65. Circumscribe a square around a scalene triangle (VII.viii)
W66. Method 2 (VII.ix)
W67. Method 3 (VII.x)
W68. Inscribe a square in a scalene triangle (VII.xi)
W69. Method 2 (VII.xii)

Y69B. Method 3
Y69C. Method 4

W70. Inscribe a square in an equilateral triangle (VII.xiii)
Y70B. Method 2
Y70C. Circumscribe a scalene triangle around an equilateral triangle

W71. Inscribe an equilateral triangle in a scalene triangle (VII.xiv)
Y71B. Method 2

W72. Circumscribe an equilateral triangle around a scalene triangle (VII.xv)
W73. Inscribe an equilateral triangle in a regular pentagon (VII.xvi)
W74. Circumscribe an equilateral triangle around a regular pentagon (VII.xvii)
W75. Inscribe a square in a regular pentagon (VII.xviii)
W76. Circumscribe a square around a regular pentagon (VII.xix)
W77. Inscribe a regular pentagon in a square (VII.xx, two figs.)
W78. Inscribe a regular octagon in a square (VII.xxi, var. HH. , HS drawn)
W79. Method 2 (VII.xxii, var. HH. , HS drawn)
W80. Circumscribe a square around an octagon (VII.xxiii)

Chap. VIII. Division of triangles
W81. Divide a triangle in two parts by a line passing through the vertex (VIII.i)
W82. Divide a triangle in two parts by a line through a side point D, BD>BJ/2 (VIII.ii)
W83. Divide a triangle in n parts by a line through a side point (VIII.iii, var. AH. , AZ, AH drawn)
W84. Divide a triangle in two parts by a parallel to a given side (VIII.iv, var. DH, HJ drawn)
W85. Divide a triangle in three parts by two parallels to a given side (VIII.v)
W86. Method 2 (VIII.v, var. circle DHJ downside up)
W87. Double or triple the area of a triangle by a parallel to its side (VIII.vii, different fig.)
W88. Double or triple the area of a triangle by a line passing through the vertex (VIII.viii)
W89. Draw a half or a third triangle inside a given triangle (VIII.ix)
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Chap. IX. Division of quadrilaterals
W90. Divide a parallelogram in two parts through a vertex (IX.i)
W91. Divide a quadrilateral in two parts through a vertex (IX.ii, var. DZ drawn)
W92. Divide a quadrilateral in two parts through a side point, with HZ//BJ (IX.iii, var. AD//BJ)
W93. Case 2: HZ not parallel to BJ (IX.iv, var. AB//DJ)
W94. Case 3: BH. outside the quadrilateral (IX.v)
W95. Divide a trapezium in two parts by a parallel to its base (IX.vi)

Y95B. Method 2
W96. Divide a parallelogram in two parts through a side point (IX.vii)
W97. Cut off one third of a parallelogram through a side point, with AH. =AD/3 (IX.viii)
W98. Case 2: AH. <AD/3 (IX.ix, two figs.)
W99. Case 3: AH. >AD/3 (IX.x, var. H. =A)
W100. Case 4: H. H<BZ (IX.xi)
W101. Case 5: H. H>BZ (IX.xii, line H. I missing)
W102. Divide a trapezium in two parts through a side point, with AH=HD (IX.xiii, var. AB//DJ)
W103. Case 2: AH,HD (IX.xiv)
W104. Divide a parallelogram in two parts through a point outside the figure (IX.xv)
W105. Cut off one third of a parallelogram through a point outside the figure (IX.xvi, var. ZJ, DH. missing)
W106. Cut off a given part of a trapezium through a side point, with AH=AD/3 (IX.xvii)
W107. Case 2: AH,AD/3 (IX.xviii)
W108. Case 3: AH<AZ
W109. Divide a trapezium in two parts through a point outside the figure (IX.xix, var. JH. missing)
W110. Cut off a given part of a trapezium through a point outside the figure (IX.xx)
W111. Cut off one third of a trapezium, with BE=BD/3 (IX.xxi)
W112. Case 2: BE,BD/3 (IX.xxii, var. AZ, JZ drawn)
W113. Cut off one third of a quadrilateral through a side point, with HZ//BD (IX.xxiii, var. AB//JD)
W114. Case 2: HZ not parallel to BD (IX.xxiv, var. AB//DJ)
W115. Case 3: BH. outside the quadrilateral (IX.xxv, var. AB//JD)
W116. Describe a double square around the given one (IX.xxvi)
W117. Describe a half square within the given one (IX.xxvii)
W118. Draw two parallels cutting off a given part of the circle, e.g. the third (IX.xxviii, var. Euclid’s fig.)
W119. Divide a circular sector in two parts (IX.xxix, two figs.)
W120. Divide a square in two parts, putting aside a strip of width DH. (IX.xxx)
W121. Divide a square in three parts, putting aside a strip of width MN (IX.xxxi)
W122. Divide a triangle in two parts, putting aside a strip of width DJ (IX.xxxii, var. line LQ missing)

