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Cell-free DNA (cfDNA) in human plasma is a class of biomarkers with many current and potential future diagnostic ap-

plications. Recent studies have shown that cfDNAmolecules are not randomly fragmented and possess information related

to their tissues of origin. Pathologies causing death of cells from particular tissues result in perturbations in the relative

distribution of DNA from the affected tissues. Such tissue-of-origin analysis is particularly useful in the development

of liquid biopsies for cancer. It is therefore of value to accurately determine the relative contributions of the tissues to

the plasma DNA pool in a simultaneous manner. In this work, we report that in open chromatin regions, cfDNAmolecules

show characteristic fragmentation patterns reflected by sequencing coverage imbalance and differentially phased fragment

end signals. The latter refers to differences in the read densities of sequences corresponding to the orientation of the up-

stream and downstream ends of cfDNA molecules in relation to the reference genome. Such cfDNA fragmentation pat-

terns preferentially occur in tissue-specific open chromatin regions where the corresponding tissues contributed DNA into

the plasma. Quantitative analyses of such signals allow measurement of the relative contributions of various tissues toward

the plasma DNA pool. These findings were validated by plasma DNA sequencing data obtained from pregnant women,

organ transplantation recipients, and cancer patients. Orientation-aware plasma DNA fragmentation analysis therefore

has potential diagnostic applications in noninvasive prenatal testing, organ transplantation monitoring, and cancer

liquid biopsy.

[Supplemental material is available for this article.]

Presence of circulating cell-free DNA (cfDNA) in human plasma
was first reported byMandel andMetais (1948). Later on, discover-
ies of fetal-derived DNA in the plasma of pregnant women (Lo et
al. 1997), donor-derived DNA in transplantation patients (Lo
et al. 1998), and tumor-derived DNA in cancer patients (Stroun
et al. 1989) opened up the door of cfDNA-based noninvasive pre-
natal testing (van Opstal et al. 2017), transplantation monitoring
(Schütz et al. 2017), and cancer liquid biopsies (Chan et al. 2017;
Phallen et al. 2017; Cohen et al. 2018). cfDNA has thus become
a biomarker class that is actively researched globally.

Recent studies had demonstrated the clinical feasibility of
cfDNA analysis for sensitive cancer screening (Chan et al. 2013b,
2017; Cohen et al. 2018). For future development in this field, it
is necessary to develop a robust approach for localizing the site
of the tumor following a positive liquid biopsy test. Exploiting
the differences in DNA methylation patterns between tissues, we
have previously demonstrated that circulating fetal-derived DNA
in maternal plasma originated predominantly from the placenta

(Chim et al. 2005). This work was based on the detection of unme-
thylated SERPINB5 sequences as a placental marker in maternal
plasma (Chim et al. 2005). More recently, a similar approach has
been applied to the detection of cfDNA derived from the brain
(Lehmann-Werman et al. 2016), cells of the erythroid lineage
(Lam et al. 2017), the heart (Zemmour et al. 2018), and the liver
(Gai et al. 2018; Lehmann-Werman et al. 2018).

We have further developed a general DNAmethylation-based
approach for determining the contributions of multiple tissue
types into the cfDNA pool, a method that we have named “plasma
DNA tissuemapping” (Sun et al. 2015). This principlehas also been
utilized to predict the tissue origin of tumors by other researchers
(Kang et al. 2017; Li et al. 2018). These published approaches
used whole-genome bisulfite sequencing (BS-seq) of plasma DNA
(Lister et al. 2008; Lun et al. 2013; Chan et al. 2013a). However,
BS-seq has the disadvantage that bisulfite conversion is associated
with degradation of inputDNA (Grunau et al. 2001) and also intro-
duces GC content changes which may lead to biases in the se-
quencing data (Olova et al. 2018).
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Besides DNA methylation, recent studies demonstrated that
cfDNA molecules retained signatures of their nucleosomal origin,
showing a size distribution with a dominant peak at 166 bp and
a∼10-bp periodicity (Lo et al. 2010). cfDNAhas been shown to car-
ry a nonrandom fragmentation pattern that provides a window
into epigenetic regulation across the genome (Ivanov et al. 2015).
Considering that nucleosome positioning across the genome is
highly related to the cell identity (Radman-Livaja and Rando
2010), such fragmentation patterns thus hold the potential of trac-
ing back the tissue origin of cfDNAmolecules. Snyder et al. (2016)
showed that plasma DNA molecules carried nucleosomal foot-
prints. These authors further constructed a “nucleosome track”
and found that the nucleosome spacing pattern could be used to
infer the tissue originof cfDNA. Theyalso demonstrated the poten-
tial of this approach in predicting the tumor origin in cancer pa-
tients. Ulz et al. (2016) reported that plasma DNA coverage in the
promoters could be used to predict the expression of genes. Our
grouphaddemonstrated the existenceof tissue- and tumor-specific
preferred end sites in cfDNA which showed clinical utility in pre-
dicting the fetal DNA fractions in maternal plasma (Chan et al.
2016; Sun et al. 2018) and tumor load in hepatocellular carcinoma
(HCC) patients (Jiang et al. 2018). Taken together, these proof-of-
principle studies demonstrated the potential clinical applications
of fragmentation pattern analyses in inferring the tissue origin of
cfDNA. However, this field is still in its infancy and further devel-
opments are necessary before clinical implementations. To this
end, we further explored the clinical potential of cfDNA fragmen-
tation patterns in this work. We hypothesized that cfDNA derived
from tissue-specific open chromatin regions would carry informa-
tion that allows one to infer the tissue origin of plasma DNA and
predict the tumor location in cancer patients.

