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Emerging next-generation sequencing technologies have revolutionized the collection of genomic data for applications in
bioforensics, biosurveillance, and for use in clinical settings. However, to make the most of these new data, new meth-
odology needs to be developed that can accommodate large volumes of genetic data in a computationally efficient
manner. We present a statistical framework to analyze raw next-generation sequence reads from purified or mixed en-
vironmental or targeted infected tissue samples for rapid species identification and strain attribution against a robust
database of known biological agents. Our method, Pathoscope, capitalizes on a Bayesian statistical framework that ac-
commodates information on sequence quality, mapping quality, and provides posterior probabilities of matches to
a known database of target genomes. Importantly, our approach also incorporates the possibility that multiple species can
be present in the sample and considers cases when the sample species/strain is not in the reference database. Furthermore,
our approach can accurately discriminate between very closely related strains of the same species with very little coverage
of the genome and without the need for multiple alignment steps, extensive homology searches, or genome assem-
bly—which are time-consuming and labor-intensive steps. We demonstrate the utility of our approach on genomic data
from purified and in silico ‘‘environmental’’ samples from known bacterial agents impacting human health for accuracy
assessment and comparison with other approaches.

[Supplemental material is available for this article.]

The accurate and rapid identification of species and strains of

pathogens is an essential component of biosurveillance from both

human health and biodefense perspectives (Vaidyanathan 2011).

For example, misidentification was among the issues that resulted

in a 3-wk delay in accurate diagnosis of the recent outbreak of

hemorrhagic Escherichia coli being due to strain O104:H4, resulting

in over 3800 infections across 13 countries in Europe with 54 deaths

(Frank et al. 2011). The most accurate diagnostic information,

necessary for species identification and strain attribution, comes

from the most refined level of biological data—genomic DNA

sequences (Eppinger et al. 2011). Advances in DNA-sequencing

technologies allows for the rapid collection of extraordinary

amounts of genomic data, yet robust approaches to analyze this

volume of data are just developing, from both statistical and al-

gorithmic perspectives.

Next-generation sequencing approaches have revolutionized

the way we collect DNA sequence data, including for applications

in pathology, bioforensics, and biosurveillance. Given a particular

clinical or metagenomic sample, our goal is to identify the specific

species, strains, or substrains present in the sample, as well as ac-

curately estimate the proportions of DNA originating from each

source genome in the sample. Current approaches for next-gen

sequencing usually have read lengths between 25 and 1000 bp;

however, these sequencing technologies include error rates that

vary by approach and by samples. Such variation is typically less

important for species identification given the relatively larger

genetic divergences among species than among individuals

within species. But for strain attribution, sequencing error has the

potential to swamp out discriminatory signal in a data set, ne-

cessitating highly sensitive and refined computational models

and a robust database for both species identification and strain

attribution.

Current methods for classifying metagenomic samples rely

on one or more of three general approaches: composition or pat-

tern matching (McHardy et al. 2007; Brady and Salzberg 2009;

Segata et al. 2012), taxonomic mapping (Huson et al. 2007; Meyer

et al. 2008; Monzoorul Haque et al. 2009; Gerlach and Stoye 2011;

Patil et al. 2012; Segata et al. 2012), and whole-genome assembly

(Kostic et al. 2011; Bhaduri et al. 2012). Composition and pattern-

matching algorithms use predetermined patterns in the data, such

as taxonomic clade markers (Segata et al. 2012), k-mer frequency,

or GC content, often coupled with sophisticated classification

algorithms such as support vector machines (McHardy et al.

2007; Patil et al. 2012) or interpolated Markov Models (Brady and

Salzberg 2009) to classify reads to the species of interest. These

approaches require intensive preprocessing of the genomic da-

tabase before application. In addition, the classification rule and

results can often change dramatically depending on the size and

composition of the genome database.
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Taxonomy-based approaches typically rely on a ‘‘lowest

common ancestor’’ approach (Huson et al. 2007), meaning that

they identify the most specific taxonomic group for each read. If

a read originates from a genomic region that shares homology with

other organisms in the database, the read is assigned to the lowest

taxonomic group that contains all of the genomes that share the

homologous region. These methods are typically highly accurate

for higher-level taxonomic levels (e.g., phylum and family), but

experience reduced accuracy at lower levels (e.g., species and

strain) (Gerlach and Stoye 2011). Furthermore, these approaches

are not informative when the reads originate from one or more

species or strains that are closely related to each other or different

organisms in the database. In these cases, all of the reads can be

reassigned to higher-level taxonomies, thus failing to identify the

specific species or strains contained in the sample.

Assembly-based algorithms can often lead to the most accu-

rate strain identification. However, these methods also require the

assembly of a whole genome from a sample, which is a computa-

tionally difficult and time-consuming process that requires large

numbers of reads to achieve an adequate accuracy—often on the

order of 50–1003 coverage of the target genome (Schatz et al. 2010).

Given current sequencing depths, obtaining this level of coverage

is usually possible for purified samples, but coverage levels may

not be sufficient for mixed samples or in multiplexed sequencing

runs. Assembly approaches are further complicated by the fact that

data collection at a crime scene or hospital might include addi-

tional environmental components in the biological sample (host

genome or naturally occurring bacterial and viral species), thus

requiring multiple filtering and alignment steps in order to obtain

reads specific to the pathogen of interest.

Here we describe an accurate and efficient approach to ana-

lyze next-generation sequence data for species identification and

strain attribution that capitalizes on a Bayesian statistical frame-

work implemented in the new software package Pathoscope v1.0.

