Downloaded from genome.cship.org on September 12, 2024 - Published by Cold Spring Harbor Laboratory Press

Resource

The Genome Analysis Toolkit: A MapReduce
framework for analyzing next-generation DNA

sequencing data

Aaron McKenna,' Matthew Hanna,' Eric Banks," Andrey Sivachenko,’ Kristian Cibulskis,
Andrew Kernytsky,' Kiran Garimella," David Altshuler,’? Stacey Gabriel,' Mark Daly, '

and Mark A. DePristo'"3

7Program in Medical and Population Genetics, The Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA;
2Center for Human Genetic Research, Massachusetts General Hospital, Richard B. Simches Research Center, Boston, Massachusetts

02114, USA

Next-generation DNA sequencing (NGS) projects, such as the 1000 Genomes Project, are already revolutionizing our
understanding of genetic variation among individuals. However, the massive data sets generated by NGS—the 1000
Genome pilot alone includes nearly five terabases—make writing feature-rich, efficient, and robust analysis tools difficult
for even computationally sophisticated individuals. Indeed, many professionals are limited in the scope and the ease with
which they can answer scientific questions by the complexity of accessing and manipulating the data produced by these
machines. Here, we discuss our Genome Analysis Toolkit (GATK), a structured programming framework designed to
ease the development of efficient and robust analysis tools for next-generation DNA sequencers using the functional
programming philosophy of MapReduce. The GATK provides a small but rich set of data access patterns that encompass
the majority of analysis tool needs. Separating specific analysis calculations from common data management in-
frastructure enables us to optimize the GATK framework for correctness, stability, and CPU and memory efficiency and
to enable distributed and shared memory parallelization. We highlight the capabilities of the GATK by describing the
implementation and application of robust, scale-tolerant tools like coverage calculators and single nucleotide poly-
morphism (SNP) calling. We conclude that the GATK programming framework enables developers and analysts to
quickly and easily write efficient and robust NGS tools, many of which have already been incorporated into large-scale

sequencing projects like the 1000 Genomes Project and The Cancer Genome Atlas.

[Supplemental material is available online at http:// www.genome.org.]

In recent years, there has been a rapid expansion in the number of
next-generation sequencing platforms, including [llumina (Bentley
etal. 2008), the Applied Biosystems SOLiD System (McKernan et al.
2009), 454 Life Sciences (Roche) (Margulies et al. 2005), Helicos
HeliScope (Shendure and Ji 2008), and most recently Complete
Genomics (Drmanac et al. 2010). Many tools have been created
to work with next-generation sequencer data, from read based
aligners like MAQ (Li et al. 2008a), BWA (Li and Durbin 2009), and
SOAP (Li et al. 2008b), to single nucleotide polymorphism and
structural variation detection tools like BreakDancer (Chen et al.
2009), VarScan (Koboldt et al. 2009), and MAQ. Although these
tools are highly effective in their problem domains, there still
exists a large development gap between sequencing output and
analysis results, in part because tailoring these analysis tools to
answer specific scientific questions can be laborious and difficult.
General frameworks are available for processing next-generation
sequencing data but tend to focus on specific classes of analysis
problems—Ilike quality assessment of sequencing data, as in PIQA
(Martinez-Alcantara et al. 2009)—or require specialized knowledge
of an existing framework, as in BioConductor in the ShortRead
toolset (Morgan et al. 2009). The lack of sophisticated and flexible

3Corresponding author.

E-mail depristo@broadinstitute.org.

Article published online before print. Article and publication date are at
http://www.genome.org/cgi/doi/10.1101/gr.107524.110.

programming frameworks that enable downstream analysts to
access and manipulate the massive sequencing data sets in a pro-
grammatic way has been a hindrance to the rapid development of
new tools and methods.

With the emergence of the SAM file specification (Li et al.
2009) as the standard format for storage of platform-independent
next-generation sequencing data, we saw the opportunity to im-
plement an analysis programming framework which takes ad-
vantage of this common input format to simplify the up-front
coding costs for end users. Here, we present the Genome Analysis
Toolkit (GATK), a structured programming framework designed to
ease the development of efficient and robust analysis tools for
next-generation DNA sequencers using the functional programm-
ing philosophy of MapReduce (Dean and Ghemawat 2008). By
separating specific analysis calculations from common data man-
agement infrastructure, tools are easy to write while benefiting
from ongoing improvements to the core GATK. The GATK engine
is constantly being refined and optimized for correctness, stability,
and CPU and memory efficiency; this well-structured software
core allows the GATK to support advanced features such as dis-
tributed and automatic shared-memory parallelization. Here, we
highlight the capabilities of the GATK, which has been used to
implement a range of analysis methods for projects like The
Cancer Genome Atlas (http://cancergenome.nih.gov) and the
1000 Genomes Project (http://www.1000genomes.org), by de-
scribing the implementation of depth of coverage analysis tools

20:1297-1303 © 2010 by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/10; www.genome.org

Genome Research 1297

www.genome.org

http://genome.cshlp.org/
http://www.cshlpress.com

Downloaded from genome.cshlp.org on September 12, 2024 - Published by Cold Spring Harbor Laboratory Press

McKenna et al.

and a Bayesian single nucleotide polymorphism (SNP) genotyper,
and show the application of these tools to the 1000 Genomes
Project pilot data.

