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Abstract

We built an anatomically accurate model of facial musculature,
passive tissue and underlying skeletal structure using volumetric
data acquired from a living male subject. The tissues are endowed
with a highly nonlinear constitutive model including controllable
anisotropic muscle activations based on fiber directions. Detailed
models of this sort can be difficult to animate requiring complex
coordinated stimulation of the underlying musculature. We pro-
pose a solution to this problem automatically determining muscle
activations that track a sparse set of surface landmarks, e.g. ac-
quired from motion capture marker data. Since the resulting ani-
mation is obtained via a three dimensional nonlinear finite element
method, we obtain visually plausible and anatomically correct de-
formations with spatial and temporal coherence that provides ro-
bustness against outliers in the motion capture data. Moreover,
the obtained muscle activations can be used in a robust simulation
framework including contact and collision of the face with external
objects.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—Physically based modeling;
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1 Introduction

Facial modeling and animation, enabled by recent advances in tech-
nology, is a vital new area in high demand. While this is especially
true in the entertainment industry (e.g. [Borshukov et al. 2003]), it
is also quite popular elsewhere including applications to lip read-
ing and surgical planning. For example, [Koch et al. 1998] pointed
out the utility of synthesizing expressions on a post-surgical face to
determine the effects of the surgical modifications.

Starting with data from the visible human data set [U.S. National
Library of Medicine 1994], we used the techniques proposed in
[Teran et al. 2005b] to construct a highly detailed anatomically ac-
curate model of the head and neck region. This includes a triangu-
lated surface for each bone, a tetrahedralized volume and a B-spline
fiber field representation for each muscle, and a single tetrahedral
mesh for all the soft tissue. Then we morphed this anatomically
accurate model to fit data obtained from both laser and MRI scans
of a living subject constructing new meshes where necessary.

Animating such a complex model can be rather difficult, so we pro-
pose using three dimensional sparse motion capture marker data
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Figure 1: Facial expression created by the action of 32 transversely
isotropic muscles (top left) and simulated on a quasistatic finite el-
ement tetrahedral mesh (top right). Muscle activations and bone
kinematics are automatically estimated to match motion capture
markers (bottom left) giving rise to the final synthesized expression
(bottom right). The original markers are colored red, and the marker
positions resulting from our simulation are depicted in green.

(see e.g. [Williams 1990; Guenter et al. 1998]) to automatically de-
termine muscle activations. [Terzopoulos and Waters 1993] took a
similar approach early on estimating muscle actuation parameters
based on the position of facial features tracked by snakes. Later,
[Morishima et al. 1998] contracted both individual and combina-
tions of muscles in order to learn patterns, and then used two di-
mensional marker positions or optical flow as input for a neural
network which estimated muscle contraction parameters. Both of
these approaches aim to match a two dimensional projected image
as opposed to our goal of matching the full three dimensional shape
of the face.

A control-theoretic approach was used to estimate muscle contrac-
tions that match optical flow input in [Essa et al. 1996; Essa and
Pentland 1997]. Although this approach might work for more de-
tailed anatomical models, they only considered a two dimensional
finite element model for skin along with a simple muscle model for
actuation. [Basu et al. 1998b; Basu et al. 1998a] proposed avoid-
ing the internal anatomy altogether constructing a two dimensional
quasistatic finite element model for the lips that was used to mini-
mize the strain as select nodes tracked motion data. This was done
to train the lips, and PCA was used to reduce the subsequent de-
grees of freedom to about ten. This reduction mimics the fact that
the actual degrees of freedom correspond to the muscles which are
conveniently already in theproper lower dimensional space (as op-
posed to that obtained from PCA). Finally, they track lip motion



automatically determining the parameters of their model that match
the motion data using a steepest descent iterative solver.

More recently, [Choe et al. 2001] used a two dimensional linear
quasistatic finite element model of the skin surface, along with un-
derlying muscles that apply forces to the surface mesh based on lin-
ear activations. Their lack of anatomical structure led to the use of
heuristic correction forces near the mouth. Given marker data, they
used a steepest descent method to calculate the muscle activations
that best track the data including penalty forces to constrain muscle
activations to the physical regime. They point out that their model is
linear greatly simplifying this problem. This formulation suffered
from both a lack of anatomical accuracy and a lack of nonlinearity,
and [Choe and Ko 2001] pointed out that it could produce unnatural
artifacts. Thus, they modified this procedure allowing the artist to
sculpt basis elements to be combined linearly, and used the active
set method to solve a constrained quadratic program to obtain the
muscle activations (or weights). Typically, the basis elements need
to be resculpted a number of times to obtain satisfactory results.