Our approach accommodates information on sequence quality,

mapping quality, and provides posterior probabilities of matches

to a known database of reference genomes. Importantly, our ap-

proach incorporates the possibility that multiple species can be

present in the sample or that the target strain is not even contained

within the reference database. It also accurately discriminates be-

tween very closely related strains of the same species with much

less than 13 coverage of the genome and without the need for

sequence assembly or complex preprocessing of the database or

taxonomy. No other method in the literature can identify species

or substrains in such a direct and automatic manner and without

the need for large numbers of reads. We demonstrate our approach

through application to next-generation DNA sequence data from

a recent outbreak of the hemorrhagic E. coli (O104:H4) strain in

Europe (Frank et al. 2011; Rohde et al. 2011; Turner 2011) and on

purified and in silico mixed samples from several other known

bacterial agents that impact human health. Software and data

examples for our approach are freely available for download at

https://sourceforge.net/projects/pathoscope/.

Results

Overview of the identification approach

For the purposes of this demonstration, we constructed a reference

database of bacterial genomes obtained from GenBank, chosen

based on their phylogenetic affinity to eight bacterial agents from

the ‘‘CDC Category A and B lists of bioterrorism agents/diseases’’

(http://www.bt.cdc.gov/agent/agentlist-category.asp). The query

next-gen sequencing reads were independently aligned to the ref-

erence genomes using three different aligners, BLAST (Altschul et al.

1997), GNUMAP (Clement et al. 2010), and Bowtie 2 (Langmead

and Salzberg 2012) (exact parameters used are given in the Methods

section below). Reads with a single or unique alignment to only one

organism in the database were denoted as uniquely mapped reads,

or unique reads in short. However, since our database contains many

closely related species and strains, many of the sequence reads map

to multiple genomes in the database. These reads are denoted as non-

unique reads. Reads that do not match any genome in the database

are only utilized to help determine whether the source species is

present in the database. From data examples presented in the

sections below, we observed that between 6.4% and 99.9% of the

reads map to multiple organisms, depending on the number of

closely related strains in the database (see Fig. 1).

When reads align to multiple genomes due to their sequence

similarity, the reads are less likely to be assigned to the correct

source genome. For example, in the E. coli K12 MG1655 example

described below, >99.9% of the reads aligned to multiple genomes

due to the presence of multiple related substrains in the data-

base. In this case the correct genome received the same pro-

portions of the reads as a closely related, but incorrect, substrain

due to non-uniqueness. This leads to the inability to conclusively

identify the correct substrain—especially for methods based only

on the alignment, context matching, homology searching, or ge-

nome assembly. However, by reassigning the ambiguous reads, we

show below that it is possible to remove reads assigned to genomes

that are less likely to be the source of the reads, and reassign them

to the source template of the reads.

Through an iterative process, our novel Bayesian read reas-

signment method is capable of identifying the genomes that are

the most likely source of the reads. However, even though a set of

reads could have originated from the DNA from multiple organ-

isms, each individual read was derived from one template DNA

strand that came from a single organism. To correctly and precisely

identify the species present in the sample, the non-unique read

probabilities must be reassigned to the correct template genome of

origin. To address this need, we have formulated a Bayesian missing

data mixture modeling approach (where the template genome of

origin is the ‘‘missing data’’) that integrates information contained

within the read (mapping probability) with information obtained

by borrowing strength across all reads from the sample (e.g., pro-

portions of unique reads or imbalances in non-unique probabili-

ties across all reads). This approach is superior to a naı̈ve mapping

approach that assigns reads based on information contained solely

in the reads. Using this additional information helps to overcome

mistakes in mapping caused by sequencing errors or low-quality

bases.

Application to the European E. coli outbreak of 2011

The recent outbreak of Escherichia coli (E. coli) O104:H4 in Europe

resulted in a number of deaths that may have been prevented

by an early identification of the affecting pathogen. We ob-

tained 92,370 sequencing reads from an O104:H4 sequencing

run generated at the BGI, using the Ion Torrent sequencing

technology (Guilford, CT) (SRR227300; Li et al. 2011). Most of

the reads in the data set (94.1%) ranged in length from 80 to

120 bp. We used BLAST, Bowtie 2, and GNUMAP to indepen-

dently align these query reads to our reference database, which

included the genomes of 30 strains of E. coli—many of which
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were closely related to the O104:H4 strain. The Pathoscope results

from the BLAST, Bowtie 2, and GNUMAP alignments were nearly

identical (<1% different), so we only report the results from the

BLAST alignment below.

In addition to Pathoscope, we compared several other ap-

proaches for inferring the genomic source of sequencing reads.

These included a naı̈ve mapping strategy, where we aligned reads

to the database and generated a posterior probability of alignment

based on the read’s alignment score for each genome. The read

probabilities are then summed for each genome, resulting in the

total (probabilistic) portion of the reads mapped to each specific

genome. We also compared with PhymmBL (Brady and Salzberg

2009), MEGAN4 (Huson et al. 2007), PhyloPhythiaS (Patil et al.

2012), and MetaPhlAn (Segata et al. 2012). Finally, we applied

an alignment approach using the Trinity

assembler (Grabherr et al. 2011) to as-

semble high-quality contiguous se-

quences (contigs) from the reads, followed

by the probabilistic alignment of the

contigs to the database (see Methods for

specific parameter settings for each

algorithm).

For this example, we used the full

data set of 92,370 reads, representing 1.33

coverage of the reference O104:H4 ge-

nome, as well as reduced data sets using

1000 random subsamples of reads for

each of the following sample sizes: 9237

(0.133), 924 (0.013), and 92 (0.0013).

For the smaller subsets (92, 924, 9237),

we compared the average accuracy and

range across samples for each method.

These smaller sets were designed to eval-

uate algorithmic performance when the

reads are generated using multiplexed

sequencing runs or when they originated

from contaminated samples that may

be dominated by other genomic sources.

However, we note that for MEGAN

(graphical user interface), PhyloPhythiaS

(manual webserver), and the assembly

approach, we did not use 1000 random

data sets; rather, we used a single random

sample of each data set size, as they would

either require thousands of manual sub-

missions or an excessive amount of com-

putation time. Table 1 contains the aver-

age accuracy and range across samples for

each algorithm.

