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ABSTRACT 

Advanced therapeutic dressings that take active part in wound healing to achieve rapid and 

complete healing of chronic wounds is of current research interest. There is a desire for novel 

strategies to achieve expeditious wound healing due to the enormous financial burden 

worldwide. This paper reviews the current state of wound healing and wound management 

products, with emphasis on the demand for more advanced forms of wound therapy and some 

of the current challenges and driving forces behind this demand. The paper reviews information 

mainly from peer reviewed literature and other publicly available sources such as the FDA. A 

major focus is the treatment of chronic wounds including amputations, diabetic and leg ulcers, 

pressure sores, surgical and traumatic wounds (e.g. accidents and burns) where patient 

immunity is low and the risk of infections and complications are high. The main dressings 

include medicated moist dressings, tissue engineered substitutes, biomaterials based biological 

dressings, biological and naturally derived dressings, medicated sutures and various 

combinations of the above classes. Finally, the review briefly discusses possible prospects of 

advanced wound healing including some of the emerging approaches such as hyperbaric 

oxygen, negative pressure wound therapy and laser wound healing, in routine clinical care. 
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1 INTRODUCTION 
1.1 Overview 

 Wound healing is a global medical concern with several challenges including the 

increasing incidence of obesity and type II diabetes, an ageing population (especially in 

developed countries with low birth rates) and the requirement for more effective but also cost 

effective dressings.1 Wound healing is a complex process involving several inter-related 

biological and molecular activities for achieving tissue regeneration. The main physiological 

events include coagulation, inflammation and removal of damaged matrix components, 

followed by cellular proliferation and migration, angiogenesis, matrix synthesis and deposition, 

re-epitheliazation and remodeling.2 These are generally classified into five major phases known 

as hemostasis, inflammation, proliferation, migration and remodeling/maturation.1 Wound 

healing and the different phases involved have been extensively discussed in several reviews 

and textbooks and the reader is referred to these for detailed exposition on the molecular and 

physiological basis of the different stages of wound healing.1-9 

 

1.2 Wounds 
 A wound can be defined as an injury or disruption to anatomical structure and function 

resulting from simple or severe break in the skin and can extend to other tissues and structures 

such as subcutaneous tissue, muscles, tendons, nerves, vessels and even to the bone.1,9,10 Of all 

the body tissues, the skin is definitely the most exposed to damage and easily prone to injury, 

abrasions and burns due to trauma or surgery. The rapid restoration of homeostatic 

physiological conditions is a prerequisite for complete lesion repair, because a slow and 

incorrect repair can cause serious damages including the loss of skin, hair and glands, onset of 

infection, occurrence of skin diseases, injuries to the circulatory system and, in severe cases, 

death of the tissue.  

 Based on the nature of the repair process, wounds can be classified as acute or chronic 

wounds. Acute wounds are usually tissue injuries that heal completely, with minimal scarring, 

within the expected time frame, usually 8–12 weeks.11 The primary causes of acute wounds 

include mechanical injuries due to external factors such as abrasions and tears, which are 

caused by frictional contact between the skin and hard surfaces. Mechanical injuries also 

include penetrating wounds caused by knives and gunshots and surgical wounds caused by 
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incisions, for example to remove tumors. Another category of acute wounds includes burns and 

chemical injuries, which arise from a variety of sources such as radiation, electricity, corrosive 

chemicals and thermal sources. Chronic wounds, on the other hand, arise from tissue injuries 

that heal slowly that have not healed in 12 weeks and often reoccur.5 Chronic wounds are often 

heavily contaminated and usually involve significant tissue loss that can affect vital structures 

such as bones, joints and nerves. Such wounds fail to heal due to repeated trauma to the injured 

area or underlying physiological conditions such as diabetes, persistent infections, poor 

primary treatment and other patient related factors.12 These result in a disruption of the orderly 

sequence of events during the wound healing process.5,13,14 Furthermore, impaired wound 

healing can lead to an excessive production of exudates that can cause maceration of healthy 

skin tissue around the wound.15 

 Wounds are also characterized based on the number of skin layers and area of skin 

affected.16 Injury that affects the epidermal skin surface alone is referred to as a superficial 

wound, whilst injury involving both the epidermis and the deeper dermal layers, including 

blood vessels, sweat glands and hair follicles is referred to as partial thickness wound. Full 

thickness wounds occur when the underlying subcutaneous fat or deeper tissues are damaged 

in addition to the epidermis and dermal layers. Ferreira et al.17 have described both acute and 

chronic wounds that are difficult to heal as ‘complex wounds’ with unique characteristics 

which can be summarized as extensive loss of the integument which comprises skin, hair, and 

associated glands; infection (e.g. Fournier’s gangrene) which may result in tissue loss; tissue 

death or signs of circulation impairment and presence of underlying pathology. 