A major benefit of our approach is that we strive for anatomical
accuracy which gives biomechanical meaning to our activations,
and thus makes the problem tractable in the sense that a person’s
face is driven by muscle activations of this sort. Moreover, we
take a biomechanically accurate fully nonlinear approach to both
the constitutive model and the finite element method, which com-
plicates the solution process but provides behavior not captured by
approaches that linearly blend basis functions. We automatically
solve for not only muscle activations, but the head position and jaw
articulation parameters as well. Moreover, our approach uses a so-
phisticated simulation framework allowing us to place the animated
face in complex environments including arbitrary contact and colli-
sion with external objects in the scene. During this interaction, the
extracted muscle activation controls can still be applied providing
a realistic combination of muscle contraction and external stimuli.
Furthermore, if the collision events give rise to ballistic phenom-
ena, we can readily replace the quasistatic simulation with a fully
dynamic one while retaining the extracted muscle activation values.

2 Related Work

Three dimensional facial animation began with [Parke 1972] (see
[Parke and Waters 1996] for a review). [Platt and Badler 1981]
built a face model using masses and springs including forces gener-
ated by muscles, and made use of the Facial Action Coding System
(FACS) [Ekman and Friesen 1978]. Other early work included [Wa-
ters 1987; Magnenat-Thalmann et al. 1988; Kalra et al. 1992]. [Lee
et al. 1995] constructed an anatomically motivated facial model
based on scanned data, and endowed it with a mass spring system
driven by muscle contractions. [Waters and Frisbie 1995] built a
muscle model for speech animation, stressing that muscles animate
faces and that it is more productive to focus on a muscle model
rather than a surface model. A number of authors have used finite
element simulations in the context of facial surgery, e.g. [Pieper
et al. 1992; Koch et al. 1996; Keeve et al. 1996; Roth et al. 1998]
(see also, [Teschner et al. 2000]).

[DeCarlo et al. 1998] used variational modeling and face anthro-
pometry techniques to construct smooth face models. [Pighin et al.
1998] used a number of photographs to fit a three dimensional tem-
plate mesh to a given facial pose, and then obtained animations by
blending different poses. [Pighin et al. 1999] used this technique
to fit a face model to each frame of a video sequence estimating
the pose for subsequent analysis, and [Joshi et al. 2003] automati-
cally segments the face into smaller regions for blending. See also,
[Zhang et al. 2003]. Starting from a database of face scans, [Blanz
and Vetter 1999] derive a vector space representation of shapes and

textures such that any linear combination of examples gives a rea-
sonable result. This framework has been used to transfer animations
from one individual to another [Blanz et al. 2003], for face identi-
fication [Blanz and Vetter 2003], and to exchange a face from one
image to another [Blanz et al. 2004]. [Kahler et al. 2001] built a
mass spring model of a face and skull with a muscle model to drive
the deformation, [Kahler et al. 2002] proposed a method for mor-
phing this model to other faces, and [Kahler et al. 2003] extended
this approach to forensic analysis.

Other work includes facial animation based on audio or text input
[Cassell et al. 1994; Bregler et al. 1997; Brand 1999; Cassell et al.
2001; Ezzat et al. 2002; Cao et al. 2003; Cao et al. 2004], wrinkle
formation [Wu et al. 1999], eye motion [Lee et al. 2002], and facial
motion transfer [Noh and Neumann 2001; Pyun et al. 2003; Na and
Jung 2004; Sumner and Popović 2004]. [Byun and Badler 2002]
modified the MPEG-4 Facial Animation Parameters (FAPs) [Mov-
ing Picture Experts Group 1998] to add expressiveness, [Kshirsagar
and Magnenat-Thalmann 2003] used PCA to deform the mouth dur-
ing speech, and [Chai et al. 2003] used facial tracking to drive ani-
mations from a motion capture database. [Wang et al. 2004] used a
multiresolution deformable mesh to track facial motion, and a low
dimensional embedding technique to learn expression style. [Zhang
et al. 2004] proposed a method for tracking facial animation fitting
a template mesh to the data, and then used linear combinations of
basis shapes to create an inverse kinematics system that allows one
to create expressions by dragging surface points directly.

3 Anatomical Model

Our model building effort started with the volumetric data from the
visible human data set [U.S. National Library of Medicine 1994].
As in [Teran et al. 2005b], we constructed level sets for each tissue
and used them to create a triangulated surface for each bone and a
tetrahedralized volume for each muscle. Since many of the muscles
in the face are quite thin and thus not amenable to robust and effi-
cient tetrahedral mesh simulation, we took an embedded approach
to muscle modeling. First, a single tetrahedral flesh mesh was cre-
ated to representall the soft tissue in the face, and then we calcu-
lated the fraction of overlap between each muscle and each tetra-
hedron of the flesh mesh storing that fraction locally in the tetrahe-
dron. We also create fiber fields for each muscle and store a single
vector directionper musclein each tetrahedron with a nonzero over-
lap. One graduate student spent 6 months constructing this template
face and muscle model from the visible human data, but with exist-
ing tools this could be accomplished in 2 weeks.