Methods

The GATK development environment is currently provided as
a platform-independent Java 1.6 framework. The core system uses
the nascent standard sequence alignment/map (SAM) format to
represent reads using a production-quality SAM library, which is
publicly available (http://picard.sourceforge.net). This SAM Java
development kit handles parsing the sequencer reads, as well as
providing ways to query for reads that span specific genomic re-
gions. The binary alignment version of the SAM format, called
binary alignment/map (BAM), is compressed and indexed, and
is used by the GATK for performance reasons due to its smaller
size and ability to be indexed for search. The core system can ac-
commodate reads from any sequencing platform following con-
version to BAM format and sorting on read coordinate order and
has been extensively tested on Illumina (Bentley et al. 2008), Ap-
plied Biosystems SOLiD System (McKernan et al. 2009), 454 Life
Sciences (Roche) (Margulies et al. 2005), and Complete Genomics
(Drmanac et al. 2010). The GATK supports BAM files with align-
ments emitted from most next-generation sequence aligners and
has been tested with many BAMs aligned using a variety of publicly
available alignment tools. Many other forms of genomic infor-
mation are supported as well; including common public database
formats like the HapMap (International HapMap Consortium
2003) and dbSNP (Sherry et al. 2001) variation databases. A variety
of genotyping and variation formats are also supported by the
GATK, including common emerging SNP formats like GLF (http://
samtools.sourceforge.net), VCF (http://www.1000genomes.org/wiki/
doku.php?id=1000_genomes:analysis:vcfv3.2), and the GELI text
format (http://www.broadinstitute.org/gsa/wiki/index.php/Single_
sample_genotyper#The_GeliText_file_format). As the list of avail-
able variant and other reference associated metadata formats is
constantly growing, the GATK allows end users to incorporate
modules for new formats into the GATK; further information can
be found on our website. The GATK is available as an open-
source framework on The Broad Institute’s website, http://www.
broadinstitute.org/gsa/wiki/index.php/The_Genome_Analysis_
ToolKkit.

GATK architecture

The GATK was designed using the functional programming para-
digm of MapReduce. This approach makes a contract with the
developer, in which analysis tools are constructed so that the un-
derlying framework can easily parallelize and distribute processing;
this methodology has been used by companies like Google and
Yahoo! (Bhandarkar 2009) to manage massive computing infra-
structures in a scalable way. MapReduce divides computations into
two separate steps; in the first, the larger problem is subdivided

into many discrete independent pieces, which are fed to the map
function; this is followed by the reduce function, joining the map
results back into a final product. Calculations like SNP discovery
and genotyping naturally operate at the map level of MapReduce,
since they perform calculations at each locus of the genome in-
dependently. On the other hand, calculations that aggregate data
over multiple points in the genome, such as peak calling in chro-
matin immunoprecipitation with massively parallel sequencing
(ChIP-seq) experiments, would utilize the reduce function of
MapReduce to integrate the heights of read pileups across loci to
detect sites of transcriptional regulation (Pepke et al. 2009).

Consequently, the GATK is structured into traversals, which
provide the division and preparation of data, and analysis modules
(walkers), which provide the map and reduce methods that con-
sume the data. In this contract, the traversal provides a succession
of associated bundles of data to the analysis walker, and the anal-
ysis walker consumes these bundles of data, optionally emitting
an output for each bundle to be reduced. Since many analysis
methods for next-generation sequencing data have similar access
patterns, the GATK can provide a small but nearly comprehensive
set of traversal types that satisfy the data access needs of the ma-
jority of analysis tools. The small number of these traversal types,
shared among many tools, enables the core GATK development
team to optimize each traversal for correctness, stability, CPU
performance, and memory footprint and in many cases allows
them to automatically parallelize calculations.

Traversal types

As stated above, the GATK provides a collection of common data
presentation schemes, called traversals, to walker developers (Table
1). For example, traversals “by each sequencer read” and “by every
read covering each single base position in a genome” (Fig. 1) are the
standard methods for accessing data for several analyses such as
counting reads, building base quality histograms, reporting aver-
age coverage of sequencer reads over the genome, and calling SNPs.
The “by every read covering each single base position in a genome”
traversal, called a locus-based traversal, is the most commonly used
traversal type. It presents the analysis walkers with all the associ-
ated genomic data, including all the reads that span the genomic
location, all reference ordered data (which includes variation data,
associated interval information, and other genetic features), and
the reference base at the specific locus in the genome. Each of these
single-base loci are passed to the walker’s map function in succes-
sion. This traversal type accommodates common analysis meth-
ods that are concerned with computation over the sequencer-read
pile up (the collection of nucleotides from each read at this location),
like genotyping and depth of coverage calculations, along with
methods that are concerned with variant analysis and concordance
calculations.

