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SOME NEW EQUILATERAL TRIANGLES IN A PLANE GEOMETRY

DAO THANH OAI

ABSTRACT. In this paper, we give some equilateral triangles in plane ge-
ometry. Some equilateral triangles constructed from its reference trian-
gles. In these ones, some equilateral triangles are homothetic to the Mor-
ley triangles, some equilateral triangles are homothetic to the Napoleon
triangles, and some equilateral triangles are not homothetic to any kown
triangle. Furthermore we give an equilateral triangle is the converse of
L. Bankoff, P. Erds and M. Klamkins theorem. We give a closed chain of
six equilateral triangle. We also introduce to the Yius equilateral triangle
and Yius triple points.

1. INTRODUCTION

In plane geometry, there are several famous equilateral triangles which
are constructed from its reference triangle.

An equilateral triangle constructed from a reference triangles is a topic
which is intersested by plane geometry lovers. There are many results from
this topic. For example, the Napoleon theorem is famous classic theorem
in the plane geometry. There are several generalizations of the Napoleon
theorem. For example, the Kiepert’s theorem [1], the Jacobi’s theorem [2],
PetrDouglasNeuman theorem [3], Napoleon-Barlotti theorem [4]. There are
many articles around these results, you can see in [5], [6], [7]. These theo-
rems are also continuing creative inspiration for some results [8], [10]. The
Morley equilateral triangle is also the famous nice theorem in plane geom-
etry. There are over 100 references around the Morley theorem [11]....Vi-
viani’s theorem, Pompeiu’s theorem are also theorems around equilateral
triangle.

There are some classical equilateral triangles with respect to some trian-
gle centers as the Napoleon equilateral triangles and the Napoleon points,
the Morley equilateral triangles and the Morley points, equilateral pedal
triangle and the isodynamic points, and Fermat points. There are some re-
cent equilateral triangles with respect to some triangle centers as Stammler
equilateral triangles, equilateral cevian triangle and equilateral cevian tri-
angle point. Recently, I discover about 40 new equilateral triangles which
are perspective to its reference triangle, you can see in [12], [13].
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We give some equilateral triangles in plane geometry. Some equilateral
triangles constructed from its reference triangles. In these ones, some equi-
lateral triangles are homothetic to the Morley triangles, some equilateral
triangles are homothetic to the Napoleon triangles, and some equilateral
triangles are not homothetic to any kown triangle. Furthermore we give an
equilateral triangle is the converse of L. Bankoff, P. Erds and M. Klamkins
theorem. We give a closed chain of six equilateral triangle. We also intro-
duce to the Yius equilateral triangle and Yius triple points.

2. A GENERALIZATION OF THE NAPOLEON THEOREM
ASSOCIATED WITH THE KIEPERT HYPERBOLA AND THE

KIEPERT TRIANGLE

In this part we introduce a family equilateral triangle associated with a
Kiepert triangle and give a proof of the family equilatarl triangle associated
with the Kiepert hyperbola.

Theorem 2.1. Let ABC be a triangle with H is the orthocenter. Let A1, B1,
C1 be chosen on rays AH, BH, CH (or rays HA, HB, HC) respectively so that
AA1 = BC

√
3

3 , BB1 = CA
√

3
3 , CC1 = AB

√
3

3 , then 4A1B1C1 is an equilateral
triangle.

The Theorem 2.1 was found by me since June 2013, you can see in [14],
this theorem was independently discovered by Dimitris Vartziotis [15]. The-
orem 2.1 is also a special case of Theorem 2.2 as follows:

FIGURE 1. Theorem 2.2

Theorem 2.2 ( [10]). Let 4ABC be a triangle, constructed three isosceles simi-
lar triangle BA0C, CB0A, AC0B with base angles are α, either all outward or all
inward. Let points A1, B1, C1 be chosen on rays AA0, BB0, CC0 so that:

AA1

AA0
=

BB1

BB0
=

CC1

CC0
=

2
3−
√

3 tan α
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Or
AA1

AA0
=

BB1

BB0
=

CC1

CC0
=

2
3 +
√

3 tan α
Then A1B1C1 is an equilateral triangle (Figure 1).

Let α = 300, Theorem 2.2 is the Napoleon theorem.