Subsequently, we obtained laser and MRI scans of a living sub-
ject. The laser scans gave a high-fidelity likeness of the subject,
and we wanted to adhere to them closely. The MRI scan was of
much lower quality presenting only an approximate guideline, and
we needed to reuse the bone, muscle, and to a lesser extent flesh
geometry from our visible human template model. To that end we
developed a set of point correspondences between the two models
and morphed the geometry from the first using radial basis func-
tions. This morphed geometry required further manual editing to
satisfy considerations of aesthetics and general anatomical knowl-
edge. Once we had geometry for the surface of the flesh volume,
we again used the meshing algorithm to create a high-quality tetra-
hedral mesh for the face flesh. To summarize, our model consists
of a rigid articulated cranium and jaw with about 30 thousand sur-
face triangles, flesh in the form of a tetrahedral mesh with about
850 thousand tetrahedra out of which 370 thousand (in the front
part of the face) are simulated, Dirichlet boundary conditions cor-
responding to bone attachments, and an embedded representation
of 32 muscles. This subject specific model was constructed in 2
months by 5 undergraduate students, but would only take a single



person a few days with existing tools. For example, rebuilding the
facial tetrahedral flesh takes only a few hours. A cross-section of
the simulation volume is illustrated in figure 2.

In addition to the main functionality, a number of auxiliary features
were considered. To provide realistic collisions of lips against the
underlying rigid structure, we incorporated scans of teeth molds
into the cranium and jaw. To achieve more realistic muscle ac-
tion, we independently scaled the strength of each embedded mus-
cle based on the amplitude and plausibility of their flexion. This
biomechanically corresponds to adjusting the thickness of muscles,
which we could not reliably infer from the MRI scan. Finally, we
added eyes, teeth, shoulders, realistic rendering, etc.

4 Finite Element Method

The flesh mesh is governed by a Mooney-Rivlin constitutive model
for the deviatoric deformation augmented by a volumetric pressure
term for quasi-incompressibility. Tetrahedra which contain facial
muscles have an additional anisotropic response for each muscle,
which consists of both passive and active components scaled by the
volume fraction. See [Teran et al. 2003; Teran et al. 2005b] for
more details. The definition of nodal forces can be summarized as

f(x,a) = f0(x)+
M

∑
i=1

ai f i(x) (1)

weref andx denote the forces and positions ofall nodes in the sim-
ulation mesh, anda = (a1,a2, . . . ,aM)T is the vector of activations
of all M muscles. f0 corresponds to the elastic material response
of the flesh including the passive anisotropic component present in
muscle regions. Each force componentf i corresponds to the con-
tribution of a fully activated muscle and is weighted by the cor-
responding current muscle activation level withai ∈ [0,1]. The f i
depend on the spatial configurationx alone, making the total force
an affine function of muscle activations. This linear dependence
of force on activation is a fundamental property of the force-length
curve of [Zajac 1989] that provides a useful simplification to our
control framework.

We use a quasistatic simulation scheme where each input of mus-
cle activations and skeletal configuration is directly mapped to the
steady state expression it gives rise to. Such an assumption is fun-
damental to our control strategy, since it enables facial expressions
to be defined as functions of the input control parameters without
any dependence on the deformation history. We stress that this hy-
pothesis is adopted only in the context of our optimization process
to automatically determine muscle activations, and inertial effects
can later be included in extracted expressions via a full dynamic
simulation utilizing the same muscle control parameters.

Given a set of muscle activation parameters,a, and appropriate
boundary conditions, we substitute these into equation (1) and solve
the resulting nonlinear equationf(x) = 0. The boundary conditions
are derived from the position of the cranium and jaw (see section
8), and we abstractly encode this state with a vectorb. Solving
this equation leads to an equilibrium configuration for the mesh,
X(a,b). These steady state positions are defined implicitly with the
aid of equation (1) as

f(X(a,b),a) = 0. (2)

Note thatb does not explicitly appear in the definition of the fi-
nite element forces, but instead fully determines the value of some
constrained nodes in the simulation mesh, which we denoteXC(b).
Equation (2) can therefore be considered an implicit definition for
the quasistatic positions of the unconstrained set of mesh nodes,
denoted byXU (a,b).

Figure 2: Illustration of the finite element flesh mesh, and the im-
portance of colliding this mesh with the rigid bodies and itself.