Naı̈ve alignment, PhymmBL, and MetaPhlAn

The naı̈ve algorithm consistently assigned

around 12.9% of the read probability to

the O104:H4 strain independent of the

number of reads used. However, on aver-

age, between 7.4% and 9.4% of the read

probability was assigned to the E. coli

55989, which is the closest fully se-

quenced genome to the O104:H4 strain

(Rohde et al. 2011; Turner 2011). Several

other E. coli strains received 1%–3% of the

reads, and several species in the Shigella

genus also received 1%–2% of the reads. In all, ;93% of the read

probabilities were assigned to an E. coli strain. The PhymmBL al-

gorithm assigned 14.7% on average to the O104:H4 strain and

exhibited similar profiles of false mapping to other strains and

species. Overall, the performance of PhymmBL was only slightly

better than the naı̈ve approach. The MetaPhlAn algorithm aligns

reads to taxonomic clade-specific markers, which in its current

implementation can only identify DNA templates at the species

level—and therefore cannot distinguish between strains or sub-

strains of the same species. In addition, because it only uses short

clade markers, merely 815 (0.9%) of the reads were assigned by

MetaPhlAn. Of these reads, only 90.0% were aligned to E. coli,

whereas 9.6% were incorrectly assigned to S. dysenteriae. The

method gave inconsistent results for the subsamples of 9237, and

Figure 1. Impact of the closely related strains on the read alignment proportions. The genomes in the
database were aligned to each other using an all-against-all BLASTN approach (Agren et al. 2012), and
strains of the same species that were >98% similar using this metric were considered ‘‘closely related’’
strains. As the number of closely related strains increases, the naı̈ve algorithm was not able to definitively
identify the origin species. However, Pathoscope performed consistently well independent of the
number of closely related strains.

Species identification and strain attribution
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most of the time failed to assign any reads to E. coli for the sub-

samples of 92 and 924. From these approaches, it is clear that an E.

coli strain is present in the sample, and the naı̈ve and PhymmBL

approaches point to O104:H4 as the most likely source, but all re-

sults are ambiguous as to whether there are multiple E. coli strains

or other species present in the sample.

Genome assembly approach

For the assembly approach, no contigs were generated from the

92 and 924 read data sets. For the data set with 9237 reads, only five

contigs were generated, ranging in length from 221 bases to 442

bases in length (N50 = 409; N90 = 221). Although these five contigs

best matched to the O104:H4 strain, they also aligned to several other

(incorrect) genomes in the database. Finally, on the complete se-

quencing run representing 1.33 coverage of the genome, the as-

sembler constructed 3637 short contigs (N50 = 292; N90 = 216) with

only 21.5% of the contig mapping probability being assigned to the

correct strain. Therefore, although this approach is a slight improve-

ment over the naı̈ve approach or context mapping, it is clear that

a single sequencing run for a purified (single source) sample is not

sufficient for strain attribution using an assembly-based approach.

Pathoscope reassignment

In contrast, as shown in Table 1, Pathoscope reassigned, on av-

erage, 99.4% of the read probability directly to the O104:H4 strain

for the data sets with 92 reads and averaged 99.6% of the reads cor-

rectly for the larger data sets. These results imply that Pathoscope is a

substantial improvement over naı̈ve mapping, context mapping,

and assembly-based methods for species identification and strain

attribution.

Identification of the nearest genome

The results from the MEGAN and PhyloPythiaS analyses were not

included in the previous section because the annotation tables

used by these approaches do not contain the O104:H4 strain (and

cannot be manually added by the user). For this reason, we re-

moved the O104:H4 strain from our reference database and rean-

alyzed the query reads using the naı̈ve mapping and Pathoscope

reassignment. In addition, we note that the PhyloPythiaS web

server only allowed for a maximum of 10,000 reads for each sub-

mission, so the results presented here were based on random sets of

92, 924, and 9237 only (and not the full data set).

For the naı̈ve mapping with O104:H4 removed, most of the

aligned reads (99.8%) mapped to at least one strain of E. coli, thus

rapidly and clearly identifying the species of origin. However,

96.1% of these reads aligned ambiguously to multiple E. coli

strains. The 55989 strain received the largest proportion of the

aligned reads (9.5%), followed by the O103:H2 strain (3.2%), the

B7A, O26:H11, E24377A, and the E22 strains (3.1%), then the SE11

and IAI1 strains (3.0%). Therefore, although the correct species

was easily identified using a naı̈ve mapping strategy, the identifi-

cation of the correct strain within the species proves to be more

difficult, and a simple mapping strategy leaves much uncertainty

in the process of identifying the strain most similar to the origin

strain. This uncertainty can prove to be important for E. coli—

which contains both benign and harmful strains—as the mis-

classification of the origin or nearest strain might lead to negative

economic and human health consequences.

In contrast, the lowest common ancestor approach utilized

by MEGAN assigned 80.2% of the reads to the family taxonomic

level or higher. The remaining reads were assigned at the genus

level; 19.7% of the total reads were assigned to the Escherichia ge-

nus and 0.2% of the reads were incorrectly assigned to the Shigella

genus. MEGAN did not assign any reads at the species or strain

level for any of the data sets. PhyloPhythiaS also performed poorly

on this example: Overall, >84% of the reads were assigned to the

family level or above, and <50% of all the reads were correctly as-

signed E. coli taxonomy levels. Furthermore, 32 incorrect genera

Table 1. Results from the application of several species identification approaches to subsets of the 92,370 sequencing reads from the first
O104:H4 Ion Torrent sequencing run

Percentage of reads to correct genome (second highest) [range for 1000 random samples]

Time required
(full data set)

Number of reads
(coverage) 92 (0.0013) 924 (0.013) 9237 (0.133) 92,370 (1.33)