The other common traversal type, a read based traversal,
presents the analysis walker with each read individually, passing

Table 1. Traversal types available in the Genome Analysis Toolkit
TraverseLoci

presented to the analysis walker.
TraverseReads

TraverseDuplicates
TraverseLocusWindows

Each single base locus in the genome, with its associated read, reference ordered data, and reference base are

Each read is presented to the analysis walker, once and only once, with its associated reference bases.
The walker is supplied with a list of duplicate reads and unique reads at each reference locus.
Walkers are supplied the reads, reference ordered data, and reference bases for a whole interval of the genome,

as opposed to a single base as in TraverseLoci.

The GATK was designed in a modular way, which allows the addition of new traversal types that address users’ analysis needs, in addition to providing

established common traversal methods, as listed in the table.

1298 Genome Research
www.genome.org

http://genome.cshlp.org/
http://www.cshlpress.com

Downloaded from genome.cshlp.org on September 12, 2024 - Published by Cold Spring Harbor Laboratory Press

The Genome Analysis Toolkit

dosnp m [®m ®®m . "

.
it — —— —
- —

L
Reference metadata

Reference genome

} Reads

} Reference metadata

dbsnp ® a LN} L} LI LI
exons —_—

Reference genome

s

i
I
k
i — Reads
(= —
= o ———

7

Figure 1. Read-based and locus-based traversals. Read-based traversals
provide a sequencer read and its associated reference data during each
iteration of the traversal. Locus-based traversals are provided with the
reference base, associated reference ordered data, and the pileup of read
bases at the given locus. These iterations are repeated respectively for
each read or each reference base in the input BAM file.

each read once and only once to the walker’s map function. Along
with the sequencer read, the walker is presented with the reference
bases that the read overlaps (reads that do not align to reference do
not have accompanying reference sequence). This type of traversal
is useful for analyzing read quality scores, alignment scores, and
merging reads from multiple bam files. Currently, traversals of
overlapping or otherwise multilocus arrangements are not imple-
mented, but the architecture is sufficiently general to enable such
complex assess patterns with a concomitant increase in memory
requirements. As an example, we are currently designing a tra-
versal accessing read mate pairs together using additional com-
putation and memory resources to look-ahead for the associated
reads in the BAM file at every locus.

Sharding

One of the most challenging aspects of next-generation sequenc-
ing is managing the massive scale of sequencing data. Intelligently
shattering this overwhelming collection of information into
manageable pieces is critical for scalability, limiting memory con-
sumption, and effective parallelization of tasks. In this respect the
GATK has taken a novel approach by dividing up data into mul-
tikilobase-size pieces, which we have termed “shards.” Exact shard
sizes are calculated by the GATK engine and are based on the un-
derlying storage characteristics of the BAM and the demands on
the system. These shards contain all the information for the as-
sociated subregion of the genome, including the reference bases,
SNP information, and other reference ordered data, along with
the reads taken from the SAM file. Each of these shards will be
subdivided again by the traversal engine as it feeds data to the
walker, but this shattering of data allows large chunks of data to be
handed out in a manageable and controlled fashion. The sharding
system is agnostic to the underlying file system or overarching ex-
ecution manager, a design decision made to ensure compatibility
with as many system configurations as possible. It would be possible
to implement sharding systems that take advantage of data local-
izing file systems such as Hadoop (http://hadoop.apache.org), or
parallel computing platforms such as LSF (http://www.platform.
com) or Sun Grid Engine (http://gridengine.sunsource.net).

The GATK also handles associating reference-ordered data
with specific loci in these shards. The engine matches user-sup-
plied data, for instance, dbSNP or Hapmap variation information,
to their specific locus. The GATK is not limited in the number of
reference ordered data tracks that can be presented to the analysis

modules. Multisite data are provided for each base in reads, and for
each locus passed to the analysis module. Support for multilocus
events, such as genomic translocations, is an active research area
and is ongoing.

Interval processing

Many biological questions have context in only limited stretches
of the genome; the GATK allows users to bracket the region or re-
gions presented to the analysis walkers by specifying active in-
tervals. These intervals can be specified either on the command
line in common interval formats like the UCSC’s BED format (Kent
et al. 2002), or with a custom interval format that the GATK has
defined. This provides end users with the ability to target regions of
interest, like processing only HapMap called sites or determining
coverage over all of the exons of a gene set.