Theorem 2.3 ( [16]). Let ABC be a triangle with F is the first (or second) Fermat
point, let K be arbitrary point on the Kiepert hyperbola. Let P be arbitrary point
on line FK. The line through P and perpendicular to BC meet AK at A0. Define
B0, C0 cyclically, then A0B0C0 is an equilateral triangle.

FIGURE 2. Theorem 2.3

Noted that the first Fermat point, the circumcenter, the fisrt Napoleon
point are collinear; the second Fermat point, the circumcenter, the sec-
ond Napoleon point are collinear [17] so if we let K is the first (or second)
Napoleon point and P is the circumcenter, then equilateral triangle A0B0C0
in Theorem 2.3 is the outer (or inner) Napoleon triangle.

We used Lemma 2.4 and Lemma 2.5 as follows to prove Theorem 3.

Lemma 2.4. Let A, B, C, D, E be on a rectangular hyperbola, three lines through
D and perpendicular to EA, EB, EC meet BC, AC, AB at A′, B′, C′ respectively.
Then A′, B′, C′ are collinear, and line A′B′C′ perpendicular to DE.

You can see a proof of Lemma 2.4 using Cartesian coordinates system
in [18], You can see many synthetic proofs of Lemma 2.4 in [19].

We omit the proof of the following easy Lemma:

Lemma 2.5. Let ABC be a triangle, P be a point in the plane, A′ be a point on
AP. Let two lines through A′ and parallel to AB, AC meet PB, PC at B′, C′
respectively, then B′C′ parallel to BC.

Let three lines through F perpendicular to AB, AK, AC that meet KC,
CB, BK at three points B′, C′, K′a respectively. Since B, K, C, F, A lie on
Kiepert hyperbola, so by Lemma 2.4 we have AF perpendicular to B′C′.
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FIGURE 3. Applying Lemma 2.4 and Lemma 2.5 to prove
Theorem 2.3

In triangle FC′B′ and point K, P lie on FK and PC0 ‖ FC′, PB0 ‖ FB′,
by Lemma 2.5 we get B0C0 ‖ B′C′, so B0C0 ⊥ AF. Similarly we have
C0A0 ⊥ BF and A0B0 ⊥ CF. On the other hand, we known that ∠AFB =
∠BFC = ∠CFA = 2π

3 . Therefore A0B0C0 is the equilateral triangle.
You can see a synthetic proof of Theorem 4 by Telv Cohl in [20].
We give some special case of Theorem 2.3 as follows:

Corollary 2.1 ( [21]). Let ABC be a triangle with F be the first (or the second)
Fermat point, I be the first (or the second) Isodynamic point. Let P be a point on
the line FI. Three line through P and perpendicular to BC meets the line AF at
A0, define B0, C0 cyclically. Then A0B0C0 is an equilateral triangle

FIGURE 4. Corollary 2.1

Proof. We have FI parallel to the Euler line [22]. The circle through the
two Fermat points and the centroid tangent to the Euler line at the cen-
troid (Proposition 4, [23]). Two Fermat points and the centroid lie on the
Kiepert hyperbola [24]. Then the line FI tangent to the Kiepert hyperbola
at F (Lemma 1, [25]). Applying Theorem 2.3 with K ≡ F we have A0B0C0
is the equilateral triangle. �

We omit the proof of the following special case of Theorem 2.3:
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Corollary 2.2. Let ABC be a triangle, F be the the first (or the second) Fermat
point, K be the point on the Kiepert hyperbola. Three lines through F perpendicular
to BC, CA, AB meet AK, BK, CK at three points A0, B0, C0 respectively, then
A0B0C0 is an equilateral triangle

Corollary 2.3. Let ABC be a triangle, F+, F− be the First and the second Fermat
points, P be arbitrary point lies on F+F−. The line through P perpendicular to BC
meets AF+, AF− at A+, A− respectively; define B+, B−, C+, C− cyclically, then
A+B+C+ and A−B−C− are two equilateral triangles.

3. A CHAIN OF SIX EQUILATERAL TRIANGLES

In this part, around a triangle ABC, we construct six equilateral trian-
gles and use this configuration and complex numbers, we generalize and
investigate famous theorems such as Fermat-Torricelli, Napoleon.