Naı̈ve mapping 12.9 (6.5)
[7.5–20.9]

12.9 (6.1)
[10.5–15.5]

12.9 (7.4)
[12.2–13.5]

12.9 (7.4) BLAST: 38 min
Bowtie 2: 13 min

Pathoscope 99.4 (0.5)
[95.1–100.0]

99.6 (0.3)
[98.0–100.0]

99.6 (0.3)
[99.3–99.8]

99.6 (0.3) Naı̈ve + 7 min

PhymmBL 14.7 (7.0)
[4.3–26.1]

14.7 (7.0)
[11.3–18.5]

14.7 (7.1)
[13.6–15.7]

14.7 (7.1) 13 hb

MetaPhlAn (species only) – 36.1 (0.0)
[0.0–100.0]

96.9 (2.4)
[54.1–100.0]

90.0 (9.6) 1 min

Trinity contigs – – 70.8 (22.6) 21.5 (13.4) 30 min
PhyloPythiaSa 7 minb

Family (or above) 47.8 (7.6) 48.4 (2.2) 45.6 (2.8) –
Genus 0.0 (2.2) 0.1 (1.6) 0.1 (1.2) –
Species 0.0 (0.1) 0.0 (0.2) 0.1 (0.3) –

MEGANa Naı̈ve + 3 min
Family (or above) 84.7 (0.0) 79.5 (0.0) 80.2 (0.0) 80.2 (0.0)
Genus 16.3 (0.0) 20.5 (0.0) 19.6 (0.2) 19.7 (0.2)
Species/straina – – – –

Presented here are the percentages of all reads assigned to the correct genome along with the second highest scoring genome in parentheses. It is clear
that Pathoscope is the most effective algorithm for strain identification. For MEGAN and PhyloPythiaS, the O104:H4 annotation is not available, so the
nearest strain E. coli 55989 was considered the ‘‘correct’’ strain.
aSource strain was not contained in annotation.
bPhymmBL also required 36 h of database preprocessing and PhyloPhythiaS was only applied to 9237 reads and not the whole data set because of its
webserver limitations.
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received more reads than Escherichia, and five incorrect species re-

ceived more reads than E. coli.

After application of the Pathoscope reassignment, 89.5% of the

reads were reassigned to the 55989 strain. The genomes with the

next highest read proportions were the O157:H7 strain (3.2%) and

the O103:H2 strain (1.1%). Therefore, even though our approach

did not completely converge on one genome (as it should not, be-

cause in this analysis the origin strain was not present in the data-

base), it is clear that Pathoscope can clearly and definitively identify

the closest fully sequenced neighboring strain with high confidence.

To evaluate whether the lack of sensitivity for MEGAN and

PhyloPythiaS is due to the missing O104:H4 annotation, we ap-

plied MEGAN and PhyloPhythiaS to our analysis of reads from the

E. coli K-12 MG1655 substrain (described in detail below), which is

contained in the annotation. For MEGAN, the result was similar, in

that all of the reads were assigned at the genus level or higher. For

PhyloPythiaS, 98.5% of the reads were assigned to the genus level

or above, and 34.7% of the reads were assigned to incorrect tax-

onomies. The E. coli species only received 1.4% of the reads, and no

reads were assigned at the strain or substrain level. Therefore, these

methods can fail to identify substrains, even when they are present

in the annotation.

Computational time

MetaPhlAn was by far the fastest algorithm (Table 1), requiring

only 1 min to complete because it aligns the reads to a set of small

clade markers; however, the approach assigned <1% of the reads in

this example. The naı̈ve approach required 38 min for a BLAST

alignment, 21 min for GNUMAP, and 13 min for Bowtie 2. Pathos-

cope and MEGAN used the naı̈ve alignments and required an addi-

tional 7 min and 3 min, respectively. PylopythiaS required a total of

7 min to assign 9237 reads. PhymmBL required ;36 h of database

preprocessing, and then ;2 h to assign the reads. Finally, the as-

sembly approach required 30 min to complete.

NCBI sequence read archive data sets

To further evaluate the effectiveness of our method in different

scenarios, we obtained sets of reads from 12 different bacterial

species/strains from the NCBI Sequence Read Archive (SRA;

http://www.ncbi.nlm.nih.gov/sra), all of which were sequenced

using the 454 platform (Roche). The reads from each sample

were aligned to our full database of genomes and identified as

though the true source of the reads were unknown. These data

sets consisted of between 28,221 and 1,504,985 reads, with read

lengths typically ranging from 77 to 277 bp. Overall, these data

sets amounted to only 1.23 to 31.23 coverage of the target ge-

nomes. For more than half of these purified sample data sets, the

read coverage is not sufficient to fully assemble a genome (Schatz

et al. 2010).

Our Pathoscope strain attribution method worked extremely

well on all of these samples (Table 2). Before reassignment, the read

probability assigned to the correct genome ranged between 4.8%

and 98.1%. To further evaluate this phenomenon, we plotted the

naı̈ve alignment probabilities (along with the Pathoscope reas-

signments) versus the number of closely related strains contained

in the database (Fig. 1). Clearly, the accuracy of the naı̈ve approach

relies heavily on the number of similar genomes in the database,

and to distinguish between closely related strains and substrains,

a Pathoscope reassignment is absolutely necessary for proper iden-

tification. After reassignment using Pathoscope, the read probabil-

ity for the correct genome ranged between 92.7% and 99.9%,

showing very strong evidence for the correct genome of interest. In

nine cases Pathoscope reassigned >99% of the reads to the correct

genome. In the three sets where reassignment led to <99%, all had

special circumstances and are discussed below. These examples

clearly show the benefit of our pathogen detection approach and

its ability to reliably identify the correct genome under a diverse set

of conditions, not only to species, but also to strain level.