Merging input files

Many analysis methods are concerned with computation over all
data for a single individual, group, or population. For a variety of
reasons, data produced from next-generation sequencing are not
always organized and clustered in the same manner, making the
management and collation of a single composite data source for an
analysis tedious and error prone. To address this, the GATK is ca-
pable of merging multiple BAM files on the fly, allowing multiple
sequencing runs or other input files to be clustered together
seamlessly into a single analysis without altering the input files.
Sequencer run information, including read-group information, is
preserved in this process, which allows walkers to determine the
original sequencing information if necessary. The merged se-
quencing data can also be written to disk; this is an effective means
of merging data into meaningful groupings for later use.

Parallelization

The GATK provides multiple approaches for the parallelization of
tasks. With interval processing, users can split tasks by genomic
locations (i.e., dividing up a job by chromosome) and farm out
each interval to a GATK instance on a distributed computing sys-
tem, like Sun Grid Engine or LSE. A sample script is included in the
supplemental material. The GATK also supports an automatic
shared-memory parallelization, where the GATK manages multi-
ple instances of the traversal engine and the given walker on
a single machine. Walkers that wish to use this shared memory
parallelization implement the TreeReducible interface, which en-
ables the GATK to merge together two reduce results (Fig. 2). With
these methods, the GATK is able to ensure correct serial reassembly
of the results from multiple threads in reference-based order. The
GATK also collects the output from the individual walkers, merg-
ing them in the correct reference based order, alleviating the te-
dious task of tracking output sources from tool developers.

Data collection and processing

The following analyses were conducted using publicly available
pilot data from the 1000 Genomes Project. The data were collected
from the Data Coordination Center (DCC) as BAM files aligned
using MAQ (Li et al. 2008a) for Illumina reads, SSAHA2 (Ning et al.
2001) for 454 reads, and Corona (http://solidsoftwaretools.com/
gf/project/corona/) for SOLiD reads. Sequencing data were stored
on a cluster of five Isilon IQ 12000x network area storage devices
and processed on a distributed blade farm using Platform Com-
puting’s LSF software. Shared memory parallel processing jobs

Genome Research 1299

www.genome.org

http://genome.cshlp.org/
http://www.cshlpress.com

Downloaded from genome.cshlp.org on September 12, 2024 - Published by Cold Spring Harbor Laboratory Press

McKenna et al.

Thread Single thread work unit Tree reduce thread
I 1 1 I 1
1 | MAP | REDUCE H MAP ‘ REDUCE }—
2 | MAP | REDUCE |—)l MAP } REDUCE ’—
3 | MAP | REDUCE H MAP ‘ REDUCE }—
4 | MAP l REDUCE’H MAP ‘ REDUCE }—

Flow of calculation

Figure 2. Shared memory parallel tree-reduction in the GATK. Each
thread executes independent MapReduce calls on a single instance of the
analysis walker, and the GATK uses the user specified tree-reduce function
to merge together the reduce results of each thread in sequential order.
The final in-order reduce result is returned.

were executed on an AMD Opteron 16 processor server with 128
gigabytes of RAM.

Results

Depth of coverage walker

Determining the depth of coverage (DoC) in the whole genome,
whole exome, or in a targeted hybrid capture sequencing run is
a computationally simple, but critical analysis tool. Depth-of-
coverage calculations play an important role in accurate CNV
discovery, SNP calling, and other downstream analysis methods
(Campbell et al. 2008). Although computationally simple, the
creation of this analysis tool is traditionally entangled with the

tedious and often fragile task of loading and managing massive
stores of sequence read-based information.

We have implemented a depth of coverage walker in the
GATK to illustrate the power of the GATK framework, as well as to
demonstrate the simplicity of coding to the toolkit. The DoC code
contains 83 lines of code, extending the locus walker template. At
each site the walker receives a list of the reads covering the refer-
ence base and emits the size of the pileup. The end user can op-
tionally exclude reads of low mapping quality, reads indicated to
be deletions at the current locus, and other read filtering criteria.
Like all GATK-based tools, the DoC analysis can also be provided
with a list of regions to calculate coverage, summing the average
coverage over each region. This capability is particularly useful in
quality control and assessment metrics for hybrid capture rese-
quencing (Gnirke et al. 2009). This methodology can also be used
to quantify sequencing results over complex or highly variable
regions. One of these regions, the extended major histocompati-
bility complex (MHC), can have problematic sequencer-read align-
ments due to the high rate of genetic variability (Stewart et al.
2004). A simple test of an upstream sequencing pipeline is to
analyze this region for effective mapping of reads using the depth
of coverage walker, the output of which is shown in Figure 3. The
figure shows the depth of coverage in the MHC region of all JPT
samples from pilot 2 of the 1000 Genomes Project; high variability
in read coverage is clearly visible, especially in regions that corre-
spond to HLA regions of the MHC (de Bakker et al. 2006).