We solve equation (2) with a Newton-Raphson iterative solver. At
each step, the finite element forces are linearized around the cur-
rent estimateXk as f(Xk + δX) ≈ f(Xk) + ∂ f/∂x|Xk

δX. Then
we compute the displacementδX that would restore the linearized
equilibrium −∂ f/∂x|Xk

δX = f(Xk), and define the next iterate as
Xk+1 = Xk +δX. Unfortunately,∂ f/∂x|Xk

is often indefinite lead-
ing to significant computational cost when solving forδX. Thus,
we utilize the enabling technology proposed in [Teran et al. 2005a]
that allows a fast conjugate gradient solver to be used to findδX.
Moreover, the method proposed in [Teran et al. 2005a] allows for
element inversion during the quasistatics solve speeding up our
Newton-Raphson iteration by a significant amount. Overall, the
convergence is particularly fast yielding an admissible solution to
the nonlinear equilibrium problem within a few Newton-Raphson
iterations even for drastic changes of activation levels. Although
other solvers could be used, and solving equation (2) can be con-
sidered a “black box” as far as our method is concerned, [Teran
et al. 2005a] makes our estimation of muscle activations practical
as opposed to just doable. Mesh collisions between the lips or the
lips and the teeth or gums are handled with the penalty force formu-
lation of [Teran et al. 2005a]. See also [Heidelberger et al. 2004],
[Teschner et al. 2003], etc. for more on collision handling.

5 Optimization Framework

We group all the muscle activations and kinematic parameters into
a single set of controlsc = (a,b) writing the equilibrium positions
as X(c). The input to our model consists of a sparse set of mo-
tion capture marker data, but markerless techniques or animator key
framing could alternatively be used as long as the final inputs are
converted to target locations for points on the surface mesh. In the
rest pose, we find the surface triangle closest to each marker and
compute the barycentric coordinates for the marker rest position. If
the marker does not lie on the surface mesh, we subtract its vector
offset fromall the data for that marker so that it does lie on the sur-
face mesh (and should continue to as it is animated). Given values
for the control parameters, the vector of all our embedded landmark
positions is given byXL(c) = WX(c) whereW is a sparse matrix
of barycentric weights. Our goal is then to find the set of controls
that minimize the distance between our landmark positionsXL(c)
and the motion capture marker data target positionsXT , i.e.

copt(XT) = arg min
c∈C0

‖XL(c)−XT‖

wherecopt(XT) stresses that the optimal set of controls is a function
of the target positions. Here,C0 is thefeasibleset of control con-
figurations restricting the muscle activations (to the interval[0,1])
as well as the positioning and articulation of the head and jaw. Al-
though any geometric or statistical norm could be used, we use the



Figure 3: Synthetic expressions created by manual specification of
activations. Yellow denotes fully active, and red is fully inactive.

Euclidean norm which leads to a nonlinear least squares optimiza-
tion problem. The nonlinearity is from the dependence ofXL(c)
on X(c) which is a complex nonlinear map defined implicitly by
equation (2).

A standard Newton iterative approach to minimizing the functional
φ(c) = ‖XL(c)−XT‖2

2 consists of replacingφ(c) by its quadratic
Taylor expansion about the current guessck, i.e. φ(ck + δc) ≈
φ(ck) + δcT∇φ(ck) + 1

2δcTHφ (ck)δc where Hφ (ck) = 2JT
k Jk +

2WT(XL(ck)− XT) : ∂ 2X/∂c2
∣∣
ck

, Jk = W ∂X/∂c|ck
and δc =

c− ck. Then the quadratic approximation is minimized by solv-
ing −Hφ (ck)δc = ∇φ(ck) to find the next iterateck+1 = ck + δc.
In section 6 we illustrate how the Jacobian,∂X/∂c, of the quasi-
static configuration can be computed using an efficient and reliable
process. However, computation of∂ 2X/∂c2 is particularly expen-
sive as well as error prone unless very stringent accuracy require-
ments on the computation of both the quasistatic solution and its
Jacobian are satisfied. In light of this, we propose an alternative
optimization technique linearizing aboutck to obtain

X(c)≈ X(ck)+ ∂X/∂c|ck
δc (3)

which can be substituted intoφ(c) to obtain φ̂(c) = ‖XL (ck) +
Jkδc−XT‖2

2. φ̂(c) is minimized by the least squares solution of
the linear system−Jkδc∼= XL (ck)−XT , and the normal equations
approach to this requires solving−JT

k Jkδc = JT
k

(
XL (ck)−XT

)
or

−2JT
k Jkδc = ∇φ(ck). Notably, this final equation is equivalent to

the Newton approach where the Hessian has been approximated by
only its first term, removing the problematic∂ 2X/∂c2 term. This is
known as the Gauss-Newton approach (see e.g. [Gill et al. 1981]).