Closely related strains in the database

There were 30 different strains and substrains of E. coli present in

the genome database, three of which were substrains of the K-12

strain. Notably, the K-12 MG1655 and the K-12 W3110 substrains

have >99.9% sequence similarity between the genomes; in fact, a

recent study identified only 23 sites with point mutations to dif-

ferentiate between these genomes (Hayashi et al. 2006). This cre-

ated difficulty for strain attribution for the naı̈ve mapping strategy:

Table 2. Results from the application of our species identification method on 12 data sets from the NCBI Sequence Read Archive (SRA,
reference website)

Sequence read archive
accession Source genome

Total number of reads
(percent mapped)

Reads mapped correctly
(next best match)

Reassignment
(next best match)

SRR031601 E. coli K-12 MG1655 143,836 (99.5%) 10.0% (10.0%) 99.6% (0.2%)
SRR032505 F. tularensis subsp. holarctica OSU18 28,221 (24.4%) 7.6% (6.9%) 97.8% (1.2%)
SRR032501 Y. pestis KIM D27 318,332 (15.1%) 4.8% (4.4%) 97.4% (1.7%)
SRR031600 Y. aldovae ATCC 35236 91,788 (75.3%) 96.8% (0.8%) 99.7% (0.2%)
SRR029367 Y. bercovieri 1,263,275 (73.9%) 95.7% (1.2%) 99.8% (0.1%)
SRR031602 Y. frederiksenii ATCC 33641 1,504,985 (76.0%) 97.0% (0.4%) 99.8% (0.1%)
SRR000311 Y. kristensenii 1,374,452 (85.7%) 96.7% (0.9%) 99.8% (0.2%)
SRR031268 Y. intermedia ATCC 29909 1,341,997 (79.6%) 96.8% (0.4%) 99.8% (0.1%)
SRR031599 Y. mollaretii 1,463,985 (77.0%) 96.3% (1.2%) 99.8% (0.1%)
SRR029323 Y. rohdei 199,435 (90.5%) 97.0% (0.5%) 99.8% (0.1%)
SRR000904 Y. ruckeri 299,829 (90.2%) 98.1% (0.2%) 99.9% (0.0%)
SRR031603 F. tularensis subsp. tularensis ATCC 6223a 67,276 (19.8%) 11.7% (8.4%) 92.7% (4.8%)

These examples consisted of Roche 454 samples ranging from 13 to 313 coverage of the origin genomes. Notice that in many cases the naı̈ve read
mapping identifies the correct genome (based on a large majority of aligned reads assigned to the genome). However, for several examples, particularly
the cases where there are closely related strains in the database, the correct genome cannot be clearly identified using only the read mapping. However,
after application of our Bayesian reassignment algorithm, in every case the reads are reallocated to the correct genome with increased and very high
confidence.
aSource strain was not contained in database.
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For example, when we attempted to assign reads from the K-12

MG1655 substrain, we observed that only 10.0% of the read

probability mapped to K-12 MG1655, 10.0% to K-12 W3110, and

9.4% mapped to K-12 DH10B. Clearly, this shows the failure of

a naı̈ve mapping strategy and points to the need for a highly

sensitive mapping strategy with greater differentiation among

substrains. Our reassignment method, Pathoscope, was able to

confidently reassign the reads to the correct genome. Our method

reassigned an impressive 99.6% of the reads to the E. coli K-12

MG1655 genome. The ability to differentiate at the substrain

level will become increasingly important as databases of bacterial

genomes are rapidly growing.

Unassembled genome

The Yersinia pestis KIM D27 data set provided an interesting sce-

nario that further illustrates the performance of Pathoscope in cases

where the genome is not fully contained in the reference database.

In our database there were 21 different strains or substrains of

Y. pestis, two of which were substrains of the KIM strain. The cor-

rect KIM D27 genome was contained in our database, but was not

fully assembled. Specifically, our database contained only nine

contigs of the D27 substrain, whereas the database contained the

complete genome of the KIM 10 strain. The percentage of read

probabilities assigned using a naı̈ve approach mapped only 4.8%

of the reads to Y. pestis KIM D27, which was closely followed by the

KIM 10 substrain (4.4%), and then the Mediaevalis strain (4.4%).

After reassignment, 97.3% of the reads were reassigned to the

correct KIM D27 unassembled substrain. While impressive, this

percentage is smaller than was observed with many of the other

genome examples from the SRA read sources, primarily because if

the genome database contains closely related species to the target

genome, many of the reads from unassembled regions will align to

these genomes, resulting in a small but significant read probability

for incorrect genomes. The greater probability assigned to the other

genomes is an effect of the increased uncertainty due to the in-

complete target genome.

Genome not present in the database

As was the case with the European E. coli example described pre-

viously, to further test our approach in a scenario where the source

genome is not present in the database, we focused our attention on

the SRA sample from the Francisella tularensis ATCC 6223 sub-

strain. This substrain was not contained in the reference database;

however, 13 strains and substrains of F. tularensis, including five

substrains of the F. t. tularensis subspecies (type A), were present in

the genome database. In this example, only 19.8% of the 67,276

reads mapped to a genome in the database, and 99.4% of these

mapped reads aligned to more than one genome. However, after

reassigning the reads, 92.7% of the read probability was assigned

to the F. tularensis WY96-3418 strain, and 4.8% of the read mass was

assigned to the F. tularensis SCHU S4 strain, both of the F. t. tularensis

subspecies. It is interesting to note that there are two strong indicators

providing evidence that the identified genome is not the true source,

but just a closely related substrain. The first indicator is that only

a small proportion of the reads (19.8%) mapped to any genome in

this example. In addition, after reallocation, the read probabilities

assigned is less than what was observed in the 11 cases when the true

genome was contained in the reference database. Therefore, these

two quantities provide promising metrics for identifying whether

the true genome is contained in the reference database.