 Nawaz and Bentley,7 have described some of the factors that contribute towards 

retardation in wound healing (chronic wounds) which are summarized in table 1 below. 

Common chronic skin and soft tissue wounds can be divided into three major groups due to 

similarities in their pathogenesis. These are leg ulcers (of venous, ischemic or of traumatic 

origin), diabetic foot ulcers, and pressure ulcers.18 It also includes other hard-to-heal acute 

wounds such as wounds caused by cancer, pyoderma gangrenosum, immunologic and 

hematologic wounds,19 amputations, abdominal wounds, burns and skin grafts.20 In recent 

years, other more serious forms of chronic wounds such as buruli ulcer, caused by bacterial 

infection which involves significant skin tissue loss, have been reported.21,22 
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Table 1. Local and systemic factors that slow down wound healing.7 
 

Local factors Systemic factors 

 Inadequate blood supply  Shock 

 Wound dehiscence  Chronic renal and hepatic failure 

 Infection  Advancing physiological age 

 Excess local mobility, such as over a 
joint  Obesity 

 Poor surgical apposition or technique  Smoking 

 Increased skin tension  Chemotherapy and radiotherapy 

 Topical medicines  Diabetes mellitus 

 Poor venous drainage  Systemic malignancy 

 Presence of foreign body or foreign 
body reactions 

 Immuno suppressants, anticoagulants, 
cortico steroids 

 Hematoma  Vitamin and trace elements deficiency 

 

 Venous leg ulcers are triggered by malfunction of venous valves causing venous 

hypertension in the crural veins (veins supplying the leg), which increases the pressure in 

capillaries and results in edema. Venous pressure exceeding 45 mmHg certainly leads to 

development of a venous leg ulcer. Diabetic foot ulcer is triggered by monotonous load on the 

neuropathic and often ischemic foot while pressure ulcers are caused by sustained or repetitive 

load on often vulnerable areas such as the sciatic (spinal nerve roots), tuberculum, sacral area, 

heels, and shoulders in the immobilized patient.23 Patients with chronic ulcers usually present 

with underlying complicated factors caused by immunological defects, dysfunction in diabetic 

fibroblasts and the effect of local infection or critical colonization and disruptive effects of 

bacteria in the form of increased cytokine cascades that prolong the inflammatory phase by 

continuous influx of polymorphonuclear neutrophils which release cytotoxic enzymes, free 

oxygen radicals, and inflammatory mediators. These factors are responsible for cellular 

dysfunction and damage to the host tissue,24 which cause delays or stop completely, the wound 

healing process.25 The physiological basis of chronic wound evolution is complex. Continuous 

migration of neutrophils into the wound area causes raised levels of the destructive proteins 

called matrix metallo-proteinases (MMPs) 26-28 including MMP-8 and neutrophil-derived 

elastase. This is in contrast to normal healing wounds in which excess levels of matrix metallo-

proteinases MMPs are inhibited through the nonspecific proteinase inhibitor, Į2-



 6 

macroglobulin and the more specific tissue inhibitors of matrix metalloproteinases (TIMMP)29. 

In chronic wounds, the ratio of the harmful MMP (to the protective TIMMP is raised, resulting 

in the degradation of extracellular matrix30-32, changes in the cytokine profile, and reduced 

levels of proliferative factors required for effective healing.33,34  Table 2 summarizes the 

different types of chronic wounds commonly encountered in clinical management whilst figure 

1 shows photographic representation of the four most common chronic wounds commonly 

reported. 