WhenXT is physically attainable, the Hessian is well approximated
by its first term in the vicinity of the optimal valuecopt. We have
found this to be a very frequent case due to the expressive ability of
our simulation model, especially in the context of expression track-
ing where the estimated control parameters at each frame constitute
a very good initial guess to those at the next frame. However, large
changes in activations or boundary conditions can make the solu-
tion to equation (2) unreliable causing the Gauss-Newton step to be

Figure 4: Expressions estimated from motion capture data, along
with both the captured and simulated markers for comparison.

suboptimal. This can also happen when low quality input causes
XT to be distant from the physically attainable configuration man-
ifold. In order to safeguard against this suboptimal behavior, we
useδc = ck+1− ck as asearch directionand minimizeφ(c) along
the line segment connectingck andck+1. Sinceφ(c) seemed to be
unimodal in the vast majority of test cases, we used golden section
search. Using linear interpolation to estimate the quasistatic config-
uration at internal points of the line segment provided a particularly
good initial guess to the quasistatic solver making it typically con-
verge in a single Newton-Raphson iteration for each golden section
refinement. Given that no computation of Jacobians is necessary
during the explicit line search, we found the incorporation of this
process to incur only about a 10% performance overhead. As far as
overall performance is concerned, remote initial guesses typically
converge within an absolute maximum of 4-5 Gauss-Newton steps,
while reasonable quality inputs typically led to convergence in a
single step (notably with the full Gauss-Newton step tock+1).

6 Jacobian Computation

Our optimization framework relies on the ability to compute
both the equilibrium positions,X∗ = X (c∗), and the Jacobians,
∂X/∂c|c∗ , for a given control configurationc∗ = (a∗,b∗). The first
of these is readily computed by solving equation (2), and the re-
sults of this can be used to (nontrivially) compute the Jacobians as
well. To do this, we rewrite equation (2) to explicitly highlight the



Figure 5: Tracking of a narration sequence. The captured markers are colored red, and the results of our simulation are depicted in green.
Note that there is a one to one correspondence between the red and green markers, but some markers are occluding others in the figure.

dependence on both constrained and unconstrained nodes

f(XC(b),XU (a,b),a) = 0 (4)

stressing that there is still only one equation for each unconstrained
node, since the net force at constrained nodes is trivially zero. Dif-
ferentiating equation (4) with respect to an activation parameterai
yields ∂ f/∂xU

∣∣
X∗,a∗ ∂XU/∂ai

∣∣
a∗,b∗ + ∂ f/∂ai |X∗,a∗ = 0 or

− ∂ f/∂xU
∣∣∣
X∗,a∗

∂XU/∂ai

∣∣∣
a∗,b∗

= f i(X∗) (5)

wheref i was defined in equation (1) as the active force induced by
a unit activation of thei-th muscle. This is a linear system of equa-
tions for the unknown partial derivatives∂XU/∂ai . Additionally
note that the activations have no effect on the constrained boundary
nodes, and thus∂XC/∂ai is identically zero.

Some of the kinematic controls,b, such as the base frame of refer-
ence for the position of the cranium, do not affect the strain of the
deformable model. The Jacobian of the quasistatic positions with
respect to such controls can be determined analytically since a rigid
transformation of their associated boundary conditions simply in-
duces the same rigid body transformation for the entire simulation
mesh. Other kinematic parameters, such as those that articulate the
jaw, nonrigidly change the quasistatic configuration. Differentiat-
ing equation (4) with respect to such a kinematic parameterbi and
rearranging gives

− ∂ f/∂xU
∣∣∣
X∗,a∗

∂XU/∂bi

∣∣∣
a∗,b∗

= ∂ f/∂xC
∣∣∣
X∗,a∗

∂XC/∂bi

∣∣∣
b∗

(6)

which is a linear system of equations for the unknown∂XU/∂bi .
Note that∂XC/∂bi is analytically known from the definition of the
kinematic parameters. Also,∂ f/∂xC is the stiffness of the forces on
the unconstrained nodes with respect to the positions of the bound-
ary conditions and is also analytically known from the definition of
the finite element forces in our model. The entire right hand side of
equation (6) can be interpreted as the linearized differential of the
forces on the unconstrained nodes resulting from a displacement by
∂XC/∂bi of only the boundary conditions.

Both equations (5) and (6) require solving a linear system with the
coefficient matrix−∂ f/∂xU which is the same coefficient matrix
used in section 4, and thus the same solution techniques can be ap-
plied. Moreover, the coefficient matrix is symmetric positive def-
inite near an equilibrium configuration, and thus special treatment
is required only for element inversion (not definiteness). The Jaco-
bians need to be computed before each Gauss-Newton step amount-
ing to 44 applications of the conjugate gradient solver (for 32 acti-
vations and 12 kinematics parameters). In a sequence of expression
tracking, an excellent initial guess to the conjugate gradient solver
consists of using the Jacobians from the previous frame rotated ac-
cording to the cranium motion. In fact, this allows us to update

all the Jacobians at a cost approximately equal to that of a single
quasistatic solve.