Simple Bayesian genotyper

Bayesian estimation of the most likely genotype from next-gen-
eration DNA resequencing reads has already proven valuable (Li
et al. 2008a,b; Li and Durbin 2009). Our final example GATK tool
is a simple Bayesian genotyper. The genotyper, though naive, pro-
vides a framework for implementing more advanced genotyping

—_
o 79
O
~
% 6 Sample
g —— NA18940
— NA18942
=, NAIS04s
NA18944
(0] NA18045
o 51 NA18947
© NA18948
fa NA18949
(0] NA18951
> NA18952
o NA18953
O NAzes
u— NA18950
o} e
= NA18965
=
o — Katoes
[0 —— NA18969
—— NA18970
o —— NA18971
© — NA18972
x NAzso7s
o Nteoro
o NAzoe
o NA18005
o .
o ol i : : d :
= 1 | Il BRIV ORERIE 0 |0 0 0T Ry
f T T T T T T T 1
26M 27TM 28M 29M 30M 31M 32M 33M 3aM

Major Histocompatibility Complex (MHC), Chromosome 6

Figure 3. MHC depth of coverage in |PT samples of the 1000 Genomes Project pilot 2, calculated using the GATK depth of coverage tool. Coverage is
averaged over 2.5-kb regions, where lines represent a local polynomial regression of coverage. The track containing all known annotated genes from the
UCSC Genome Browser is shown in gray, with HLA genes highlighted in red. Coverage drops near 32.1 M and 32.7 M correspond with increasing density

of HLA genes.

1300 Genome Research
www.genome.org

http://genome.cshlp.org/
http://www.cshlpress.com

Downloaded from genome.cshlp.org on September 12, 2024 - Published by Cold Spring Harbor Laboratory Press

The Genome Analysis Toolkit

and variant discovery approaches that
incorporate more realistic read-mapping
error and base-miscall models. An
improved framework could also handle
samples or regions of the genome where
the ploidy is not two, such as in tumor
samples or regions of copy-number vari-
ation. This simple Bayesian genotyper
serves both as the starting point for more
advanced statistical inference tools and
also as an ideal place to highlight the
shared memory and distributed paral-
lelization capabilities of the GATK core
engine.

In brief, our example genotyper
computes the posterior probability of each
genotype, given the pileup of sequencer
reads that cover the current locus, and
expected heterozygosity of the sample.
This computation is used to derive the
prior probability each of the possible 10
diploid genotypes, using the Bayesian
formulation (Shoemaker et al. 1999):

public SimpleCall map(RefMetaDataTracker tracker, ReferenceContext ref, AlignmentContext context) {
// we don't deal with the N ref base case
if (ref.getBase() == 'N' || ref.getBase() == 'n’) return null;
ReadBackedPileup pileup = context.getBasePileup();
double likelihoods[] = DiploidGenotypePriors.getReferencePolarizedPriors(ref.getBase(),
DiploidGenotypePriors. HUMAN_HETEROZYGOSITY,
0.01);
// get the bases and qualities from the pileup
byte bases(] = pileup.getBases();
byte quals[] = pileup.getQuals();

// for each genotype, determine it's likelihood value
for (GENOTYPE genotype : GENOTYPE.values())
for (int index = 0; index < bases.length; index++) {
if (quals[index] > 0) {
// our epsilon is the de-Phred scored base quality
double epsilon = Math.pow(10, quals[index] / -10.0);

byte pileupBase = bases[index];
double p=0;
for (char r : genotype.toString().toCharArray())
p +=r==pileupBase ? 1 - epsilon : epsilon / 3;
likelihoods[genotype.ordinal()] += Math.log10(p / genotype.toString().length());

}
Integer sortedList[] = MathUtils.sortPermutation(likelihoods);

// create call using the best genotype (GENOTYPE.values()[sortedList[9]].toString())
// and calculate the LOD score from best - next best (9 and 8 in the sorted list, since the best likelihoods are closest to zero)
return new SimpleCall(context.getLocation(),
GENOTYPE.values()[sortedList[9]].toString(),
likelihoods[sortedList[9]] - likelihoods[sortedList[8]],
ref.getBase());
}

public Integer reducelnit() {

o(GID) = POPDIG)
Y= u— k) }
pD)
public Integer reduce(SimpleCall value, Integer sum) {
where D represents our data (the read if (value I= null & value.LOD > LODScore) outputStream.printin(value.toString());
returnsum + 1;
base pileup at this reference base) and G }

represents the given genotype. The term
p(G) is the prior probability of seeing this
genotype, which is influenced by its }
identity as a homozygous reference, het-
erozygous, or homozygous nonreference
genotype. The value p(D) is constant over
all genotypes, and can be ignored, and }

return lhs + rhs;

}

public Integer treeReduce(Integer lhs, Integer rhs) {

public void onTraversalDone(Integer result) {
out.printIn("Simple Genotyper genotyped " + result + "Loci);

pDIG)=] p®IG),

bepileup

where b represents each base covering
the target locus. The probability of each
base given the genotype is defined as
p(b|G)=p(b|{A1,A2}) = 1p(b|A1) + 3 p(b|Az), when the genotype G =
{A,,Az} is decomposed into its two alleles. The probability of seeing
a base given an allele is

4
—:b#£A
b|A) = 3)
PO {1€:b=A

and the epsilon term e is the reversed phred scaled quality score at
the base. Finally, the assigned genotype at each site is the genotype
with the greatest posterior probability, which is emitted to disk if
its log-odds score exceeds a set threshold.