 

 

Figure 1. (A) Arterial ulcer at the cross malleolus of the leg with sharp margins and a punched out appearance; 
(B) Venous stasis ulcer with irregular border and shallow base, (C) Diabetic foot ulcer with surrounding callus, 
severe ulcer caused by diabetic neuropathy and bony deformity; (D) Pressure ulcer in a paraplegic (impairment 
of motor or sensory function in the lower extremities) patient, causing full-thickness skin loss (Adapted from 
Fonder et al., 2008; with permission).35 
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Table 2. The major chronic wounds commonly encountered in clinical wound therapy 

Type of Ulcer Description Risks factors Symptoms 

Diabetic Ulcers Diabetic foot ulcers (also known as neuropathic 
ulcers) are a major complication of diabetes mellitus. 
The most common cause is uncontrolled blood 
glucose (sugars) over a prolonged period of 
time.  Two other disorders, diabetic neuropathy and 
peripheral vascular disease, can also contribute to 
ulcer formation. 

• Uncontrolled blood sugars 
• Diabetic peripheral neuropathy 
• Peripheral vascular disease 

Diabetic ulcers usually present on the foot at an area of trauma or a 
weight-bearing surface.  The wound bed is commonly dry and may 
have necrotic tissue or a foul odor. This kind of ulcer may be a small 
wound area on the outside but can hide an underlying abscess. The 
skin around the wound commonly has hyperkeratosis. These ulcers are 
generally painless due to altered sensation or neuropathy. 

Pressure Ulcers Pressure ulcers, also known as decubitus ulcers or bed 
sores, occur in people with conditions that limit or 
inhibit movement of body parts that are commonly 
subjected to pressure, such as the sacrum and heels. A 
pressure ulcer is an area of skin that deteriorates when 
the skin is exposed to prolonged pressure.  This 
prolonged and unrelieved pressure restricts blood flow 
into the area and tissue damage or tissue death results. 

• Patients confined to wheelchair or bed  
• Increased age 
• Mental or physical deficits that affect their 

ability to move 
• Chronic conditions that prevent areas of the 

body from receiving proper blood flow 
• Fragile skin (patient under steroidal 

therapy), urinary or fecal incontinence 
• Malnutrition 

A pressure ulcer generally starts as reddened area on the skin and, if 
the contributing pressure is unrelieved, the ulcer progresses to a 
blister, then an open sore, and finally a deep crater. This deterioration 
may occur rapidly. The most common places for pressure ulcers to 
form are over bones close to the skin, such as the sacrum, heels, 
elbows, hips, ankles, shoulders, back, and back of the head. Pressures 
sores are categorized from stage I (earliest signs) to stage IV (worst) 
according to severity and the treatments depend on the wound 
stage. Two additional stages can be used in case of severe wounds. 
They are “unstageable” and “suspected deep tissue injury”. 

Venous ulcers Venous ulcers, also known as vascular or stasis ulcers, 
develop as a consequence of venous 
insufficiency.  The damaged valves allow blood to 
pool in the vein, and as the vein overfills, blood may 
leak out into the surrounding tissue leading to a 
breakdown of the tissue and development of a skin 
ulcer.  Venous ulcers commonly occur on the sides of 
the leg, above the ankle and below the knee. 

• Deep vein thrombosis 
• Obesity or poor nutrition 
• Pregnancies 
• A family history of varicose veins 
• Smoking and excessive alcohol use 
• The lack of physical activity 
• Aging 
• Work that requires prolonged standing 

more 

The first sign of a venous skin ulcer is skin that turns dark red or 
purple over the area where the blood is leaking out of the vein. The 
wound bed is often beefy red and may bleed easily. The ulcer may be 
painful.  Necrotic tissue, slough (yellow, tan, grey, green, or brown) 
and/or eschar (tan, brown, or black), may also be present. The skin 
may also become thick, dry, and itchy. Venous ulcers are commonly 
slow to heal and often require lifetime modifications to prevent re-
development. 

Arterial ulcers  Arterial ulcers result from a complete or partial 
blockage in the arteries.  They are almost always 
caused by atherosclerosis. In this pathology, 
cholesterol or other fatty plaques settle in the arteries 
causing obstructions which result in poor blood 
circulation. This poor circulation leads to tissue death 
and ulcer formation.  