7 Muscle Activation Constraints

In order to restrict the optimization process to the allowable pa-
rameter setC0, we augmentφ̂(c) with a weighted penalty term
ρφp(c) which consists of piecewise quadratic penalty terms of the
form (min{0,ai ,1−ai})2 for each activation. TheseC2 continu-
ous functions vanish within the allowable parameter spaceC0, and
penalize the optimization functional when the control parameters
drift away fromC0. We typically initializeρ with a value that is
smaller thanφ(copt) (for example the variance of the localization er-
ror of the motion capture system), and then progressively increase
its value in multiplicative increments of 5% until it is 106 times
larger than the current value ofφ(c). This drives the activations to
within a maximum distance of 10−4 of the allowed interval[0,1].
At the maximum value ofρ, the contribution ofρφp(c) to the over-
all optimization functional is typically on the order of.1% implying
that our minimization effort is properly focused on the constrained
minimum of the proximity errorφ(c).

In each step of the Gauss-Newton approach, we replaceφ(c)
with φ̂(c) and apply the standard Newton approach to obtain
−H

φ̂
(ck)δc= ∇φ̂(ck) or−2JT

k Jkδc= ∇φ̂(ck). In our penalty term

formulation,ck+1 is obtained as the limit of the solutionsci
k to a

nestedsequence of unconstrained optimization problems minimiz-
ing φ̂(c)+ ρiφp(c) for an increasing procession of weightsρi , i.e.
ck+1 = cN

k where the maximumρ is ρN. Each step of this nested
iteration is given by

−
(

2JT
k Jk +ρi ∂

2
φp/∂c2

∣∣∣
ci

k

)
δci = ∇φ̂(ci

k)+ρi∇φp(ci
k) (7)

whereδci = ci+1
k −ci

k. Note that all derivatives ofφp can be com-
puted analytically, Each iteration involves the solution of alow di-
mensional system (32 dimensions for the activations, but 56 total
when the 24 kinematics parameters are included as outlined in sec-
tion 8), and thus the overall computational cost is practically negli-
gible.

8 Kinematics and Jaw Articulation

The kinematic parameters determine the placement of the cranium
and mandible, and thus the position of specific mesh nodes of the
interior flesh surface that have been rigidly attached to these bones.
The frame of reference for the cranium determines the position and
orientation of the entire head, while the frame of reference of the
jaw is specified relative to the cranium and is subject to anatomical
constraints that limit its relative placement and degrees of freedom.



Figure 6: The mandible rotates around an axis (dashed red line)
whose endpoints are allowed to move asymmetrically along two
parallel segments (yellow lines) at the sides of the cranium.

In order to define each frame of reference, a displacement vector
for the origin of each system must be supplied together with a de-
scriptor of the orientation. Typical descriptions of orientation are
poor choices for our optimization framework, since equation (3) in-
dicates that we need to linearize the quasistatic configuration with
respect to the control parameters. Large linearized rotations induce
significant erroneous nonrigid distortion leading to a poor approx-
imation of the rotation slowing convergence of the Gauss-Newton
iteration especially for a remote initial guess. Thus, we propose an
atypical penalty term formulation.

We begin by describing the rigid body frame by a generalaffine
transform, i.e. the frames that describe the cranium and mandible
are (Mc, tc) and (Mm, tm) whereM is any matrix (not necessar-
ily orthogonal) andt is a translation. Then the vector of kine-
matic controls,b, consists of the 24 coefficients specifying these
two affine transforms. Under this parameterization the mapping
from the coefficients of the global frame of reference(Mc, tc) to
the positions ofall nodes in the flesh mesh islinear, when the ma-
trix Mc is restricted to the set of rotation matrices. This implies
that the linearization of equation (3) can capture exactly all rigid
body transformations of the landmarks without any geometric dis-
tortion. Orthogonality ofMc andMm (implying rigidity of the cor-
responding linear transform) can be enforced using the penalty term
φrigid(M) = ‖MTM − I‖2

F with F representing the Frobenius norm.
Note that this does not penalize the rotation, since a polar decom-
position ofM = QS into a rotation plus a symmetric matrix yields
MTM = STQTQS= STSwhich removes the rotation. Thus it only
penalizes the symmetric nonrigid deformation to be the identity ma-
trix, thus removing it. Under the progressive stiffening schedule
for ρ described in section 7, this penalty term keeps the singular
values of the affine matrices within 10−5 of unity. In order to en-
sure convexity of this penalty term we should project its Hessian to
its positive definite component either through explicit eigenanalysis
or through the process proposed in [Teran et al. 2005a]. Further-
more, we only need to solve equation (6) for the jaw, as the partial
derivative of the quasistatic positions with respect to a component
of the cranium affine transform can be analytically computed as
∂X j/∂bi = (∂Mc/∂bi)X j +∂ tc/∂bi for the quasistatic position of
anynodeX j assuming orthogonality ofMc.