Consider ABC be a triangle, we take an arbitrary point D on the plane of ABC.
If the triangle DAC is not equilateral then we construct five equilateral triangles
ADE,4BEF,4CFG,4AGH,4BHJ with the same orientation.

Without loss of generality, in this paper we assume that the triangle ABC
with negative orientation and fives equilateral triangles ADE, 4BEF, 4CFG,
4AGH,4BHJ with the positive orientation

We will prove that the remaining sixth triangle CJD is also equilateral
with positive orientation. Let ε be the complex cube root of unity that ro-
tates by an angle of 2π

3 then ε3 = 1 and 1+ ε+ ε2 = 0. We use the following
useful lemma to prove all properties in this article.

Lemma 3.1. If a, b, c are the complex affixes of the vertices of triangle ABC then
ABC is equilateral with positive orientation if and only if a + bε + cε2 = 0 and
ABC is equilateral with negative orientation if and only if a + bε2 + cε = 0.

You can see the proof of Lemma 3.1 in [8].

FIGURE 5. Theorem 3.2
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• In this configuration, if D ≡ B or D ≡ C we get the FermatTorricelli
point theorem and Napoleon theorem configuration.

We give some properties of this configuration and its proof by complex
number from Theorem 3.2 to Theorem 3.3.

Theorem 3.2.
1. The triangle 4CJD is an equilateral with the same orientation as triangle

ADE.
2. Three triangles4ABC,4DHF,4EJG have the same centroids

Proof. We prove this theorem by using complex number coordinates of the
points. Suppose the Figure 5 is in the complex plane. Each of the vertices
A, B, C, D, E, F, G, H, J has a complex affix a, b, c, d, e, f , g, h, j.
• Proof. Let K be a point such that the triangle CJK be an equilateral

triangle with the same orientation ADE. We have:
e = −dε− aε2

f = −eε− bε2 = dε2 + a− bε2

g = − f ε− cε2 = −dε3 − aε + bε3 − cε3 = −d− aε + b− cε2

h = −gε− aε2 = dε + aε2 − bε + cε3 − aε2 = dε− bε + c
j = −hε− bε2 = −dε2 + bε2 − cε− bε2 = −dε2 − cε
k = −jε− cε2 = dε3 + cε2 − cε2 = dε3 = d
Therefore K ≡ D
•We have d + h + f = d + dε− bε + c + dε2 + a− bε2

= d(1 + ε + ε2) + a + (−bε − bε2) + c = a + b + c therefore two triangle
4ABC, 4DFH have the same centroids. Similarly two triangle 4ABC,
4EJG have the same centroids �

Theorem 3.3. (A generalization of the Napoleon theorem) The centroids of three
triangles as follows form an equilateral triangle.

-4BJC,4CGA,4AEB
-4BCF,4CAD,4ABH
-4DJH,4HGF,4FED
-4DHA,4HFB,4FDC
-4GFE,4EDJ,4JHG
-4GEA,4EJB,4JGC

Proof. The proof of the centroids of three triangles 4BCF, 4CAD, 4ABH
form an equilateral triangle.

(b + c + f ) + (c + a + d)ε + (a + b + h)ε2

= b + bε2 + c + cε + aε + aε2 + f + dε + hε2

= −bε− cε2 − a + f + dε + hε2

= −bε + dε− cε2 + hε2 − a + f
= e + f ε2 − e− aε2 + g + f ε− g− aε− a + f
= f (1 + ε + ε2)− a(1 + ε + ε2) = 0

Therefore the centroids of three triangles 4BCF, 4CAD, 4ABH form
an equilateral triangle.

By the symmetry of 4ABC, 4JGE, 4FDH in this configuration so the
centroids of three triangles as follows form an equilateral triangle:

-4BJC,4CGA,4AEB
-4DJH,4HGF,4FED
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FIGURE 6. Theorem 3.3

-4DHA,4HFB,4FDC
-4GFE,4EDJ,4JHG
-4GEA,4EJB,4JGC

�

Theorem 3.4. (A generalization of the Napoleon theorem) The centroids of three
equilateral triangles as follows form an equilateral triangle.