• Trauma 
• Limited joint mobility 
• Increased age 
• Diabetes mellitus 
• High blood pressure 
• Arteriosclerosis 
• Peripheral vascular disease 

Wounds commonly have minimal drainage and are often very 
painful.  Pain is often relieved by dangling legs and increased when 
legs are elevated. 
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1.3 The need for advanced dressings 
  Wound dressings are traditionally used to protect the wound site from contamination36 

but they can be exploited as platforms to deliver bioactive molecules to wound sites. The use 

of topical bioactive agents in the form of solutions, creams and ointments for drug delivery to 

the wound is not very effective as they rapidly absorb fluid, and in the process lose their 

rheological characteristics and become mobile.1 For this reason, the use of solid wound 

dressings is preferred in the case of exudative wounds as they provide better exudate 

management and prolonged residence at the wound site. Unlike traditional dressings such as 

gauze and cotton wool that take no active part in the wound healing process, advanced dressings 

are designed to have biological activity either on its own or the release of bioactive constituents 

(drugs) incorporated within the dressing1. The incorporated drugs can play an active role in the 

wound healing process either directly as cleansing or debriding agents for removing necrotic 

tissue, or indirectly as antimicrobial drugs, which prevent or treat infection or growth agents 

(factors) to aid tissue regeneration. In chronic wound management, where patients usually 

undergo long treatments and frequent dressing changes, a system that delivers drugs to a wound 

site in a controlled fashion can improve patient compliance and therapeutic outcomes. 

Bioadhesive, polymeric (synthetic, semi-synthetic or naturally derived) dressings are 

potentially useful in the treatment of local infections where it may be beneficial to achieve 

increased local concentrations of antibiotics while avoiding high systemic doses thus reducing 

patient exposure to an excess of drug beyond that required at the wound site.37  

 Composite dressings comprising both synthetic and naturally occurring polymers have 

also been reported for controlled drug delivery to wound sites.1 By controlling the degree of 

swelling, crosslinking density, and degradation rate, delivery kinetics can be tailored according 

to the desired drug release schedule.38 Drug release from polymeric formulations is controlled 

by one or more physical processes including (a) hydration of the polymer by fluids, (b) swelling 

to form a gel, (c) diffusion of drug through the polymer matrix and (d) eventual 

degradation/erosion of the polymeric system.37,39,40 Upon contact of a dry polymeric dressing 

with a moist wound surface, wound exudate penetrates into the polymer matrix. This causes 

hydration and eventually swelling of the dressing to form a release system over the wound 

surface (figure 2). In certain wound dressings, the mechanism for drug release has been 

explained by the hydrolytic activity of enzymes present in the wound exudates41 or from 

bacteria in the case of infected wounds.42 
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Figure 2. Schematic diagrams illustrating the movement of exudate into and drug release from swollen 
bioactive dressings during wound healing. 

1.4 Dressing materials 
 Polymeric materials employed in the formulation of wound dressings can be broadly 

divided into natural inert, natural bioactive and synthetic polymers. A brief overview of these 

categories of polymers used in wound healing and associated references are summarized in 

table 3 and briefly discussed below. However, for a detailed description about the use of these 

materials in wound healing, the reader is referred to the recent review article by Mogosaanu et 

al.43 

Table 3. Summary of the different type of polymers used in commonly used dressings. 

Natural  Carboxymethylcellulose69-71  

Bacterial cellulose44,72-74  

Silk fibroin75-77  

Pectin78,79  

Carrageenan80-82  

Synthetic Poly(ethylene oxide)80-83  

Poly(vinyl alcohol) (PVA)84-87  

Poly-L-lactic acid88-90  

Healthy skin area

Wounded area

Drug loaded dressing

Exudate absorption

Swollen dressing

Healthy skin area

Healthy skin area

Swollen dressing

Released drug
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Poly(ethylene glycol)61,91,92  

Polyurethane60,93,94  

Bioactive Collagen95,96  

Gelatin97,98  

Hyaluronic acid53,54,99,100  

Chitosan101-104  

Sodium alginate105-108  

 

1.4.1 Natural inert polymers 
 Natural polymers can be obtained from plant, bacterial, fungal, or animal sources and 

are commonly used due to their biocompatibility and biodegradability. Bacterial cellulose is a 

pure natural exopolysaccharide produced by specific microbial genera. The good 

biocompatibility, hemocompatibility, mechanical strength, microporosity and biodegradability 

make this material one of the most trending natural polymeric materials used for wound care.44 