Results

Conceptual framework and nomenclature

Figure 1 shows the conceptual framework of our approach. Figure
1A shows an illustration of nucleosome positioning in the ge-
nome. In eukaryotic chromatin, the nucleosome is the basic unit
for DNA packaging which consists of a DNA segment wrapped
around histone proteins. Nucleosomes are generally connected
to each other by a relatively short linker DNA, except in active reg-
ulatory elements (e.g., open chromatin regions), where nucleo-
somes are evicted and the nearby nucleosomes will be connected
by a much longer stretch of DNA. It is believed that a significant
proportion of cfDNAmolecules are released following cell apopto-
sis (Jahr et al. 2001; Lo et al. 2010). During apoptotic DNA frag-
mentation, it is proposed that endonuclease enzymes prefer
cutting internucleosomal DNA (Fig. 1B; Samejima and Earnshaw
2005; Sun et al. 2018). As a result, when cfDNAmolecules are sub-
jected to sequencing, the DNA wrapped on the histones are pre-
served. On the other hand, DNA originating from the linkers
and open chromatin regions, as they are relatively unprotected,
will be cleaved into small pieces and may not be efficiently se-
quenced (Fig. 1C; Jiang and Pugh 2009; Snyder et al. 2016; Ulz
et al. 2016). Therefore, the genomic coverage of cfDNA would be
high in the nucleosomes, and low in the linkers and open chroma-
tin regions (Fig. 1D). In addition, we took advantage of the orien-
tation information of the cfDNA fragment ends and defined those
ends based on their alignment to the reference genome. Hence, an
upstream (U) end represented one that had a lower value in the ge-
nome coordinate, whereas a downstream (D) end represented one

that had a higher value in the genome coordinate. As a conse-
quence, DNA wrapped on the nucleosomes will result in a pair of
U and D ends at the upstream and downstream borders of the nu-
cleosomes, respectively (Fig. 1E). For the linkers or open chromatin
regions, however, there would be D ends flanking their upstream
boundaries and U ends flanking their downstream boundaries
(Fig. 1E). In this regard, the U and D end signals could be used to
infer the positioning of the nucleosomes, linkers, as well as the
open chromatin regions (Fig. 1F).

Differentially phased cfDNA fragment ends

in a nucleosomal array

To illustrate the above concept in a human genomic region, we
first examined Chr 12p11.1, a region known to have well-
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Figure 1. Conceptual framework of cell-free DNA (cfDNA) fragmenta-
tion analysis. (A) Illustration of nucleosomes with wrapped DNA (yellow
line), linkers (brown line), and open chromatin regions (green line). An ab-
straction of nucleosome positioning and illustration of cutting events (scis-
sors) during apoptosis were also provided. (B) Illustration of cfDNA
generated from apoptotic DNA fragmentation. DNA wrapped around
the nucleosomes is preserved, and that in the linkers and open chromatin
regions will be cleaved into small pieces (gray line) that cannot be se-
quenced efficiently. (C) Illustration of the sequenced reads and extraction
of the ends. Red and blue represent upstream (U) and downstream
(D) fragment ends, respectively. (D) Genomic coverage; (E) U and D end
profiles of cfDNA in relation to the reference genome. (F) Smoothened
cfDNA end signals and deduced nucleosome positioning. Purple, brown,
and green lines represent nucleosomes, linkers, and open chromatin re-
gions, respectively.
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positioned nucleosomes in almost all tissue types (Valouev et al.
2011;Gaffney et al. 2012; Snyder et al. 2016). To do this, we pooled
cfDNA data from 32 healthy nonpregnant subjects generated in a
previous study (Jiang et al. 2015) then profiled the coverage and
fragment ends in this region. As shown in Figure 2A, plasma
DNA coverage showed a strong periodicity pattern of ∼190 bp,
and the regions with higher and lower coverages corresponded
to the nucleosomes and linkers, respectively (Snyder et al. 2016).
The U and D ends showed a similar ∼190-bp periodicity pattern
and both were enriched in the linkers. The U and D end signals
were then smoothened using the locally weighted scatterplot
smoothing (LOWESS) algorithm (Cleveland 1979) for better data
presentation. As shown in Figure 2B, the distance between any U
end peak to its nearest downstream D end peak was ∼170 bp,
which was roughly the size of a nucleosome (Struhl and Segal
2013). The distance between any U end peak to its nearest up-
stream D end peak was ∼20 bp, which was roughly the size of a
linker (Struhl and Segal 2013). The data thus were highly concor-
dant with our conceptual framework (Fig. 1) and showed that dif-
ferentially phased cfDNA fragment ends indeed reflected the
nucleosome positioning in this region (Fig. 2C). Notably, with
the separation of U and D ends, we were able to resolve the posi-
tioning of both the nucleosomes and linkers, a development
that represents an advance over previous studies that mostly fo-
cused on predicting the positions of nucleosome centers (i.e.,
loci with maximum nucleosome protection) (Fig. 2B; Gaffney
et al. 2012; Pedersen et al. 2014; Snyder et al. 2016).