We model the joint between the cranium and the mandible by a
three degree of freedom articulation system as depicted in figure 6.
During opening of the mouth, the lower jaw rotates around a hor-

izontal axis passing through the mandibular condyles, which are
located at the rear extreme of the jawbone and are free to slide a
short distance along the temporal bone of the cranium. We model
the allowable trajectories of the condyles with two parallel line seg-
ments. The condyles can slide symmetrically or asymmetrically
along their designated tracks; the latter effectively results in ro-
tation of the mandible about a vertical axis. We formalize these
constraints by requiring the horizontal axis of rotation to always lie
on the plane defined by the two sliding tracks and restricting the
midpoint of the two condyles to positions on that plane that are
equidistant from the two side tracks.

To provide algebraic descriptions for these anatomical constraints,
we equip the jaw with three characteristic normalized vectors defin-
ing the geometry of the temperomandibular joint in its rest con-
figuration (fully closed with horizontally aligned dentures). In the
reference frame of the cranium,u points from the right to the left
condyle,v is parallel to the sliding tracks of the condyles directed
from back to front, andw = v×u. Labeling the initial location of
the midpoint of the two condyles asm, the algebraic constraints for
anatomical validity are

ψ1(Mm, tm) = wTMmu = 0

ψ2(Mm, tm) = wT (Mmm+ tm−m) = 0

ψ3(Mm, tm) = uT (Mmm+ tm−m) = 0

ψ4(Mm, tm) = vT [Mm (m− (l/2)u)+ tm−m] ∈ [0,d]

ψ5(Mm, tm) = vT [Mm (m+(l/2)u)+ tm−m] ∈ [0,d]

ψ6(Mm, tm) = wTMmv ∈ [−s,0]

wherel is the distance between the two condyles,d is the length of
the sliding tracks, ands is the sine of the maximum opening angle of
the mouth.ψ1 forces the horizontal rotation axis to be parallel to the
plane of the sliding tracks,ψ2 forces the midpoint to reside on the
same plane, andψ3 forces it to be equidistant from the two sliding
tracks. The additional constraints keep the three remaining degrees
of freedom within their allowable range.ψ4 andψ5 constrain the
left and right condyle on their sliding tracks, andψ6 regulates the
opening angle. Finally, the kinematic validity penalty term is

φkin(b) = φrigid(Mc)+φrigid(Mm)

+ψ
2
1 +ψ

2
2 +ψ

2
3 +min{0,ψ4,d−ψ4}2

+min{0,ψ5,d−ψ5}2 +min{0,−ψ6,s+ψ6}2

noting that all the piecewise quadratic terms based onψ1 to ψ6 are
convex functions, and therefore no adjustment of their Hessian is
necessary. All the terms inφkin are included inφp and handled as
in section 7.

9 Examples

We evaluate our system by estimating muscle activations and kine-
matic parameters from a set of test motion capture sequences.
These include a 33 second long narration sequence (figure 5) and
several individual examples of pronounced expressions typically 2-
3 seconds long (figure 4), which can be compared with expressions
obtained by manual specification of muscle activation levels (see
figure 3). Our single mocap session used 79 markers, and we fo-
cused them on mouth and jaw movement as opposed to the forehead
and eyes. The motion capture input was processed at a frame rate
of 60 frames per second. With the possible exception of the first
frame of each capture sequence, we typically used a single Gauss-
Newton step followed by a golden section line search for estimating
the muscle activations and kinematic parameters at each subsequent
frame. The average processing time for our simulation model of



Figure 7: Outliers of noisy motion capture markers are handled
robustly without incurring spurious local deformation. An enlarged
view of a poor quality captured marker (colored red) is shown to
the right of each figure.

370K tetrahedral elements and 32 transversely isotropic muscles
was 8 minutes per frame on a single Xeon 3.06Ghz CPU, which in-
cludes 10 quasistatic solves for the chosen search depth of the line
search with full collision handling in addition to 44 linear solves
for the update of the control jacobians by application of equations
(5) and (6). Using linear interpolation for the initial guess given to
the quasistatic solver during each golden section search refinement
and using the transform of the global frame of reference to precon-
dition the initial guesses for both the quasistatic positions and their
jacobians proved to be the most important performance optimiza-
tions. The cost of computing the Gauss-Newton step itself, once
the linearization of equation (3) had been updated, was less than
one second per frame.