Combination of multiple SRA data sets

We also generated a mixed read data set by combining reads orig-

inating from Y. pestis KIM D27 (SRR033501), E. coli K-12 MG1655

(SRR031601), and F. tularensis subsp. holarctica OSU18 (SRR032505).

After alignment to our genome database, 462,996 of the reads

aligned to at least one genome in the database with 67.8%, 31.0%,

and 1.2% originating from the Y. pestis, E. coli, and F. tularensis, re-

spectively. Using a naı̈ve mapping strategy, only 4.7% of the read

probability was assigned to the correct Y. pestis strain, 4.4% matched

the E. coli strain, and the F. tularensis strain received only 0.2% of

the reads. In fact, the F. tularensis strain received fewer reads than

49 (of 131) genomes in the database. This clearly shows the failure

of a naı̈ve mapping strategy on mixed samples. Once the reads

were reassigned using Pathoscope, 67.7%, 31.0%, and 1.2%, of the

read probability was assigned to the correct Y. pestis, E. coli, and

F. tularensis strains, respectively. Thus, Pathoscope was able to re-

cover genome proportions almost identical to the original mixing

proportions, and the results were substantially better than the

naı̈ve approach.

To further evaluate Pathoscope on mixed samples, we gener-

ated 1000 mixtures of ;5770 reads (based on the size of the smaller

F. tularensis data set) with random proportions of each species. The

naı̈ve approach produced extremely biased results by consistently

underestimating the correct read proportions, whereas Pathoscope

closely estimated the read proportions with average absolute dif-

ferences of 0.0008 for Y. pestis, 0.0092 for E. coli, and 0.0038 for F.

tularensis (Table 3). In addition, the naı̈ve approach consistently

ranked genomes in the sample lower than many genomes that

were not in the sample. For example, the average rank of Y. pestis

across the 1000 simulations was 13.1 for the naı̈ve approach, and

for 627 samples Y. pestis was not ranked among the top 10 ge-

nomes. Alternatively, after Pathoscope, Y. pestis was ranked among

the top three (there were three genomes in the mixture) in all but

four of the mixtures and in the top five for all of the mixtures.

In these simulations, Pathoscope did fail to rank the proper E. coli

Table 3. Results from 1000 random mixtures of ;5770 reads from
the Y. pestis KIM D27 (SRR033501), E. coli K-12 MG1655
(SRR031601), and F. tularensis subsp. holarctica OSU18 (SRR032505)
data sets

Naı̈ve mapping Pathoscope

Average absolute difference
Y. pestis KIM D27 0.3160 0.0008
E. coli K-12 MG1655 0.3073 0.0092
F. tularensis subsp. holarctica OSU18 0.2708 0.0038

Average ranking (among 131 full
genomes)

Y. pestis KIM D27 13.1 2.0
E. coli K-12 MG1655 7.4 2.2
F. tularensis subsp. holarctica OSU18 4.4 2.0

Number of times not ranked in top three
(not in top 10)

Y. pestis KIM D27 964 (627) 4 (0)
E. coli K-12 MG1655 613 (140) 67 (1)
F. tularensis subsp. holarctica OSU18 311 (79) 1 (0)

The proportion estimates from the naı̈ve approach were extremely bi-
ased, typically underestimating the true read proportion, while Patho-
scope estimated the true proportions with high precision. In addition, the
naı̈ve approach consistently ranked genomes in the sample lower than
many genomes that were not in the sample. Pathoscope did fail to identify
the E. coli substrain in some of the samples—in these cases, Pathoscope
identified a nearly identical K12 substrain or split the reads between the
three K12 substrains in the database.
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substrain in the top three for 67 of the samples, in which cases

Pathoscope either selected a different E. coli K12 substrain or split

the reads among the three K12 substrains in the database. For these

67 samples, we observed that the average number of E. coli reads

was ;700, representing ;2.5% (0.0253) coverage of the E. coli

genome. This points out that 2.5% coverage is not sufficient for

Pathoscope to distinguish between substrains with 99.9% sequence

identity (Hayashi et al. 2006), although Pathoscope did perform

well in distinguishing between these substrains when coverage

percentages ranged from 5% to 20%.

Discussion
Here we present an accurate and sophisticated computational ap-

proach for species identification and strain attribution. Our ap-

proach relies on the construction of a genome database containing

multiple strains or species that are possible source genomes for the

sample and utilizes a probabilistic mapping approach to align the

reads to the genome. Reads that map to multiple genomes are then

reassigned to the most likely source genome using a Bayesian sta-

tistical framework that accommodates information on sequence

quality and mapping quality. We attribute the increased accuracy

of Pathoscope compared with other methods to the fact that

Pathoscope considers all the reads jointly when reassigning reads to

source genomes, whereas most other approaches only look at one

read at a time. We show in multiple real data examples that our

method is highly accurate in identifying the source genome or

genomes for a biological sample. We show that in many cases, we

can identify the source species or strain with only a small number

of reads that represent only fractional coverage of the genome. In

addition, we show that our approach is able to accurately identify

the proper origin genome, even when several closely related strains

or substrains are present within the database. We also show the

failure of other approaches to assign reads and identify source ge-

nomes at the species, strain, and substrain level.

We demonstrate the performance of Pathoscope on purified

samples and for ‘‘environmental’’ samples mixed in silico. In the-

ory, this approach can also be applied to a variety of other scenarios

including host-dominated clinical samples, unpurified environ-

mental samples, and other types of community sequencing data.

However, the performance and utility of Pathoscope in these con-

texts are yet to be determined. However, we believe that our ap-

proach will play an important role in future applications in pa-

thology, bioforensics, and biosurveillance.