Differentially phased cfDNA fragment ends in tissue-specific

open chromatin regions

Open chromatin regions are regulatory elements that are known to
have a paucity of nucleosomes in the center and are flanked by
well-phased nucleosome arrays (Gaffney et al. 2012; Schep et al.

2015). Therefore, we hypothesized that cfDNA derived from
such regions might also exhibit differentially phased fragment
end signals. We first investigated the common open chromatin re-
gions shared by T cells and the liver, considering that these tissues
are important contributors to the plasmaDNApool in various clin-
ical scenarios. Hence, DNA derived from the T cells was one exam-
ple of cfDNA released from the hematopoietic system, which is the
major source of plasma DNA in healthy individuals (Lui et al.
2002). The liver is anothermajor source of plasma DNA in healthy
individuals, liver transplantation recipients, and liver cancer pa-
tients (Lo et al. 1998; Gai et al. 2018; Lehmann-Werman et al.
2018).

Open chromatin data for T cells was obtained from the
Roadmap Epigenomics Project (Roadmap Epigenomics Consor-
tium et al. 2015), and data for the liver was obtained from the
ENCODE Project (The ENCODE Project Consortium 2012) and In-
ternational Human Epigenome Consortium (IHEC) (Bujold et al.
2016; Methods). We identified the open chromatin regions that
were shared by T cells and the liver as the common open chroma-
tin regions (Supplemental Table S1). We then performed frag-
mentation analysis on these regions in the pooled cfDNA data.
As shown in Figure 3A, characteristic fragmentation patterns, in-
cluding coverage imbalance and differentially phased fragment
ends, could be observed.We interpreted these results as the conse-
quence of a nucleosome-depleted region in the center and the
presence of neighboring well-phased nucleosomes. These results
thus showed that differentially phased cfDNA fragment ends
could inform the nucleosome positioning pattern in the open
chromatin regions.

As a negative control, we used the same data set to analyze the
cfDNA fragmentation patterns around open chromatin regions
that were specific to embryonic stem cells (ESCs) (Supplemental
Table S1; Methods). We reasoned that no plasma DNA would
come from ESCs in healthy adults. Indeed, nucleosome position-

ing patterns (e.g., nucleosome-depletion
in the center) could not be seen in the
ESC-specific open chromatin regions
(Fig. 3B).

We further hypothesized that
cfDNA would only show the characteris-
tic fragmentation patterns at open chro-
matin regions where the corresponding
tissues contributed DNA into the plasma.
To test thishypothesis, besidesT cells and
the liver, we mined tissue-specific open
chromatin regions for five additional
major human tissues (i.e., the placenta,
lungs, ovary, breast, and small intestines)
(Methods). The selection of these tissues
was based on data availability and previ-
ous knowledge that they would contrib-
ute DNA into the plasma in selected
clinical scenarios. Hence, in previous
works, researchers had shown that the
placenta-, lung-, ovary-, and breast-de-
rived DNA could be found in the plasma
of pregnantwomen, lung cancer, ovarian
cancer, andbreast cancerpatients, respec-
tively (Lo et al. 1997; Chim et al. 2005;
Christie et al. 2017; Hulbert et al. 2017;
O’Leary et al. 2018). In addition, colonic
DNA could be found in the plasma of

B

A

C

Figure 2. cfDNA fragmentation patterns in a nucleosome array region (Chr 12p11.1) in pooled
healthy nonpregnant subjects. (A) Raw signal. (B) Smoothened signal. Green dots at the bottom represent
the predicted nucleosome center loci by Snyder et al. (2016). (C) Deduced nucleosome positioning.
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colorectal cancer patients (Strickler et al. 2018). We could not find
any publicly accessible open chromatin data for colonic tissues
with adequate quality in the present study. Hence, we used the
data from the small intestines to represent the gastrointestinal sys-
tem and considered small intestine-specific open chromatin
regions as a surrogate for colonic ones. These open chromatin
regions were mentioned as “intestine-specific” thereafter. We be-
lieved that our decision was justified because the epigenomic pro-
files of the small intestines and the colon shared much similarity
(Roadmap Epigenomics Consortium et al. 2015).