Between successive frames, the activations can change by as much
as 20%-40% and the kinematics can experience rotations of 3-4
degrees for both the global frame of reference and that for the jaw.
We stress that our approach is trivially parallelizable, as a result of
our quasistatic formulation. At the expense of estimating the first of
a sequence of expressions from a suboptimal guess (which typically
requires 3-5 Gauss-Newton iterations), processing a long sequence
of motion capture frames can be partitioned arbitrarily.

An important aspect of our approach is that the search for the op-
timal match for the motion capture markers is performed over the
space of physically attainable configurations, as parameterized by
the muscle activations. This results in robust handling of noisy in-
put data or motion outliers as illustrated in figure 7, since their non-
physical component is discarded through the optimization process.
Free form deformation and shape based animation schemes do not
exhibit this property, and unfiltered motion outliers incur nonphys-
ical localized deformation.

Once the muscle activations and kinematic parameters for an input
sequence have been computed, we can address a number of post-
processing tasks using the extracted, physically based animation
parameters. Interpolation between expressions can be performed
in the muscle activation space with an automatic guarantee that the

Figure 8: Accentuated expressions created by scaling of the force-
length curve (unscaled, doubled and quadrupled from left to right).

interpolated expressions are physically valid and attainable (figure
10). Furthermore, an expression can be exaggerated or deempha-
sized by multiplying the muscle activations by a scaling factor, and
clamping the result within the valid activation range[0,1]. One can
also exaggerate an expression (or sequence) beyond the physically
attainable limits. It would be inadvisable to do so by extending the
activation values beyond 1, since the force-length relationship is
undefined for such values and heuristic extrapolations can be prob-
lematic. Instead, we scale the entire force-length curve effectively
scaling the overall anisotropic behavior of the muscle while still
maintaining plausible behavior as the muscle activation varies over
the interval[0,1] (see figure 8). The same effect would be difficult
to achieve using blending techniques as pointed out in [Zhang et al.
2004].
Our estimation process is based on a quasistatic simulation of the
face which disregards inertial phenomena. The quasistatic hypoth-
esis is consistent with the empirical fact that humans tend to avoid
sudden ballistic motion of their head (e.g. this is how boxers knock
each other out). When we compared our quasistatic simulation to
a fully dynamic one using biologically realistic material parame-
ters and the estimated activations and kinematic controls, the dif-
ferences were unnoticeable. We had to loosen up the material para-
meters to get noticeable ballistic effects, e.g. softening the cartilage
in the nose (as shown in the accompanying video). Even for highly
dynamic motion such as a person jogging, one could still capture
the actor’s performance quasistatically and add the dynamics as a
post process. Finally, external elements can be introduced into a
quasistatic or dynamic simulation that uses the extracted parame-
ters. For example, figure 9 illustrates a quasistatic simulation of the
face interacting with a kinematic sphere.

Figure 9: Interaction of the face with an external colliding object.



Figure 10: Interpolation between two motion captured expressions in the space of activations and rigid body kinematics.

10 Conclusions and Future Work

We have presented an anatomically accurate face model controlled
by muscle activations and kinematic bone degrees of freedom. A
novel algorithm was developed to automatically compute control
values that track sparse motion capture marker input. Once the
controls are reconstructed, the model can be subjected to interac-
tion with external objects, used in a dynamic simulation to capture
ballistic motion, expressions can be edited in the activation space
by combining multiple existing segments or making manual adjust-
ments, etc. We are currently building an even more accurate face
model from a more powerful MRI scanner and a laser scan of a
highly detailed cast of the face. We are also working to obtain im-
proved motion capture data including data for the forehead and eye
region, as well as more detailed mouth and lip tracking (placing
markerson the lips as opposed to only around them). An obvious
extension would be to generalize the control estimation framework
to accept markerless input data. In fact, we are currently undertak-
ing a project that determines the muscle activations associated with
the articulation of phonemes, and this will require more detailed lip
motion and muscle data.

There are many application areas that we can now address includ-
ing, for example, the ability to learn patient-specific muscle acti-
vations that can be used to predict the effect that surgical modifi-
cations will have on expression. A natural but highly promising
research direction would be to estimate not just the controls, but
also the model parameters including bone and flesh structure, ma-
terial constitutive parameters, muscle locations and shapes in the
rest state, etc. This would allow us to correct anatomical modeling
errors and make the model more predictive in a data driven fashion.
Finally, it would be interesting to analyze a large number of facial
expressions, for example deriving correlations between muscle ac-
tivations. In this vein, we are also working on validating our muscle
activation results using electromyography.
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