-4AED,4BJH,4CGF
-4AHG,4BFE,4CDJ

FIGURE 7. Theorem 3.4

Proof. The proof of the centroids of three triangles 4AED, 4BJH, 4CGF
form an equilateral triangle.

(a + e + d) + (b + j + h)ε + (c + g + f )ε2

= a + bε + cε2 + e + jε + gε2 + d + hε + f ε2

= a− (e + f ε2) + cε2 + e− (d + cε2) + gε2 + d− (a + gε2) + f ε2 = 0
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Therefore the centroids of three triangles4AED,4BJH,4CGF form an
equilateral triangle.

By the symmetry of 4ABC, 4JGE, 4FDH in this configuration so the
centroids of three triangles 4AHG, 4BFE, 4CDJ form an equilateral tri-
angle. �

Theorem 3.5. (see Figure 8).
1. The first Fermat points of three triangle 4ADH, 4BHF, 4CFD form an

equilateral triangle.
2. The first Fermat points of three triangle 4ADC, 4HAB, 4FBC form an

equilateral triangle.

FIGURE 8. Theorem 3.5

Proof. First we prove that AJ, BG, CF form an equilateral triangle. Two
equilateral triangles 4BJH and HGA construct on the sidelines of the tri-
angle 4BHA so by Fermat point theorem we have angle of AJ and BG
equal to 600. Similarly, two equilateral triangles4AED and DCJ construct
on the sidelines of the triangle4ADC so by Fermat point theorem we have
that angle of AJ and CF equals to 600. Therefore three lines AJ, BG, CF form
an equilateral triangle. But we easily can deduce that in triangle BHF then
X13 of4BHF lie on FJ, and in triangle4CFD then X13 of4BHF lie on FJ.

�

4. AN EQUILATERAL TRIANGLE ASSOCIATED WITH
ISOSCELES TRAPEZOID ATTACHED TO SIDES OF A

TRIANGLE

Theorem 4.1. Let ABC be a triangle, construct three arbitrary isosceles trape-
zoids ABGJ, BCLT, CAHK with angle of their diagonals is 600. Then the cen-
troids of4HAJ,4GBT,4LCK form an equilateral triangle.
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FIGURE 9. Theorem 4.1

Proof. Let D = AG ∩ BJ, F = BL ∩ CT, E = CH ∩ AK. We prove this
theorem by using complex number coordinates of the points. Suppose that
the Figure 9 is in the complex plane. Each of the vertices A, B, C, D, E, F,
M, O, N, H, K, L, T, G, J has a complex affix a, b, c, d, e, f , m, o, n, h, k, l, t,
g, j.

3(m + nε + oε2) = (a + h + j) + (b + g + t)ε + (c + l + k)ε2

= a + bε + cε2 + (j + gε) + (tε + lε2) + (h + kε2)
= a + bε + cε2 − dε2 − f − eε
= a + bε + cε2 + (b + aε) + (cε + bε2) + (c + aε2)
= a + aε + aε2 + b + bε + bε2 + cε + cε2

= a(1 + ε + ε2) + b(1 + ε + ε2) + c(1 + ε + ε2) = 0
Therefore4MNP is the equilateral triangle �

If we let ABGJ, BCLT, CAHK be three rectangles with the angle of their
diagonals is 600, either all outward or all inward, the Theorem 4.1 is the
Theorem 2.1.

5. TWO EQUILATERAL TRIANGLE ASSOCIATED WITH THE
FERMAT POINTS

Theorem 5.1. Let ABC be a triangle, Let F be the first (or the second) Fermat
points. The line through F and parallel to BC meets circles (AFB), (AFC) again
at Ac, Ab respectively. Define Bc, Ba, Ca, Cb cyclically. Let A′ = Cb Ab ∩ AcBc,
B′ = BaCa ∩ AcBc, C′ = BaCa ∩ Cb Ab then

1. A′B′C′ is an equilateral triangle.
2. Two triangle A′B′C′ and ABC are perspective.

Proof. By properties of inscribed angle and two parallel line, We have∠CaPC =
∠CaBC, ∠AcPA = ∠ABAc and ∠AcPCa = ∠CBA so ∠CaBAc = ∠CaBC +
∠CBA +∠ABAc = ∠CaBC +∠AcPCa +∠AcPA = ∠APC.