Y122B. Method 2
W123. Divide a triangle in two parts, putting aside a strip of width DJ (IX.xxxiii)

Y123B. Divide a triangle in n parts, putting aside a strip of width DJ
W124. Divide a trapezium in two parts, putting aside a strip of width DH (IX.xxxiv)

Y124B. Divide a trapezium in two parts, putting aside a widening strip
Y124C. [Illegible diagram]

Chap. X. Division and composition of squares
W125. Make a square of nine squares (X.i)
W126. Make a square of four squares (X.ii)
W127. Make a square of sixteen squares (X.iii)
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W128. Make a square of two squares (X.iv)
W129. Make a square of eight squares (X.v)
W130. Make a square of thirteen squares (X.vi)
W131. Make a square of ten squares (X.vii)
W132. Split a square in eight squares (X.viii, ix)
W133. Split a square in eighteen squares (X.x)
W134. Split a square in ten squares (X.xi)
W135. Split a square in twenty squares (X.xii)
W136A. Make a square of three squares (X.xiii)
W136B. Method 2 (X.xiv)
W136C. Method 3 (X.xv)
W137. Method 4 (X.xvi)
W138. Make a square of any given number of squares (X.xvii)
W139. Divide a square whose side is given in two squares (X.xviii)
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ografia e di Storia delle Scienze Matematiche e Fisiche 16, 514–527.

Hirschvogel, A. 1543. Ein aigentliche vnd grundtliche anweysung in die Geometria. Berg und Neuber,
Nuremberg.

Hogendijk, J.P. 1984. Greek and Arabic Constructions of the Regular Heptagon, Archive for History of
Exact Sciences 30, 197–330.

Hogendijk, J.P. 1986. Arabic Traces of Lost Works of Apollonius. Archive for History of Exact Sciences
35, 187–253.

Hogendijk, J.P. 1993. The Arabic Version of Euclid’s ‘On Divisions’. In: Folkerts M. and Hogendijk,
J.p. (Eds.), Vestigia Mathematica. Studies in Medieval and Early Modern Mathematics in Honour of
H.L.L. Busard. GA, Amsterdam-Atlanta, pp. 143–162.
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Beckmann, A., Dimitracopoulos, C. and Löwe, B. (Eds.) Logic and Theory of Algorithms. Springer,
Berlin/Heidelberg. pp. 261-277.

Hughes, B. 2008. Fibonacci’s De Practica Geometrie. Springer, NewYork/Berlin/Tokyo.
Hultsch, F. 1878. Heronis Alexandrini Geometricorum et stereometricorum reliquiae. Pappi Alexandrini

Collectionis liber VIII. Weidmann, Berlin.
Ibn Khallikān, 1944. Biographical Dictionary, Translated from the Arabic by De Slane. Librairie du Liban,
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Siena. Universitá degli Studi di Siena, Siena.

Suter, H. 1922. Das Buch des geometrischen Konstructionen des Abu’l Wefâ’, Abhandlungen zur
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AppendixB. Additional diagrams from Abū al-Wafā’s and Western treatises

Abū al-Wafā’ WD Ibn Yūnus, SAH, 3v

Abū al-Wafā’ W2 diff. Schwenter, GPN, 410

Abū al-Wafā’ W3 Bovelles, GP, 8r

Abū al-Wafā’ W12 Fibonacci, PG, 102

Abū al-Wafā’ W13 Pacioli, S, 27r
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Abū al-Wafā’ W15 diff. Campanus, EE, VI, 4

Abū al-Wafā’ W20 Campanus, EE, IV, 16

Abū al-Wafā’ W23A Tartaglia, QP, 44r

Ibn Yūnus Y23D diff. Nemorarius, DT, I, 12

Abū al-Wafā’ W25 Milliet, CMM, I, 297
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Ibn Yūnus Y25I
Commandino, PC, 61v

Abū al-Wafā’ W29 Marolois, OM, 6

Abū al-Wafā’ W47* Galli Bibiena, AC, 10

Ibn Yūnus Y47C
Viète, SG, 249

Abū al-Wafā’ W53* diff. Marolois, OM, 70
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Abū al-Wafā’ W56 Vinci, MS A, 16v

Abū al-Wafā’ W60 diff. Fiorentino, TGP, 160

Abū al-Wafā’ W72 Tartaglia, QP, 13r

Abū al-Wafā’ W78 S. Nicolás, AUA, 144r

Abū al-Wafā’ W79 Hirschvogel, G, 18
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Abū al-Wafā’ W82 Pacioli, S, 36r

Abū al-Wafā’ W85 Marolois, OM, 52

Abū al-Wafā’ W103 Tartaglia, QP, 34r

Abū al-Wafā’ W114 Tartaglia, QP, 39r

Abū al-Wafā’ W134 sim. Ozanam, RM, 297
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