In total, ∼25,000 tissue-specific open chromatin regions were
obtained for each tissue type (range: 7540–55,537) (Supplemental
Table S1). We then investigated the
cfDNA fragmentation patterns in these
tissue-specific open chromatin regions
in the plasma of healthy individuals.
The results fromatypicalcasewereshown
in Supplemental Figure S1. As expected,
plasma DNA showed nucleosome-deple-
tion and well-phased nucleosome arrays
in the T cell- and liver-specific open chro-
matin regions, but not in other tissue-
specific open chromatin regions. These
results were consistent with the fact that
the hematopoietic system and the liver
were the major contributors of plasma
DNA in healthy individuals (Lui et al.
2002; Sunet al. 2015), suggesting that dif-
ferentially phased cfDNA fragment ends
maybe informative in inferring the tissue
origin of cfDNA.

Quantification of differentially phased

cfDNA fragment ends

To explore the potential in inferring the
relative contributions of various tissues
in the plasma DNA pool, we developed
a novel approach to measure the differ-
ential phasing of upstream (U) and
downstream (D) fragment ends in tis-
sue-specific open chromatin regions.
We called this strategy orientation-aware
cfDNA fragmentation (OCF) analysis.
OCF values are based on the differences
in U and D end signals in the center of
the relevant open chromatin regions
(Methods). As shown in Figure 3A, for
tissues that contributed DNA into plas-
ma, one would expect much cfDNA
fragmentation to have occurred at the
nucleosome-depleted region in the cen-
ter of the corresponding tissue-specific
open chromatin regions. In such a re-
gion, U and D ends exhibited the high-
est read densities (i.e., peaks) at ∼60 bp
from the center, whereas the peaks
for U and D ends were located on the
right- and left-hand sides, respectively.
Conversely, this pattern would not be
expected for tissue-specific open chro-
matin regions where the corresponding
tissue did not contribute DNA into the

plasma (e.g., ESC in Fig. 3B). We thus measured the differences
of U and D end signals in 20-bp windows around the peaks
(shadowed regions in Fig. 3C) in the tissue-specific open chroma-
tin regions as the OCF value for the corresponding tissue.

As a result, for tissues that contributed DNA into the plasma,
positive OCF values would be expected. Otherwise, theOCF values
should be zero or negative. OCF values for the seven tissue types in
the 32 healthy individuals were shown in Figure 4 and Supple-
mental Table S2. All subjects showedpositiveOCF values for T cells
and the liver; in addition, OCF values for T cells were higher than
those for the liver in all cases (P<0.001, Wilcoxon signed-rank
test). OCF values for other tissue types were much lower and

B
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Figure 3. cfDNA fragmentation patterns in pooled healthy nonpregnant subjects in common open
chromatin regions (shared by T cells and the liver; deduced nucleosome positioning was also plotted)
(A) and embryonic stem cell (ESC)-specific open chromatin regions (B). (C) Illustration of the concept
of orientation-aware cfDNA fragmentation (OCF) value. We focused on the center of tissue-specific
open chromatin regions and measured the differences between U and D signals in the shaded regions
as the OCF value for the corresponding tissue.

Figure 4. Quantification of cfDNA fragmentation patterns (OCF values) among various tissues in
healthy nonpregnant subjects.
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were close to or below zero. These results were consistent with pre-
vious data showing that in healthy individuals, the majority of
plasma DNA originated from the hematopoietic system and the
liver, with the former being the most dominant source (Lui et al.
2002; Sun et al. 2015). Our results thus showed utility of the
OCF values in measuring the relative contributions of various tis-
sues into the plasma DNA pool.

Application in noninvasive prenatal testing

To demonstrate the utility of our approach innoninvasive prenatal
testing, we retrieved maternal plasma DNA data from a previous
study (Chan et al. 2016). As discussed in “Introduction,” circulat-
ing fetal DNA in the plasma of pregnant womenmostly originated
from the placenta (Chim et al. 2005). cfDNA fragmentation pat-
terns around the placenta-specific open chromatin regions in a
third-trimesterpregnant casewere shown inFigure5A.A strongnu-
cleosome positioning pattern similar to that of common open
chromatin regions in healthy nonpregnant individuals (Fig. 3A)
could be observed, suggesting that cfDNA fragmentation pattern
analysis could indeed detect the fetal/placental DNA in maternal
plasma.