Methods

Genome database construction
Central to our approach is a robust database against which to map
the query sequencing reads. For the purposes of this demonstration,
we gathered a database of 170 complete bacterial chromosomes
obtained from 131 distinct strains (610 Mbp) (see the Supplemental
Material for accession numbers for the genomes included in this
reference database). The database was intended to aid in the iden-
tification of eight bacterial agents of bioterrorism identified by the
CDC: Bacillus anthracis, Burkholderia mallei, Burkholderia pseudo-
mallei, Brucella sp., Clostridium botulinum, Escherichia coli O157:H7,
Francisella tularensis, and Yersinia pestis.

In order to differentiate closely related strains and species
(often nonpathogenic) from target strains of interest, we wanted
to include in our reference database genomes from any closely
related strains/species. Therefore, closely related species/strains

were identified by phylogenetic analysis of the 16S ribosomal
RNA genes. 16S sequences for all eight pathogens of interest were
obtained from GenBank and used to query the nr database uti-
lizing BLASTN (Altschul et al. 1997) using default parameters
(Word Size: 28, Expect Value: 10, Match/Mismatch Scores: 1, �2,
Gap Costs: Linear). We identified 3206 sequences corresponding
to 1050 named species or subspecies with multiple sequences
represented within a number of these taxonomic groups using
a partial or full match with BLASTN. We then estimated phylo-
genetic relationships amongst these sequences and our target
species. From this phylogeny, we selected 131 completed genome
sequences, 332 fully sequenced plasmids, and 207 whole-genome
shotgun sequencing projects to serve as our reference database
(see the Supplemental Material for details). Although this study
uses the entire genome database, any subset of these sequence
types could be used for reference material. The genetic distances
for Figure 1 were calculated by performing an all-against-all BLAST
as implemented previously (Agren et al. 2012). Strains of the same
species that were >98% similar using this metric were considered
‘‘closely related’’ strains for Figure 1.

Probabilistic alignment

We used the FastQC pipeline (http://www.bioinformatics.babraham.
ac.uk/projects/fastqc/) to assess the quality of the read data sets.
For the data sets used in these examples, the qualities of the data
sets were generally acceptable by the standards set for the FASTQC
pipeline. Once the quality of the data set was ascertained, we
aligned the reads utilizing a modification of BLAST (Altschul et al.
1997) alignment scores and the GNUMAP probabilistic alignment
algorithm (Clement et al. 2010) because of their abilities to com-
pute the likelihood that a read will be mapped to multiple loca-
tions in a reference database. In these approaches, segments of size
k bases (k-mers) from the reads are indexed into a genomic hash
table that contains all k-mers and their location in the reference
genomes from the database. Once a set of putative locations is
identified using the k-mer hash, the reads are then aligned to the
full genomic sequences at these locations using a seed extension
(Altschul et al. 1997) or a probabilistic Needleman-Wunsch algo-
rithm (Clement et al. 2010). The latter approach incorporates the
base-quality information provided for each nucleotide, allowing
GNUMAP to rely more on high-quality base calls and less on bases
that are less certain. This approach improves mapping results from
reads with bases that may be low quality or miscalled by the se-
quencer and reduces the chance that the reads will be misaligned
to an incorrect genome. After alignment, the scores for each
alignment location for both alignment algorithms (BLAST and
GNUMAP) are then converted to posterior probabilities. Given the
alignment scores S1,S2,. . ., Sn the posterior probability assigned to
the jth alignment, Pj, is computed as

Pj =
expfSjg

+n
k=1expfSkg

:

These posterior probabilities are interpreted as the probability
that each alignment is the true source of the read. A probabilistic
aligner performs significantly better than other alignment algo-
rithms that discard non-unique reads or randomly assign non-
unique reads to a single genome (Li et al. 2008, 2009; Langmead
et al. 2009; Li and Durbin 2009). Alignment algorithms that dis-
card non-unique reads lose much of the power to identify the
correct genome. Unique reads often represent only a small fraction
of the available reads and mapping algorithms that discard reads
that occur in multiple locations are not able to discriminate be-
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tween possible pathogens based on this limited amount of data.
Randomly assigning the non-unique reads creates similar prob-
lems because it does not allow for read reassignment, leading to
many reads being attributed to incorrect genomes.

Bayesian reassignment method

The Bayesian mixture model of Pathoscope assumes that reads are
drawn from a small subset of unknown size from the pathogen
genomes in the database. It assumes that each read is drawn from
only one of the genomes in the subset. Parameters in the model
represent the proportions of reads that originate from each genome
as well as the proportion of the non-unique reads that are incor-
rectly assigned to each genome due to sequence similarity. Our
Bayesian missing data mixture model reweights the read assignment
probabilities using the mapping qualities and the parameters of the
model. In practice, in the reassignment process the parameters are
designed to penalize the value of non-unique reads in the presence
of unique reads and reweight the non-unique reads based on overall
mapping proportions when no reads map uniquely.

To formally describe our model, let i=1,. . .,R be the index of
the reads and let j=1,. . .,G be the index of the genomes in the da-
tabase. Let xi=(xi1,xi2,. . .,xiG)={xij} be a set of genome indicators for
read i where xij=1 if the read originated from the jth genome and
xij=0 if the read did not come from genome j. Note that by as-
sumption, one and only one element in the vector xi can be equal
to 1 (i.e., each read has only one template genome). We assume
that xi follows a multinomial distribution, with probability of suc-
cess p=(p1,p2,. . .,pG)={pj}, where pj is the proportion of the reads
that originated from the jth genome.