Bacterial cellulose is used especially as a healing scaffold/matrix for chronic wound dressings 

because it possesses many of the characteristics of an ideal wound dressing. It is known to 

promote autolytic debridement, reduce pain and accelerate granulation, ensuring effective 

wound healing. 45 Furthermore, therapeutically active wound dressings with modified cellulose 

can be prepared by co-immobilization with different active molecules such as enzymes, 

antioxidants, hormones, vitamins and antimicrobial drugs.44 Silk fibroin is another natural 

biopolymer with a highly repetitive amino acid sequence, which leads to the formation of a 

biomaterial with remarkable mechanical and biological characteristics. The unique properties 

of biocompatibility, biodegradability, flexibility, adherence, and absorption of exudates with 

minimal inflammatory reaction make silk a very promising material for wound dressings.46 

Other examples of natural polymers employed in wound dressings include carrageenan, 

carboxymethylcellulose and pectin. 

 

1.4.2 Natural bioactive polymers 
 Bioactive polymers are also commonly used due to their biocompatibility and 

biodegradability but more importantly, they have an active therapeutic effect on one or more 

stages of wound healing. Most of them form part of the natural body matrix or contain 

components that possess physiological activity as part of the natural wound healing process. 

The most common bioactive polymer dressing materials include collagen (and gelatine), 
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hyaluronic acid, chitosan and sodium alginate.  

 Sodium alginate probably has the largest number of applications in biomedical science 

and bioengineering due to its biocompatibility, bioresorption and ease of gelation. Alginate is 

typically used in the form of a hydrogel in biomedicine, including wound healing, drug delivery 

and tissue engineering applications.38  

The most common method to prepare hydrogels from an aqueous alginate solution is to 

combine with an ionic cross-linking agent such as divalent cations (e.g. Ca2+). The interaction 

occurs between G-rich regions of adjacent polymer chains resulting in the formation of a bulk 

structure in a shape of an ‘egg-box’47 The composition in the guluronic segments (molecular 

weight and M/G ratio) and the extent of cross-linking will largely affect the quality of the 

matrices formed. When hydrogels are made from alginate rich in guluronic acid residues, the 

resulting gels tend to be rigid, while more elastic gels are produced from alginates with low Į-

l-guluronic acid content.48 The ability of calcium ions (Ca2+) to form crosslinks with alginate 

makes calcium alginate dressings ideal materials as scaffolds for tissue engineering.49  

 

Alginate based absorbent wound dressings may be used on multiple wound types, including 

pressure, diabetic and venous ulcers and cavity, and some bleeding wounds. Indeed, the high 

water absorption limits wound secretions and minimizes bacterial contamination.50 The wide 

acceptance of alginates in wound healing is also related to the positive clinical advantages 

shown in various studies. For example, a randomized, controlled trial involving patients with 

full-thickness pressure ulcers reported better clinical outcomes using alginate wound dressing 

when compared to topical treatment with a dextranomer paste.51  

 Hyaluronic acid is one of the principal components of the human connective tissues and 

has become recognized as an active participant in tissue repair processes, including wound 

healing.52 It is already used in some commercially available advanced dressings such as 

Hyalofill® (Anika Therapeutics, USA), Hyalomatrix® (Anika Therapeutics, USA) and 

Hyiodine® (Contipro Pharma, Czech Republic), which have demonstrated that the application 

of exogenous hyaluronic acid on wounds can exert positive effects on the wound-healing 

process and pain management.53 Hyaluronic acid can be easily included within gauze, foams 

or creams for topical use and have a high capacity to retain water and provides a moist 

environment to protect the wounded tissue surface from dryness and promotes wound 
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healing.54  

 Collagen gives the skin its tensile strength and like hyaluronic acid, forms part of the 

natural tissue matrix, is biodegradable and plays an active part in normal physiological wound 

healing and new tissue formation, which makes it an attractive choice from a tissue 

biocompatibility and a toxicological point of view.55-57 Chitosan has ideal wound healing 

properties including hemostasis and antibacterial activity.58,59 It is reported to be able to 

stimulate formation of granulation tissue followed by angiogenesis and deposition of collagen 

fibers to further improve repair of dermal and epidermal wounds.  