We further investigated the cfDNA fragmentation patterns
using previously published data from a cohort of 26 first-trimes-
ter pregnant cases (Chan et al. 2016). Each case in this cohort was
carrying a male fetus. Hence, the fetal DNA fraction in plasma
DNA could be determined by analyzing the reads aligned to
the Y Chromosome (Chan et al. 2016). When compared to the
nonpregnant healthy subjects, OCF values for T cells were signif-

icantly decreased in the pregnant samples, and only OCF values
for the placenta showed significant elevation (both P<0.001,
Mann–Whitney U test) (Fig. 5B,C; Supplemental Table S2). In
addition, a strong positive correlation between OCF values for
the placenta and fetal DNA fractions could be observed (R=
0.77, P<0.001, Pearson correlation) (Fig. 5D). Notably, this R-val-
ue was higher than that obtained by our previous fetal-specific
preferred end sites approach (which was 0.66) (Chan et al.
2016). The fetal DNA fraction is one of the most important
parameters governing the performance of noninvasive prenatal
testing. These results thus demonstrated the potential utility
of differentially phased cfDNA fragment ends in noninvasive
prenatal testing.

Application in liver transplantation and hepatocellular

carcinoma patients

To investigate the performance of cfDNA fragmentation pattern
analysis in predicting the contribution of the liver tissue, plasma
DNA sequencing results from a previously reported cohort of 14
liver transplantation patients were retrieved (Gai et al. 2018). For
each case, both the donor and recipient were genotyped such
that donor-specific informative SNP sites could be identified to
deduce the donor DNA fraction in recipient’s plasma (Gai et al.
2018). When the cfDNA fragmentation pattern analysis was per-
formed on this data set, a positive correlation between OCF val-
ues for the liver and donor DNA fractions could be observed (R=
0.74, P=0.0022, Pearson correlation) (Fig. 6A; Supplemental
Table S2).

In addition,wealso retrievedplasma
DNAdata fromapreviouslypublished co-
hort of 90 HCC patients (Jiang et al.
2015). For these HCCpatients, the tumor
DNA fractions in plasma were estimated
by copy number aberration (CNA) analy-
ses (Jiang et al. 2015). Through such anal-
yses, 74 HCC samples showed evidence
of presence of tumor DNA in plasma
and were used in the following analyses.
Notably, in these HCC patients, the tu-
mor-derived cfDNA molecules were con-
sidered as of liver origin (Sun et al. 2015;
Gai et al. 2018). A positive correlation be-
tweenOCF values for the liver and the tu-
morDNA fractions could be observed (R=
0.36, P=0.0017, Pearson correlation)
(Fig. 6B; Supplemental Table S2).
Moreover, a previous study had reported
that in HCC patients, Chr 1q and Chr
8q frequently exhibited copy number
gains, whereas Chr 1p and Chr 8p fre-
quently exhibited copy number losses
(Jiang et al. 2015). To explore the effect
of copy number changes on our ap-
proach, we recalculated the OCF values
for the regions with copy number gains
and losses separately. As a result, similar
correlations between the recalculated
OCF values for the liver and the tumor
DNA fractions were obtained (Pearson’s
r=0.32 and 0.37 for copy number
gain and loss regions, respectively),
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Figure 5. Application of cfDNA fragmentation pattern analysis in noninvasive prenatal testing. (A)
cfDNA fragmentation patterns in the placenta-specific open chromatin regions in one pregnant case.
(B,C) Comparison of OCF values between healthy nonpregnant subjects and pregnant women: (B) T
cells; (C) placenta. (D) Correlation between OCF values for the placenta and fetal DNA fractions in a co-
hort of 26 pregnant women.
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suggesting that CNA profile was not a significant confounder for
this analysis.

Furthermore, we separated the HCC patients into two sub-
groups based on the tumor DNA fraction: “Low tumor DNA
load” group contained those with tumor DNA load <10%, and
“high tumor DNA load” group for the remaining cases. This sepa-
rationwas based on the knowledge that the liver contributes∼10%
plasma DNA in healthy subjects (Sun et al. 2015). The median
tumor DNA loads for these two groups were 2.1% (range: 0.9%–

9.9%) and 19.4% (range: 10.8%–53.2%), respectively (Supplemen-
tal Table S2). As shown in Figure 6C,D, when compared to the
healthy subjects, OCF values for T cells were significantly de-
creased for both HCC patient groups (P=0.0016 and P<0.001
for low and high tumor DNA load groups, respectively, Mann–
Whitney U test). OCF values for the liver showed no statistical dif-
ference in low tumor DNA load group patients but they were sig-
nificantly elevated in high tumor DNA load group patients (P=
0.32 and P< 0.001 for low and high tumor DNA load groups, re-
spectively, Mann–WhitneyU test).We further explored the perfor-
mance of the OCF values in differentiating HCC cases from
healthy subjects (e.g., in cancer testing) and found that 50 of 74
HCC cases (sensitivity = 67.6%) and 30 of 32 healthy subjects (spe-
cificity = 93.8%) could be correctly classified. Such performance
was comparable to our previous study based on CNA and DNA
methylation analyses (Chan et al. 2013a). Taken together, these re-

sults suggested that our method might
have applications in liver transplanta-
tion monitoring and cancer testing.