For the unique reads, we know the template genome of interest
or, in other words, we directly observe the genome indicator xi for
these reads. In the case of the non-unique reads, the genome in-
dicator xi is unobserved or missing data. For the non-unique reads,
the observations are partial mapping qualities for each of the
genomes. These mapping probabilities are provided as posterior
probabilities, which are scaled mapping qualities or relative
likelihood alignment scores obtained from the algorithm. More
specifically, for the ith read we denote these mapping scores by
qi=(qi1,qi2,. . .,qiG)={qij}. For unique reads, the qij values are equal
to the xij values. For non-unique reads, these represent the un-
certainty in mapping and need to be rescaled—or equivalently
these reads need to be reassigned to the correct template genome
of origin. In order to do this, we define a second set of parameters,
u=(u1,u2,. . .,uG)={uj} where uj is a reassignment parameter that
represents the proportion of the non-unique reads that need to
be reassigned to the jth genome.

In order to simplify the notation in the likelihood function,
we define yi as the uniqueness indicator for read i, namely letting yi=1
if read i is unique and yi=0 otherwise. Under the modeling as-
sumptions above, the complete data likelihood of the parameters
(p, u) given the observed data (reads, yi, unique xi) and the missing
data (non-unique xi) is given by

Lðp; ujxi;qi;yÞ}
YR

i=1

YG

j=1

½pju
ð1�yiÞ
j qij�

xij :

Although the reassigned reads (estimated xi) and reassignment
parameters (estimated u) are very informative, the quantities of
interest from the modeling steps are the estimates for the genome
read proportions (estimated p). These probabilities will identify the
single or multiple organisms from the database that are present in
the samples, based on the proportion of the reads that are assigned
to the genome after the reads are reassigned.

Bayesian prior distributions

We assume a priori that both p and u follow Dirichlet distributions,
the densities of which can be seen in the following equations:

f ðpjaÞ}
YG

j=1

p
aj�1
j and f ðujbÞ}

YG

j=1

u
bj�1
j :

If aj=1 for all j=1,. . .,G, this is equivalent to adding one unique read
for each of the G genomes, and aj=n would be the equivalent of
adding n unique reads to the jth genome. Similarly, bj=n is the
equivalent of adding n reads of non-unique read probabilities to
the jth genome. However, the prior information for u does not
behave like true non-unique reads because it is not subject to
reassignment. Prior information assigned to each genome will al-
ways be associated with that genome, but its effect is diminished as
the number of reads increases. This can be seen clearly in the
maximization formulas given in the following section. The prior
information stabilizes the algorithm by preventing the estimates
of p and u from converging to the boundaries of 0 and 1. Inclusion
of prior information will bias the results, possibly even leading to
the identification of the wrong genome if the prior is not selected
carefully. However, this would only happen in rare circumstances,
and it would require initially favoring some genomes above others.
To avoid this, each genome will usually receive the same values for
its priors for a and b. If prior information is included, evidence of a
read being present in the sample can be inferred based on whether
or not the final read probability is statistically greater than the
original prior information inserted. Note that noninformative
priors can also be used for the experimental data by assigning zero
unique reads and zero non-unique reads to each genome.

Read reassignment via the EM algorithm

Estimation of the model parameters and reassignment of the reads
is accomplished using an expectation-maximization (EM) algo-
rithm (Dempster et al. 1977). Each of the iterations of the EM al-
gorithm consists of two simple steps. The first, called the expecta-
tion step or E-step, reassigns each read to its most likely or expected
genome based on its mapping quality score and current estimates
of the read proportion and non-unique misclassification model
parameters. In the second step, called the maximization step or
M-step, the model parameters are re-estimated using the new read
assignment probabilities from the most recent E-step. These steps
are repeated until the read assignments and proportion estimates
converge to stable values between iterations. This algorithm is
guaranteed to converge to a local maximum (Hastie et al. 2009)
and in our data examples presented above, the parameter’s poste-
rior distributions appeared to be unimodal, and therefore the EM
converged to a global maximum without issue.

To implement this algorithm, initial estimates of the param-
eters p and u are proposed, usually pj=uj=1/G for all j. In the E-step,
the expected value of xi is computed for each combination of
i=1,. . .,R and j=1,. . .,G-based estimates of p and u, as well as the
observed data qi and y. In the E-step, the expected values of the
elements of xi are estimated as

d̂ij = E xij

� �
=

pju
ð1�yiÞ
j qij

+G
k=1 pku

ð1�yiÞ
k qik

:

Next, the M-step calculates the new estimates of p and u given qi, y
and the current expected values d̂ij. The formulas for estimating p

and u provide the Bayesian maximum a posteriori (MAP) estimates;
however, if the prior information aj and bj are set to 0 for all j ge-
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nomes, these equations provide the maximum-likelihood esti-

mates. Letting N = +
G

k=1

+
R

i=1

d̂ik, these estimates are as follows:

p̂j =
+R

i = 1d̂ij + aj

N + +G
k=1 ak

and ûj =
+R

i =1 ð1� yi Þ̂dij + bj

+R
i =1 ð1� yiÞ + +G

k =1 bk

:

The E-step is then repeated using the updated estimates of p and u,
followed again by the M-step. These steps are repeated until the
expected value of xi and the estimates of p and u converge to stable
values across iterations.

Parameters used in methods comparisons

For the O104:H4 example comparisons and SRA data sets, we used
the following parameters:

Naı̈ve alignment

(A) BLAST version 2.2.27+ at default parameters, (B) Bowtie 2 ver-
sion 2.0.2 with: ‘‘-k 100’’, and (C) GNUMAP version 3.0.2 with: ‘‘-m
16 -h 500 -a 0.8–print_all_sam’’.

MEGAN

Version 4.70.4 with default parameters and the BLAST output file
(described above).

PhymmBL

Version 4.0 at default parameters after manually adding O104:H4
to the database.

MetaPhlAn

Version 1.7.7 at default parameters and the BLAST marker database.

PhyloPhythiaS

Webserver: http://phylopythias.cs.uni-duesseldorf.de; Submission
date: 3/2013.

Trinity Assembler

Release 2012-06-08 with ‘‘–seqType fa–JM 10G–single’’.

Software availability

Software is available at https://sourceforge.net/projects/pathoscope/.
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