 

1.4.3 Synthetic polymers 
 Synthetic polymers commonly employed in wound dressings include polyvinylalcohol 

(PVA), polyethylene oxide (PEO) and polyurethane. Their hydrophilic nature imparts 

important functional wound healing characteristics such as moisture absorption capacity and 

water vapor transmission which allows maintenance of a moist wound environment whilst 

avoiding collection of excess exudate. In addition, they are generally adhesive which allows 

prolonged residence as well as being biocompatible and possessing higher mechanical strength 

than the natural ones described above. Synthetic polymer dressings can be produced using 

various techniques, such as electrospinning and hydrogel synthesis.43 Often synthetic materials 

are used in combination with natural or bioactive polymers to improve the mechanical 

properties of the final wound dressing, as in the case of electrospinned polyurethane-dextran 

nanofiber mats60 or poly(ethylene glycol)/chitosan,61 both of which are dressings with 

antibacterial activity due to the presence of ciprofloxacin hydrochloride.  

 

1.4.3.1 Hydrogels 

Hydrogels have been widely reported in the peer reviewed literature and in patents whilst 

several products are commercially available.62 A hydrogel can be described as a three-

dimensional network of hydrophilic polymers63. They can be prepared from various water 

soluble polymers with a wide range of chemical and physical properties. Hydrogels are capable 

of absorbing large volumes of water due to the presence of hydrophilic chains which allows 

them to swell extensively without changing their gelatinous nature. This property enables 

hydrogels to function as moist absorbent wound dressings64. They can be used on dry, sloughy 

or necrotic wounds but usually need a secondary dressing to hold it close against the wound 

bed65. These dressings are conventional for unusual shapes of wounds due to their jelly-like 
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nature. Hydrogels are non-particulate, non-toxic and non-adherent66. They also assist in 

providing a moist environment to dehydrated tissue to prevent them from desiccation and 

absorb exudates from wounds. Gamma radiation crosslinking was employed by Rosiak and 

co67,68 to obtain sterile hydrogels used in wound care. The materials used included natural 

polymers such as gelatin and agar and synthetic polymers such as polyvinyl pyrrolidone and 

polyvinyl alcohol. Some of the most common hydrogel dressings currently available 

commercially include Intrasite™, Nu-gel™, Kikgel, Aqua-gel and Aquaform™. 

 

2 TRADITIONAL AND IMPREGNATED DRESSINGS 
 Majority of dressings currently on the market, only take a passive part in the wound 

healing process. Traditional dressings include cotton, wool, natural or synthetic bandages and 

gauzes and may be used as primary or secondary dressings, or form part of a composite of 

several layers with each performing a specific function.1 These were used commonly in the 

past and though now less widely used, they are still of some benefit in certain clinic settings 

for wound treatment. Traditional wound healing agents have been largely replaced for chronic 

wounds and burns by the more recent and advanced dressings they do not provide a moist 

environment for wound healing. However, sometimes, moist  dressings showed no clinic 

advantages over treatment with traditional dressing (as for example in case of treatment of 

split-thickness skin graft donor sites109) that can be preferred due to ease of use, ready 

accessibility in most clinics and surgical centers, lower treatment costs and better patient 

acceptance.  

 Traditional dressings can provide some bacterial protection, but it is lost when the outer 

surface of the dressing becomes moistened either by wound exudate or external fluids.110 

Further, traditional dressings provide only little occlusion and allow evaporation of moisture, 

resulting in a dehydrated wound bed, and they tend to become more adherent to wounds as 

fluid production diminishes and are painful to remove.. An improvement of the properties of 

these dressings can be obtained by impregnating them with other materials or compounds to 

obtain a functional dressing. For example, paraffin (petrolatum) impregnated dressings, 

prevent sticking of the dressing to dry wound surface and are more occlusive and easier to 

remove from the skin and therefore avoids causing trauma and bleeding during dressing 

change. Gauze and bandage can also be functionalized with topical antimicrobials, which can 

prevent or reduce bacterial bioburden or reinfection especially during dressing changes. 
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Commonly used topical antiseptic agents include iodine-releasing agents (e.g. povidone iodine 

[PVP-I]), chlorine-releasing solutions (e.g. Dakin’s and sodium hypochlorite solutions), 

hydrogen peroxide, chlorhexidine, silver-releasing agents, and acetic acid. These compounds 

can be used to either kill or control the growth of micro-organisms in wounds111,112 and 

generally are classified as antiseptics or antibiotics and characterized by low specificity to treat 

wound infection. Antiseptics, which are disinfectants that are used on intact skin and some 

open wounds to kill or inhibit microorganisms, tend to have multiple microbial targets, a broad 

antimicrobial spectrum, and residual anti-infective activity. However, they can be harmful to 

healthy tissues and cell components essential for effective wound healing such as fibroblasts, 

keratinocytes, and possibly leukocytes.113 Antibiotics are potent antimicrobial agents or 

chemicals with high specificity, which in dilute concentrations, inhibit or kill microorganisms. 