By the Miquel’s theorem we have three circles (B′Ca Ac), (CaBaP), (PBc Ac)
have common point B so ∠C′B′A′ = ∠CaB′Ac = 1800 −∠CaBAc = 1800 −
∠APC = 600.
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FIGURE 10. Theorem 5.1

By the Miquel theorem we have (A′BcPCb) so applying Law of sines we
have

sin∠Bc A′A
sin∠AA′Cb

=
ABc

ACb
=

sin∠B′A′A
sin∠AA′C′

By Law of sine, we have

ABc

sin∠APBc
=

AP
sin∠PBc A

so

ABc = AP
sin∠APBc

sin∠PBc A
; ACb = AP

sin∠CbPA
sin∠ACbP

Thus

ABc

ACb
=

sin∠APBc

sin∠PBc A
sin∠ACbP
sin∠CbPA

;
BCa

BAc
=

sin∠BPCa

sin∠PCaB
sin∠BAcP
sin∠AcPB

and

CAb

CBa
=

sin∠CPAb

sin∠PAbC
sin∠CBaP
sin∠BaPC

On the other hand we have∠APBc = ∠PAC = ∠PAbC; similarly∠ACbP =
∠BaPC, ∠BPCa = ∠PBc A, ∠BAcP = ∠CbPA, ∠CPAb = ∠PCaB, ∠CBaP =
∠AcPB therefore

sin∠B′A′A
sin∠AA′C′

sin∠A′C′A
sin∠ACB′

sin∠C′B′A
sin∠AB′A′

=
ABc

ACb

CAb

CBa

BCa

BAc

=
sin∠APBc

sin∠PBc A
sin∠ACbP
sin∠CbPA

sin∠BPCa

sin∠PCaB
sin∠BAcP
sin∠AcPB

sin∠CPAb

sin∠PAbC
sin∠CBaP
sin∠BaPC

= 1

By the converse of Cevas theorem, we conclude that the lines AA′, BB′,
CC′ are concurrent. The perspector of A′B′C′ and ABC is X(16247) in [9].

�
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Remarks: Two triangles A′B′C′ and ABC are perspective with arbitrary point
P in the plane of4ABC.

6. YIU’S EQUILATERAL TRIANGLES-YIU’S TRIPLE POINTS

In May, 2014, Professor Paul Yiu sent to me a very nice equilateral trian-
gle via email as follows. I have no proof for the result and I am looking for
a proof from reader.

Theorem 6.1. Let ABC be a triangle with two Fermat points F1, F2. Circles with
center F1 radius F1F2 meets the Kiepert hyperbola again at three points D, E, F.
Then triangle DEF is equilateral and perspective to ABC at triplet points:

- DA, EB, FC are concurrent, let the point of concurrence be Y1.
- DB, EC, FA are concurrent, let the point of concurrence be Y2.
- DC, EA, FB are concurrent, let the point of concurrence be Y3.
Three points Y1, Y2, Y3 are collinear.

FIGURE 11. Yiu’s equilateral triangle-Yiu’s triple points

Theorem 6.2. Let ABC be a triangle with two Fermat points F1, F2. Circles with
center F2 radius F2F1 meets the Kiepert hyperbola again at three points D, E, F.
Then the triangle DEF is equilateral and perspective to ABC at triplet points

- DA, EB, FC are concurrent, let the point of concurrence be Y1.
- DB, EC, FA are concurrent, let the point of concurrence be Y2.
- DC, EA, FB are concurrent, let the point of concurrence be Y3.
Three points Y1, Y2, Y3 are collinear.

7. EQUILATERAL TRIANGLE ASSOCIATED WITH THE
INCENTER

Theorem 7.1 ( [31]). Let ABC be a triangle with the incenter I, Let points D and
E be chosen on side BC, points F and G on side CA, and points H and K chosen on
side AB so that IDE, IFG, IHK are three equilateral triangles. Let (IKD) meets
(IEF) again at A′; (IEF) meets (IGH) again at B′, (IGH) meets (IKD) again
at C′, then A′B′C′ is an equilateral triangle

The centroid of of 4A′B′C′ is X(16038) in the Encyclopedia of Triangle
Centers. Two triangle ABC and A′B′C′ are perspective, the perspector is
X(3639) [27].
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FIGURE 12. Theorem 7.2

8. AN EQUILATERAL TRIANGLE ASSOCIATED WITH
L.BANKOFF P.ERDS AND M.KLAMKIN’S CONFIGURATION

In this part, we give an equilateral triangle from the converse of L. Bankoff,
P. Erds and M. Klamkin’s theorem.