Application in colorectal cancer and

lung cancer patients

Acohort of 11 colorectal cancer (CRC)pa-
tients was newly recruited in this study.
For each case, plasma DNA was bisulfite
sequenced (Methods) such that the co-
lonic contribution could be determined
using theplasmaDNAtissuemappingap-
proach (Sun et al. 2015). These results al-
lowed us to explore the use of cfDNA
fragmentation pattern analysis in BS-seq
data. In the cfDNA of such individuals,
we observed characteristic fragmentation
patterns in the intestine-specific open
chromatin regions. One typical case was
shown in Supplemental Figure S2A.
When compared to the healthy subjects,
OCF values for T cells were significantly
decreased, whereas OCF values for intes-
tines were significantly elevated in the
CRC patients (both P<0.001, Mann–
Whitney U test) (Fig. 7A,B; Supplemental
Table S2). A positive correlation between
OCF values for intestines and colonic
contributions (measured by the plasma
DNA tissue mapping approach) (Sun
et al. 2015) could be observed (R=0.89,
P<0.001, Pearson correlation) (Fig. 7C).

In addition, plasma DNA data for
nine lung cancer patients were obtained
from a data set generated by Snyder et
al. (2016). We found that plasma DNA

showed characteristic fragmentation patterns in the lung-specific
open chromatin regions in these patients. One typical case was
shown in Supplemental Figure S2B. OCF values for T cells were de-
creased, whereas OCF values for lungs were elevated when com-
pared to the healthy subjects (P<0.001 and P=0.025 for T cells
and lungs, respectively, Mann–Whitney U test) (Fig. 7D,E; Supple-
mental Table S2). Moreover, two lung cancer cases in this cohort
had also been analyzed by Snyder et al. (2016); however, there
were no significant correlations between our OCF values and the
results from the most relevant tissue/cell types in Snyder et al.
(2016) for these two cases (both P>0.05, Spearman’s correlation)
(Supplemental Table S2).

Discussion

In this proof-of-principle study,we proposed a newmethod for nu-
cleosome positioning profiling and quantitative determination of
the relative contributions of various tissues in plasmaDNA by frag-
mentation pattern analyses. We also demonstrated the diagnostic
potential of this approach in noninvasive prenatal testing, organ
transplantation monitoring, as well as cancer testing. We showed
that cfDNA fragmentation patterns bore characteristic profiles in
the nucleosome-depleted region and well-phased nucleosome ar-
rays around the tissue-specific open chromatin regions. The results
could be regarded as in vivo counterpart of previous studies using
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Figure 6. Application of cfDNA fragmentation pattern analysis in liver transplantation and hepatocel-
lular carcinoma (HCC) patients. (A) Correlation betweenOCF values for the liver and donor DNA fractions
in liver transplantation patients; (B) tumor DNA fraction in HCC cases. (C ) Comparison ofOCF values for T
cells; (D) the liver among healthy nonpregnant subjects and HCC cases (separated into two groups based
on the tumor DNA load in plasma).
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in vitro micrococcal nuclease or transposase digestion of genomic
DNA (Schones et al. 2008;Gaffney et al. 2012; Schep et al. 2015). In
the meantime, one could see that nucleosome positioning pat-
terns in the tissue-specific open chromatin regions (e.g., Fig. 5A)
were not as strong as those in the common open chromatin re-
gions (Fig. 3A). The reason was that in the common open chroma-
tin regions,most of the tissues that contribute plasmaDNApossess
well-positioned nucleosomes. However, for the tissue-specific
ones, only the corresponding tissue possesses well-positioned nu-
cleosomes. Such tissue-specific signals would be diluted by other
tissues that did not have that pattern. Our data showed that a high-
er OCF value generally indicated a higher contribution of the cor-
responding tissue.

The ability to trace the tissue origin of cfDNA is of great inter-
est in liquid biopsy, especially in predicting the tumor origin in

cancer patients. We showed that by quantifying the cfDNA frag-
mentation patterns in cancer patients, OCF values for T cells
would decrease and OCF values for the tissue origin of the tumor
would increase. These observations were consistent with the fact
that in these patients, the tumor (and peri-tumoral) tissues release
DNA into the plasma which would (1) increase the contribution
from the tissue origin of the tumor, and (2) dilute the contribution
of the hematopoietic system. In addition, the results on the CRC
cases (Fig. 7C) showed that this approach was highly concordant
with the plasma DNA tissue mapping method (Sun et al. 2015).
It is interesting to note that cfDNA fragmentation patterns are pre-
served among the bisulfite-convertedDNAmolecules. This is likely
to be partly related to our library preparation protocol whereby se-
quencing adaptors were first ligated to plasma DNAmolecules be-
fore bisulfite treatment (Lun et al. 2013). It would be interesting to
explore if there would be additive value of using both OCF mea-
surement and methylation-based tissue mapping in a synergistic
manner to further enhance the performance of the tissue-of-origin
analysis. Nonetheless, here we demonstrated that OCF analysis is
an approach that provides tissue-of-origin informationwithout re-
liance of methylation analysis. Compared to BS-seq, DNA-seq ex-
periments were cheaper and involve simpler protocols.