They usually act on one specific cell target, and are relatively non-toxic, however, they are 

more susceptible to loss of activity due to the development of bacterial resistance.113 These are 

discussed in further detail under the antimicrobial dressings section below. In terms of efficacy, 

acetic acid (1%) has limited activity but has been used with great success in the management 

of wounds heavily colonized with Pseudomonas Aeruginosa.114,115 

3 DRUG-CONTAINING (-DELIVERY-) DRESSINGS 
3.1 Wound drug delivery  

 Different wound types require different dressing materials possessing different 

characteristics including fluid absorption, residence time on the wound and mechanical 

strength. A relatively new approach to wound healing involves the use of polymeric wound 

dressings to deliver various pharmacological agents that can take active part in one or more 

stages of the wound healing process. The activities of these compounds together with the 

physical characteristics of the dressing can enhance the wound healing rate, whist eliminating 

some of the factors which can impair wound healing. Hydrogels, hydrocolloids, foams, films 

and wafers can be used to deliver a variety of compounds such as antimicrobials, anti-

inflammatory agents, analgesics, growth factors, proteins, and supplements directly to the 

wound site, thus increasing the efficiency of the therapy.  

3.2 Antimicrobial dressings 
 Many new wound dressings loaded with antimicrobial drugs were developed in the last 

20 years, taking advantage of the properties of advanced dressing to actively kill bacteria and 
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/ or fungi present in infected wounds, reduce bacteria bio-burden and prevent reinfection during 

healing, wound inspection, surgical procedures or dressing change.  

3.2.1 Wound infection 

 Infection occurs in wounds when one or more microorganisms (mainly bacteria and 

sometimes fungi) compete with the host natural immune system. Most open injuries are 

contaminated with different microbes, however, this usually has no clinical significance since 

they express no evidence of infection and heal as expected. Pathogenic bacteria, such as 

Staphylococcus aureus, Pseudomonas, aeruginosa, Streptococcus pyogenes  and some 

Proteus, Clostridium and Coliform species are the most common causes of infection and most 

frequently cited as the reason for delayed wound healing.114,116-119 Inadequate control measures 

in the management of infected wounds can lead to cellulitis and ultimately bacteremia and 

septicemia, both of which can be fatal. Wound colonization describes the presence of 

multiplying micro-organisms on the surface of a wound, but with no immune response from 

the host,120 and with no associated clinical signs and symptoms. The invasion of viable tissue 

by these microorganisms provokes a series of local and systemic host responses such as 

purulent discharge, painful spreading erythema or symptomatic cellulitis around a wound that 

can lead to soft tissue destruction.111,112 As reported by several authors, high microbial load has 

severe implications in delaying wound healing and the formation of a bacterial biofilms are 

one of the critical mediators of chronic wounds.114,121,122 It has been reported that 

approximately 75% of wounds caused by burns have a risk of infection through contamination 

by microorganisms from the sweat glands and hair follicles, gastrointestinal and upper 

respiratory tracts, and the presence Pseudomonas aeruginosa and Staphylococcus aureus 

significantly reduced skin graft healing.114,123-125 Chronic wounds are prone to infection due to 

the formation of high microbial bioburden and inability of leukocytes to deal with impaired 

migration, phagocytosis and intracellular killing of microorganisms.126 Local tissue necrosis, 

hypoxia, ischemia and some immune deficiencies such as the one caused by human 

immunodeficiency virus (HIV) or chemotherapy are factors that promote wound infection.114  

 

https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCQQFjAA&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FStreptococcus_pyogenes&ei=e_ieVeCeCYHkUKjdgbgL&usg=AFQjCNE4eDpac8KktHQXdpGHyKwDR4QNgg&sig2=e8K3F17MpcvXCbSZ9Pn8Ag&bvm=bv.96952980,d.bGQ
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3.2.2 Antibiotic drugs 
 The use of antibiotic drugs for local wound application is gradually becoming popular, 

at least in the scientific literature, due to many factors, the most common being the lower 

amounts required when applied directly at the wound sites compared to systemic administration 

via injections or the gastrointestinal route. Different classes of antibiotics have been used in 

wound dressings for delivery to wound sites, and a selection of these are summarized in table 