Theorem 8.1. Let ABCDEF be the hexagon with midpoints of AD, BE, CF form
an equilateral triangle. Construct equilateral triangles4ABM, 4CDP, 4EFN
either all outward (Figure 13). Then4MNP is an equilateral triangle.

A

B

C

DE

F

M

N P

FIGURE 13. Theorem 8.1

This is the converse of L. Bankoff, P. Erds and M. Klamkin’s theorem [28].
When AF, BE, CF have the same midpoint, Theorem 8.1 is a generalization
of Problem 4167 in the Crux Mathematicorum [29]. Note that the problem
4167 is also a generalization of the famous Thebault’s problem II and the
Napoleon theorem.

Proof. We prove this theorem by using complex number coordinates of the
points. Suppose the Figure 16 is in the complex plane. Each of the vertices
A, B, C, D, E, F, M, N, P has a complex affix a, b, c, d, e, f , m, n, p.

By Lemma 9, midpoints of AD, BE, CF form an equilateral triangle, so:
c+ f

2 + a+d
2 ε + b+e

2 ε2 = 0
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m + nε + pε2 = −aε− bε2 − (eε + f ε2)ε− (cε + dε2)ε2

= −aε− bε2 − eε2 − f ε3 − cε3 − dε4

= − f − c− aε− dε− bε2 − eε2 = −2
(

c+ f
2 + a+d

2 ε + b+e
2 ε2

)
= 0 therefore

4MNP is the equilateral triangle.
�

9. SOME EQUILATERAL TRIANGLES ASSOCIATED WITH SOME
GROUP CIRCLES

In this part, we first given two construction of a group cyclic hexagon
which the vertices belong to three sidelines of a triangle. A special case, we
give two family equilateral triangles homothetic to the Morley triangle.

Theorem 9.1. Let ABC be a triangle, let points D, G be chosen on side AB, points
I, F be chosen on side BC, points E, H be chosen on side CA such that:

∠EDA = kA + lB + (1− k− l)C
∠FEC = (1− l)A + (k + l)B− kC
∠GFB = (1− k− l)A + kB + lC
∠HGA = −kA + (1− l)B + (k + l)C
∠IHC = lA + (1− k− l)B + kC

Then six points D, E, F, G, H, I lie on a circle and ∠DIB = (k + l)A− kB +
(1− l)C

FIGURE 14. Theorem 9.1

Let k = 0, l = 1 the circle above is the Tucker circle of ABC.

Proof. We have ∠EFG = π − ∠CFE − ∠GFB = π − (π − ∠FEC − C) −
∠GFB = C + ∠FEC − ∠GFB = C + (1− l)A + (k + l)B − kC − (1− k −
l)A− kB− lC = C + A− lA + kB + lB− kC − A + kA + lA− kB− lC =
kA + lB + (1− k− l)C = ∠EDG, so GEFD is a cyclic quadrilateral.

We have ∠FGH = π − ∠BGF − ∠HGA = π − (π − ∠GFB − B) −
∠HGA = B +∠GFB−∠HGA = B + (1− k− l)A + kB + lC + kA− (1−
l)B− (k + l)C = B + A− kA− lA + kB + lC + kA− B + lB− kC − lC =
(1− l)A + (k + l)B− kC = ∠FEC, so ∠FGH +∠HEF = ∠FEC +∠HEF =
π, so GHEF is a cyclic quadrilateral.
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We have ∠GHI = π − ∠AHG − ∠IHC = π − (π − A − ∠HGA) −
∠IHC = A + ∠HGA − ∠IHC = A − kA + (1 − l)B + (k + l)C − lA −
(1− k− l)B− kC = (1− k− l)A + kB + lC = ∠GFB = ∠GFI, so GHFI is
a cyclic quadrilateral.