The algorithm was implemented in the GATK as a locus based
walker, in 57 lines of Java code (Fig. 4). Along with implementing
the locus walker strategy, it also implements the Tree-Reducible
interface, which allows the GATK to parallelize the MapReduce
calls across processors. We applied the genotyping algorithm above
to Pilot 2 deep coverage data for the CEU daughter, sample
NA12878, on chromosome 1 of the 1000 Genomes Project data
using [llumina sequencing technology. On a single processor, this
calculation requires 863 min to process the 247,249,719 million loci
of chromosome 1.

Figure 4. Code sample for the simple genotyper walker. The map function uses a naive Bayesian
method to generate genotypes, given the pileup of reference bases at the current locus, and emits a call
containing the likelihoods for each of the 10 possible genotypes (assuming a diploid organism). This is
then output to disk. The implementation of the tree-reduce function provides directions to the GATK
engine for reducing two in-order parallel reduce results, allowing parallelization of the genotyper.

Moreover, the GATK's built-in support for shared memory
parallelization allows us to quickly add CPU resources to reduce the
run-time of target analyses. The elapsed time to genotype
NA12878s chromosome 1 drops nearly exponentially through the
addition of only 11 additional processing nodes, with no change to
the analysis code. The 12 processor version takes only slightly
more than one-twelfth the time of the single processing version
(Fig. 5). This flexibility allows end users to allocate CPU resources
to a pool of analyses based on the priority of their completion, or to
quickly complete an analysis by assigning large computing re-
sources to a single run. Using the distributed parallelization
scheme (see Supplemental material), the GATK can be partitioned
to even large computational clusters, further reducing elapsed time
for end user analyses.

Even this naive genotyper performs reasonably well at iden-
tifying variants—315,202 variants were called on chromosome 1,
with 81.70% in dbSNP and a concordance figure of 99.76%. This
compares well against previous single individual genotyping ef-
forts, which have seen concordance values for an individual of
86.4% and 99.6% (Wang et al. 2008; Wheeler et al. 2008). For

Genome Research 1301
www.genome.org

http://genome.cshlp.org/
http://www.cshlpress.com

Downloaded from genome.cshlp.org on September 12, 2024 - Published by Cold Spring Harbor Laboratory Press

McKenna et al.

>
|
>

55000
|
35000 45000
| |

25000
|
o

45000
|
Log (sec)
15000
|
/4

35000
|

5000
L

and memory efficiency and even to au-

tomatically parallelize most analysis tools

B on both shared memory machines and
distributed clusters. Despite less than 1 yr

of development, the GATK already un-

derlies several critical tools in both the

1000 Genomes Project and The Cancer

Genome Atlas, including quality-score

recalibration, multiple-sequence realign-

g ment, HLA typing, multiple-sample SNP
genotyping, and indel discovery and
genotyping. The GATK's robustness and

25000
|

Elapsed Time (secs)
1

15000
|

5000
L

—
—_
O—— ¢

- Processor Count

efficiency has enabled these tools to be
easily and rapidly deployed in recent
projects to routinely process terabases of
Illumina, SOLID, and 454 data, as well
processing hundreds of lanes each week

O Distributed

in the production resequencing facilities
A Shared Memory

=)
é@}é’g*No shared memory machines available with more than 12 processors

D\D

at the Broad Institute. In the near future,
we intend to expand the GATK to support
additional data access patterns to enable
the implementation of local reference-

I T T T T T T
1 4 8 12 16 24 32

Processor Count
Figure 5.

Parallelization of genotyping in the GATK. (A) 1000 Genomes Project sample NA12878s

! guided assembly, copy-number variation
50 detection, inversions, and general struc-
tural variation algorithms.

Acknowledgments

chromosome 1 was genotyped using both shared memory parallelization and distributed parallelization

methods. Both methods follow a near exponential curve (B) as the processor count was increased, and
using the distributed methodology it was possible to see elapsed time gains out to 50 processors.