Furthermore, there are important differences between our ap-
proach and previous methods. For instance, Snyder et al. (2016)
had correlated the nucleosome spacing patterns in gene bodies
with the transcriptome of various cell/tissue types and used the
Pearson correlation coefficients to rank the relative contribution
of each cell/tissue type. However, it has not yet been demonstrated
that the Pearson correlation coefficients could be used for measur-
ing the relative quantitative contributions for each cell/tissue type.
In contrast, we used a different strategy based on fragment end
profiles in the tissue-specific open chromatin regions and demon-
strated that the OCF values were quantitatively correlated with rel-
ative contributions of the corresponding tissues, as validated in
pregnancy, liver transplantation, and cancer models. Moreover,
no significant correlations between our approach and Snyder
et al. (2016) were found in the lung cancer cases thatwere analyzed
by both methods. It is possible that the approach by Snyder et al.
(2016) might be better for ranking analysis, whereas ours might
have some advantages for quantification. As shown in Figure 3C,
by taking the orientation information into account, we were able
to differentiate the informative end signal from the uninformative
one, which procedure might benefit the quantification perfor-
mance. Ranking and quantification approaches are both valuable
andmay findpreferential uses indifferent scenarios.However, con-
sidering the small sample size investigated here, comprehensive
performance evaluations using larger sample cohorts may be
needed. In addition, our method was based on open chromatin
profiles, where data availability is not currently as accessible as
the transcriptomedatautilizedbySnyderet al. (2016). Such relative
paucity of data may limit the immediate applications of our ap-
proach. To this end, we think that newer approaches such as assay
for transposase-accessible chromatin using sequencing (ATAC-seq)
(Buenrostro et al. 2013) may provide open chromatin data that
could be used by our approach. On the other hand, Ulz et al.
(2017)demonstrated thepotential ofplasmaDNAcoveragepattern
analysis in inferring the expression of genes thus revealing the tis-
sue origin of tumors in cancer patients. However, the authors esti-
mated that a 75% tumor DNA fraction in the plasma might be
required for this purpose (Ulz et al. 2017), which was unlikely
to be seen in most clinical cases. In contrast, our approach could
work on cases with a much lower fraction of DNA from the tissue
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Figure 7. Application of cfDNA fragmentation pattern analysis in colo-
rectal cancer (CRC) and lung cancer patients. (A,B) Comparison of OCF
values between healthy nonpregnant subjects and CRC patients:
(A) T cells; (B) intestines. (C) Correlation between OCF values for intestines
and colonic DNA fractions (deduced by plasma DNA tissue mapping
method) in CRC patients. (D,E) Comparison of OCF values between
healthy nonpregnant subjects and lung cancer patients: (D) T cells;
(E) lungs.
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of interest. For instance, in CRC cases, elevated OCF values for in-
testines were already apparent when the colon contribution was
only 5% (Fig. 7B). These results thus suggested that our approach
might have the potential to work on relatively early cancer cases
in which the tumor DNA load in the plasma might not be high.

The selection of a shortlist of tissues is important for the per-
formance of our approach. In this study, we only considered tis-
sues with known contributions to plasma DNA in certain clinical
scenarios and reported tissue-level contributions. For instance,
we used T cells as a representative of the hematopoietic system
when considering the overall contribution from the hematopoiet-
ic system into the circulating DNA pool. We have adopted this
approach because it is difficult to mine highly abundant and
specific open chromatin regions if more than one blood cell type
is included due to the high epigenomic similarity among these
cells. However, for cells from different tissues where the epige-
nomes are generally distinct from each other (Roadmap Epige-
nomics Consortium et al. 2015), we could find many specific
open chromatin regions that one could use. In this regard, we
think that our approach has the potential to be applied to larger
compendiums that contain additional tissue types (e.g., prostate
and kidney).

In the future, our approach can be integrated with targeted
massively parallel sequencing technology (Mertes et al. 2011) to
analyze plasma DNA. Because the tissue-specific open chromatin
regions only account for a very small proportion of the human ge-
nome, through designing hybridization probes to capture these re-
gions, the cost of our approach can be substantially reduced. There
is also a need to generate open chromatin data for many tissues of
interest and to validate our approach on large sample sets covering
different clinical scenarios.

Methods

Plasma DNA data collection and availability

This study was approved by the Joint Chinese University of Hong
Kong and Hospital Authority New Territories East Cluster Clinical
Research Ethics Committee. All participating subjects in this study
gave written informed consent. All the plasma DNA data analyzed
in this study were generated in paired-end sequencing mode.
Plasma DNA data for healthy individuals, HCC patients, and
pregnant cases were retrieved from the European Genome-
phenome Archive (EGA; accession numbers EGAS00001001024
and EGAS00001001882) (Jiang et al. 2015; Chan et al. 2016); data
for the liver transplantationpatients (Gaiet al. 2018)havebeensub-
mitted to EGA (accessionnumber EGAS00001003116); data for the
lung cancer cases were obtained from Gene Expression Omnibus
(GEO; accession number GSE71378) (Snyder et al. 2016).