There exists one and only one circle passing through three no-collinear
points. So the circle (GEFD) (call it by (ω)) is the only circle that passes
through G, E and F. But GHFE is cyclic quadrilateral. So H is also a point
on (ω). (ω) is the only circle that passes through G, H and F. But GHFI is
a cyclic quadrilateral. So I also lies on (ω). Then six points D, E, F, G, H
and I lies on the circle (ω). We easily can show that ∠DIB = (k + l)A−
kB + (1− l)C �

The construction of a group circle in Theorem 9.1 equivalent to the con-
struction in Theorem 9.2 as follows:

Theorem 9.2 ( [31]). Let ABC be a triangle and P be a point in the plane. Three
lines PA, PB, PC meet three circles (BCP), (CAP), (ABP) again at A′, B′, C′
respectively. Let points F, I be chosen on side BC, points H, E be chosen on side
CA, points D, G be chosen on side AB so that DE, EF, FG, GH, HI parallel to
C′A, CA′, A′B, AB′, B′C respectively, then six points D, E, F, G, H, I lie on a
circle and ID parallel to BC′.

FIGURE 15. Theorem 9.2

We omit the proof of Theorem 9.2.

Theorem 9.3. Let ABC be a triangle with angles A, B, C. Let points D and G be
chosen on side AB, points I and F be chosen on side BC, points E and H be chosen
on side CA so that:

∠EDA = 2B
3 + C

3
∠FEC = A

3 + 2B
3

∠GFB = A
3 + 2C

3
∠HGA = B

3 + 2C
3

∠IHC = 2A
3 + B

3
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1. Then six points D, E, F, G, H, I lie on a circle and ∠DIB = 2A
3 + C

3
2. Let HI ∩ FG ≡ A1, DE ∩ HI ≡ B1, FG ∩ DE ≡ C1 then A1B1C1 be an

equilateral triangle. Two triangles A1B1C1 and ABC are perspective.
3. The triangle A1B1C1 and the Morley triangle are homothetic.

FIGURE 16. Theorem 9.3

Proof. 1. We have:

∠EDA = 2B
3 + C

3
∠FEC = A

3 + 2B
3

∠GFB = A
3 + 2C

3
∠HGA = B

3 + 2C
3

∠IHC = 2A
3 + B

3

⇔



∠EDA = 0.A + 2
3 .B + (1− 0− 2

3 )C
∠FEC = (1− 2

3 )A + (0 + 2
3 )B− 0.C

∠GFB = (1− 0− 2
3 )A + 0.B + 2

3 .C
∠HGA = −0.A + (1− 2

3 )B + (0 + 2
3 )C

∠IHC = 2
3 A + (1− 0− 2

3 )B + 0.C
This is one case of theorem 1 with k = 0, l = 2

3 so six points D, E, F, G, H, I
lie on a circle and ∠DIB = 2A

3 + C
3 .

2. We have ∠GHA1 = ∠HGI + A − ∠IHC, ∠A1GH = ∠GFB + B −
∠HGI so ∠B1A1C1 = ∠HA1G = π −∠GHA1 −∠A1GH = π −∠HGA−
A +∠IHC −∠GFB− B +∠HGA = π − A− B +∠IHC −∠GFB = C +
2A
3 + B

3 −
A
3 −

2C
3 = A+B+C

3 = π
3 . Similarly we have∠C1B1A1 = ∠A1C1B1 =

π
3 therefore A1B1C1 be the equilateral triangle.

Applying the Pascal theorem for hexagon DEHIFG then we have DE, I,
FG meet IF, GD, EH at three collinear points. Applying the Desargues’s
theorem we have that A1B1C1 and ABC are perspective.

3. Considering the Morley triangle Ma Mb Mc of4ABC we have∠(Mb Mc, AB) =
− 1

3 (A− B) + π
3 = − A

3 + B
3 + A+B+C

3 = 2B
3 + C

3 = ∠(DE, AB) (see propo-
sition 5, [30]), so B1C1 ‖ Mb Mc . Similarly we have C1A1 ‖ Mc Ma and
A1B1 ‖ Ma Mb. So the triangle A1B1C1 is homothetic to the Morley trian-
gle. �

Notation as Theorem 9.3, let the circle through D, E, F, G, H, I is (Ω) we
have some nice properties in Theorem 9.4.
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Theorem 9.4. Let A′, B′, C′ be the midpoints of arcs D̃E, F̃G, ĤI of (Ω) so that
A′, B′, C′ on the half plane specified by DE, FG, HI not containing (or containing)
A1, B1, C1 respectively, then

1. A′B′C′ is the equilateral triangle.
2. Two triangle ABC and A′B′C′ are perspective (see Figure 17).

FIGURE 17. Theorem 9.4

We omit the proof of the following easy Lemma:

Lemma 9.5. Let A, B, C, D be four points lie on a circle. AD meets BC at T. M
be the midpoint of arc AB then sin∠DTM

sin∠MTC = DM
MC .