HapMap sites the overall concordance figure is 99.84%, with
99.81% of homozygous variants correctly called. Given that the
error rate in HapMap is 0.5% (International HapMap Consortium
2003), these values are remarkably good. However, this simple
genotyper generates many false-positive SNP calls, as indicated
by the 82% dbSNP rate given our expectation for 90% for a mem-
ber of the CEPH population. Nevertheless, a better genotyper in-
corporating a more realistic model of machine error, and thereby
reducing the false-rate, can as easily be implemented in the GATK,
such as the production-grade multisample genotyper available
from the GATK website (M DePristo, E Banks, R Poplin, K Garimella,
J Maguire, C Hartl, A Philippakis, G del Angel, M Rivas, M Hanna,
et al., in prep.).

Discussion

The Genome Analysis Toolkit (GATK) provides a structured Java
programming framework for writing efficient and robust anal-
ysis tools for next-generation resequencing projects. The GATK's
MapReduce architecture separates the complex infrastructure
needed to access the massive next-generation sequencing data
from the logic specific to each analysis tool. Since the GATK engine
encapsulates the complexity of efficiently accessing the next-
generation sequencing data, researchers and developers are free to
focus on their specific analysis algorithms. This not only vastly
improves the productivity of the developers, who can focus their
effect on analysis methods, but also results in tools that are effi-
cient and robust and can benefit from improvement to a common
data management engine. Moreover, this separation has enabled
us to optimize the GATK engine for correctness, stability, and CPU

We thank our colleagues in the Medical
and Population Genetics and Cancer In-
formatics programs at the Broad Institute,
who have encouraged and supported us
during the development the Genome Analysis Toolkit and have
been such enthusiastic early adopters, in particular, Gad Getz,
Anthony Philippakis, and Paul de Bakker. We also thank our re-
viewers for their valuable feedback on the manuscript. This work
was supported by grants from the National Human Genome
Research Institute, including the Large Scale Sequencing and
Analysis of Genomes grant (54 HG003067) and the Joint SNP
and CNV calling in 1000 Genomes sequence data grant (UO1
HG005208).

References

Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown
CG, Hall KP, Evers DJ, Barnes CL, Bignell HR, et al. 2008. Accurate whole
human genome sequencing using reversible terminator chemistry.
Nature 456: 53-59.

Bhandarkar M. 2009. Practical problem solving with hadoop and pig. In
USENIX. The USENIX Association, San Diego, CA.

Campbell PJ, Stephens PJ, Pleasance ED, O’Meara S, Li H, Santarius T,
Stebbings LA, Leroy C, Edkins S, Hardy C, et al. 2008. Identification of
somatically acquired rearrangements in cancer using genome-wide
massively parallel paired-end sequencing. Nat Genet 40: 722-729.

Chen K, Wallis JW, McLellan MD, Larson DE, Kalicki JM, Pohl CS, McGrath
SD, Wendl MC, Zhang Q, Locke DP, et al. 2009. BreakDancer: An
algorithm for high-resolution mapping of genomic structural variation.
Nat Methods 6: 677-681.

Dean], Ghemawat S. 2008. MapReduce: Simplified data processing on large
clusters. Commun ACM 51: 107-113.

de Bakker PIW, McVean G, Sabeti PC, Miretti MM, Green T, Marchini J, Ke X,
Monsuur AJ, Whittaker P, Delgado M, et al. 2006. A high-resolution HLA
and SNP haplotype map for disease association studies in the extended
human MHC. Nat Genet 38: 1166-1172.

Drmanac R, Sparks AB, Callow MJ, Halpern AL, Burns NL, Kermani BG,
Carnevali P, Nazarenko I, Nilsen GB, Yeung G, et al. 2010. Human
genome sequencing using unchained base reads on self-assembling
DNA nanoarrays. Science 327: 78-81.

1302 Genome Research
www.genome.org

http://genome.cshlp.org/
http://www.cshlpress.com

Downloaded from genome.cshlp.org on September 12, 2024 - Published by Cold Spring Harbor Laboratory Press

The Genome Analysis Toolkit

Gnirke A, Melnikov A, Maguire J, Rogov P, LeProust EM, Brockman W,
Fennell T, Giannoukos G, Fisher S, Russ C, et al. 2009. Solution hybrid
selection with ultra-long oligonucleotides for massively parallel targeted
sequencing. Nat Biotechnol 27: 182-189.

International HapMap Consortium. 2003. The International HapMap
Project. Nature 426: 789-796.

Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D.
2002. The Human Genome Browser at UCSC. Genome Res 12: 996-1006.

Koboldt DC, Chen K, Wylie T, Larson DE, McLellan MD, Mardis ER,
Weinstock GM, Wilson RK, Ding L. 2009. VarScan: Variant detection in
massively parallel sequencing of individual and pooled samples.
Bioinformatics 25: 2283-2285.

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics 25: 1754-1760.

Li H, Ruan J, Durbin R. 2008a. Mapping short DNA sequencing reads and
calling variants using mapping quality scores. Genome Res 18: 1851-1858.