CRC patients were newly recruited in this study. Peripheral
blood samples were collected into EDTA-containing tubes. Blood
samples were centrifuged at 1600g for 10 min at 4°C. The plasma
portion was harvested and recentrifuged at 16,000g for 10 min at
4°C to remove the blood cells. Bisulfite conversion was performed
as previously described (Lun et al. 2013). DNA libraries were pre-
pared using the KAPA HTP Library Preparation Kit (Kapa
Biosystems) according to the manufacturer’s instructions (Chan
et al. 2013b) and sequenced on a HiSeq 2000 system (Illumina)
in 75× 2 cycles mode with the TruSeq SBS Kit v3 (Illumina).
Analysis of the BS-seq data, including quality control, sequence
alignment,methylation status determination, and colon contribu-
tion inference were performed as previously described (Jiang et al.
2014; Sun et al. 2015). The median sequencing depth for these

samples was 3.2-fold (range: 0.6-fold to 6.4-fold; Supplemental
Table S2) haploid human genome coverage. The data have been
submitted to EGA (accession number EGAS00001003117).

Tissue-specific open chromatin regions

We used the publicly available DNase-seq (DNase I hypersensitive
sites sequencing) (Song and Crawford 2010) data to mine open
chromatin regions. DNase-seq data for T cells, the placenta, lungs,
the ovary, the breast, small intestines, and embryonic stem cells
were obtained from the Roadmap Epigenomics Project (Roadmap
Epigenomics Consortium et al. 2015); data for the liver was ob-
tained from the ENCODE Project (The ENCODE Project Consor-
tium 2012) and IHEC (Bujold et al. 2016). Accession numbers for
the DNase-seq data can be found in Supplemental Table S1. For
each tissue type, raw sequencing data were downloaded and
aligned to the reference human genome (UCSC hg19) using Bow-
tie with default parameters (Langmead et al. 2009). Then, open
chromatin regions were determined using model-based analysis
for ChIP-seq (MACS) with default parameters (Zhang et al.
2008). For such analyses, chromatin immunoprecipitation fol-
lowed by massively parallel DNA sequencing (ChIP-seq) input
data from the corresponding tissue types were used as negative
controls and a Q-value (i.e., adjusted P-value reflecting the false
discovery rate) cutoff of 0.01 was used to call peaks. For the liver,
DNase-seq data from ENCODE and IHEC were both analyzed
and only the peaks that existed in both samples were kept; similar-
ly, for lungs, DNase-seq data for IMR-90 (human fetal lung) and
human lung fibroblast (HLF) cell lines were both analyzed and
only the peaks that existed in both samples were kept. Then, for
each tissue type, we compared its peaks with all the other tissues
and only kept those unique to this tissue and within a size range
of 50–200 bp as the final tissue-specific open chromatin regions.
The identified open chromatin regions can be found in Supple-
mental Table S1. We think that reanalysis of the data using the
GRCh38 (UCSC hg38) human reference genome would not affect
the results significantly because the biggest difference between
these two versions of human reference genome is the annotation
of centromeric DNA, which is normally in a heterochromatin state
and therefore should not contain open chromatin regions that
have been used in our current analysis.

Quantification of cfDNA fragmentation patterns

To quantify the cfDNA fragmentation patterns around tissue-spe-
cific open chromatin regions, we focused on the nucleosome-
depletion signal at the center because it was one of the key charac-
teristics (Jiang and Pugh 2009). In such signal, upstream (U) and
downstream (D) ends exhibited peaks at ∼60 bp from the center
of the open chromatin regions but in different directions (Fig.
3C). Specifically, theD endpeakwas on the left-hand side,whereas
theU end peakwas on the right-hand side (Fig. 3C).We quantified
the differences of read densities of the U and D ends in 20-bp win-
dows around the peaks as follows:

OCF =
∑−60+10

−60−10

(D−U)+
∑60+10

60−10

(U−D).

We named this parameter orientation-aware cfDNA fragmenta-
tion (OCF) value. Note that this calculation was performed using
the raw, unsmoothed U and D end signals. For each case, OCF
values were calculated for the seven tissue types investigated in
this study using their tissue-specific open chromatin regions
separately.
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Data access

Plasma DNA sequencing data from 14 liver transplantation recipi-
ents and 11 CRC patients (all had consented to data archiving)
have been submitted to the European Genome-phenome
Archive (https://www.ebi.ac.uk/ega/) hosted by the European
Bioinformatics Institute under accession numbers EGAS0000
1003116 and EGAS00001003117. Implementation codes for the
method descripted in this study are provided in Supplemental
Code.
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