FIGURE 18. Lemma 9.5

Proof. Since A1B1C1 be the equilateral triangle. Let O be the center of circle
(DEFGHI), we have ∠A′OB′ = ∠B′OC = ∠C′OA′ = 2π

3 and OA′ =
OB′ = OC′ then A′B′C′ be the equilateral triangle.

Applying Lemma 9.5 we have: sin∠CAA′
sin∠A′AB = HA′

A′G , sin∠ABB′
sin∠B′BC = DB′

B′ I and
sin∠BCC′
sin∠C′CA = FC′

C′E .
Since A′, B′, C′ are the midpoints of arc D̃E, ĤI, F̃G respectively, so A′D =

A′E, B′G = B′F and C′ I = C′H. On the other hand A′B′C′ is the equilateral
triangle then B′D = C′E, A′G = C′F and A′H = B′ I therefore:
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sin∠CAA′

sin∠A′AB
.
sin∠ABB′

sin∠B′BC
.
sin∠BCC′

sin∠C′CA
=

HA′

A′G
.
DB′

B′ I
.
FC′

C′E
= 1

.
By the converse of trigonometric version of Cevas theorem the lines AA′, BB′, CC′

are concurrent. Similarly AA′′, BB′′, CC′′ are concurrent.
�

Remark: 4A′B′C′, 4A′′B′′C′′, 4A1B1C1 are homothetic to the Morley tri-
angle.

Theorem 9.6. Let ABC be a triangle, let two points D, G be chosen on AB, points
I, F be chosen on BC, points E, H be chosen on CA such that: ∠EDA = ∠CFE =
∠GFB = ∠AHG = ∠IHC = ∠IDB = π

3 then six points D, E, F, G, H, I lie
on a circle.

FIGURE 19. Theorem 9.6

Proof. Since ∠CFE = π
3 we have ∠FEC = π − C − π

3 = A + B + C −
A+B+C

3 −C = 2A
3 + 2B

3 −
C
3 . Similarly∠HGA = − A

3 + 2B
3 + 2C

3 . So we have:

∠EDA = π
3

∠FEC = 2A
3 + 2B

3 −
C
3

∠GFB = π
3

∠HGA = − A
3 + 2B

3 + 2C
3

∠IHC = π
3

⇔



∠EDA = 1
3 A + 1

3 B + (1− 1
3 −

1
3 )C

∠FEC = (1− 1
3 )A + ( 1

3 +
1
3 )B− 1

3 C
∠GFB = (1− 1

3 −
1
3 )A + 1

3 B + 1
3 C

∠HGA = − 1
3 A + (1− 1

3 )B + ( 1
3 +

1
3 )C

∠IHC = 1
3 A + (1− 1

3 −
1
3 )B + 1

3 C
This is a case of theorem 1 with k = l = 1

3 therefore six points D, E, F, G,
H, I lie on a circle. �

We also omit the proof of the following Theorem:

Theorem 9.7. Let ABC be a triangle with the first (or the second) Fermat point
F, let points D and G be chosen on side AB, points I and K be chosen on side BC,
points E and H be chosen on side CA so that ∠EDA = ∠GKB = ∠IHC = π

3
and DE, KG, HI through the first (or second) Fermat point (Figure 20).

1. Then six points D, E, K, G, H, I lie on a circle.
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2. Let A′, B′, C′ be the centers of three circles (FHG), (FDI), (FKE) respec-
tively, then A′B′C′ is an equilateral triangle.

3. Two triangle ABC and A′B′C′ are perspective, the perspector is the first (or
the second) Napoleon point.

FIGURE 20. Theorem 9.7
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