Li R, LiY, Kristiansen K, Wang J. 2008b. SOAP: Short oligonucleotide
alignment program. Bioinformatics 24: 713-714.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G,
Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup.
2009. The Sequence Alignment/Map format and SAMtools.
Bioinformatics 25: 2078-2079.

Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka]J,
Braverman MS, Chen Y-J, Chen Z, et al. 2005. Genome sequencing in
microfabricated high-density picolitre reactors. Nature 437: 376-380.

Martinez-Alcantara A, Ballesteros E, Feng C, Rojas M, Koshinsky H, Fofanov
V, Havlak P, Fofanov Y. 2009. PIQA: Pipeline for Illumina G1 genome
analyzer data quality assessment. Bioinformatics 25: 2438-2439.

McKernan KJ, Peckham HE, Costa GL, McLaughlin SF, Fu Y, Tsung EF,
Clouser CR, Duncan C, Ichikawa JK, Lee CC, et al. 2009. Sequence and
structural variation in a human genome uncovered by short-read,

massively parallel ligation sequencing using two-base encoding. Genome
Res 19: 1527-1541.

Morgan M, Anders S, Lawrence M, Aboyoun P, Pages H, Gentleman R. 2009.
ShortRead: A bioconductor package for input, quality assessment and
exploration of high-throughput sequence data. Bioinformatics 25: 2607—
2608.

Ning Z, Cox AJ, Mullikin JC. 2001. SSAHA: A fast search method for large
DNA databases. Gernome Res 11: 1725-1729.

Pepke S, Wold B, Mortazavi A. 2009. Computation for ChIP-seq and RNA-
seq studies. Nat Methods 6: S22-S32.

Shendure J, Ji H. 2008. Next-generation DNA sequencing. Nat Biotechnol 26:
1135-1145.

Sherry S, Ward M-H, Kholodov M, Baker J, Phan L, Smigielski E, Sirotkin K.
2001. dbSNP: The NCBI database of genetic variation. Nucleic Acids Res
29:308-311.

Shoemaker JS, Painter IS, Weir BS. 1999. Bayesian statistics in genetics: A
guide for the uninitiated. Trends Genet 15: 354-358.

Stewart CA, Horton R, Allcock RJN, Ashurst JL, Atrazhev AM, Coggill P,
Dunham I, Forbes S, Halls K, Howson JMM, et al. 2004. Complete MHC
haplotype sequencing for common disease gene mapping. Genome Res
14: 1176-1187.

Wang]J, Wang W, LiR, LiY, Tian G, Goodman L, Fan W, ZhangJ, Li], Zhang],
et al. 2008. The diploid genome sequence of an Asian individual. Nature
456: 60-65.

Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, McGuire A, He W,
Chen Y-J, Makhijani V, Roth GT, et al. 2008. The complete genome of an
individual by massively parallel DNA sequencing. Nature 452: 872-876.

Received March 11, 2010; accepted in revised form July 12, 2010.

Genome Research 1303

www.genome.org

http://genome.cshlp.org/
http://www.cshlpress.com

Downloaded from genome.cshlp.org on September 12, 2024 - Published by Cold Spring Harbor Laboratory Press

ENOME
ESEARCH

The Genome Analysis Toolkit: A MapReduce framework for
analyzing next-generation DNA sequencing data

Aaron McKenna, Matthew Hanna, Eric Banks, et al.

Genome Res. 2010 20: 1297-1303 originally published online July 19, 2010
Access the most recent version at doi:10.1101/gr.107524.110

Supplemental http://genome.cshlp.org/content/suppl/2010/07/14/gr.107524.110.DC1
Material

References This article cites 26 articles, 6 of which can be accessed free at:
http://genome.cshlp.org/content/20/9/1297.full.html#ref-list-1

License

Email Alerting Receive free email alerts when new articles cite this article - sign up in the box at the
Service top right corner of the article or click here.

je=
A B The NEW Vortex Mixer scimite

To subscribe to Genome Research go to:
https://genome.cshlp.org/subscriptions

Copyright © 2010 by Cold Spring Harbor Laboratory Press

http://genome.cshlp.org/lookup/doi/10.1101/gr.107524.110
http://genome.cshlp.org/content/suppl/2010/07/14/gr.107524.110.DC1
http://genome.cshlp.org/content/20/9/1297.full.html#ref-list-1
http://genome.cshlp.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=protocols;10.1101/gr.107524.110&return_type=article&return_url=http://genome.cshlp.org/content/10.1101/gr.107524.110.full.pdf
http://genome.cshlp.org/cgi/adclick/?ad=57163&adclick=true&url=https%3A%2F%2Fwww.usascientific.com%2Fvortex_mixer%3Futm_source%3DCSHL%26utm_medium%3DeTOC_VMX%26utm_campaign%3DVMX
https://genome.cshlp.org/subscriptions
http://genome.cshlp.org/
http://www.cshlpress.com