4. Treatment of wound infection requires a decrease in exogenous microbial bioburden which 

can be achieved using various approaches including topical and systemic broad-spectrum 

antimicrobial agents, debridement of devitalized tissue, appropriate dressing, maximization of 

immune resistance and provision of adequate nutrition.114,128,129 Combinations of antibiotics 

can be used to cover multidrug resistant microorganisms, however, clinical data supporting this 

strategy are limited.127 

 

Table 4. Different antibiotics and the type of dressings used to deliver them to infected wounds. 

Delivery system Drug Author / Reference 

Chitosan films Minocycline Aoyagi et al.138  

Chitosan sponges Vancomycin Stinner et al.139  

Polyox composite film  Streptomycin Pawar et al.82  

Polyox/carrageenan composite 
film 

Streptomycin Boateng et al.80  

Polyox/carrageenan and 
polyox/sodium alginate wafers 

Streptomycin Pawar et al.81 

Wafers  Neomycin Labovitiadi et al.140  

Polysaccharide wafers  
Chlorhexidine 
digluconate 

Labovitiadi et al.141,142  

Electrospun polyurethane-
dextran nanofiber mats 

Ciprofloxacin Unnithan et al.60  

Poly(ethylene glycol)/chitosan 
scaffold 

Ciprofloxacin Sinha et al.61  

 

However, the persistent emergence of antibiotic-resistant strains of pathogens, together with 

the reduced rate of new antibiotics coming through the drug discovery pipeline has resulted in 

the need for alternative treatments to manage wound infections more effectively. To overcome 

this problem, novel dressings containing non-antibiotic compounds (e.g. silver and plants) are 

continually developed and their use can enhance the antimicrobial activities of dressings, 

limiting the occurrence of antimicrobial resistance.130-137  

http://www.ncbi.nlm.nih.gov/pubmed/?term=Labovitiadi%20O%5BAuthor%5D&cauthor=true&cauthor_uid=23791735
http://www.ncbi.nlm.nih.gov/pubmed/?term=Labovitiadi%20O%5BAuthor%5D&cauthor=true&cauthor_uid=23791735
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3.2.3 Silver  
 Silver, and the newer silver nanoparticles (AgNPs) have been recognized as optimal 

candidates for overcoming pathologies previously treated with conventional antibiotics, 

because of their strong and broad-spectrum antimicrobial characteristics.  

 Various mechanisms have been proposed for silver’s antibacterial action. The first 

proposed mechanism involves bacterial cell membrane enzyme protein deactivation by binding 

to thiol groups. These proteins are known to take part in membrane energy production and ion 

transport.143 Davis and Etris144 reported that silver is involved in catalytic oxidation reactions 

resulting in disulfide bond formation by catalyzing reactions between oxygen present in the 

cell and hydrogen from thiol groups, ultimately inhibiting cell function due to changes in 

protein structure. Other authors have reported the binding of silver to the 30S ribosomal subunit 

thereby preventing protein translation.145 Another mechanism reported involves the entry of 

positively charged silver ions into the cell and denaturing DNA by ‘locking’ itself between 

purine and pyrimidine base pairs143 though this has not been proved conclusively. For silver to 

exhibit antibacterial activity it needs to be in the ionized form and therefore unionized silver 

metal is non-active and only becomes active in the presence of moisture (exudate in the case 

of wounds).146,147  

 New wound dressings have been developed that release silver to help prevent wound 

infections caused by both Gram-positive and Gram-negative bacteria both in vitro and in 

vivo.148 In the past, the use of silver has been severely limited by the toxicity of its ions to 

humans, however, the development of nanotechnology has facilitated the production of nano-

structured silver particles with a high surface area (and therefore a higher area-to-volume ratio) 

that demonstrates greater efficacy against bacteria and more importantly, less toxicity to 

humans.131  

Novel composite scaffold dressing comprising ȕ-chitin and AgNPs for wound healing 

showed bactericidal activity against Escherichia coli and Staphylococcus aureus in addition to 

good blood-clotting ability due to chitin.149 In a related study, Bishweshwar and co-workers 

reported on nylon nanofibers incorporating AgNPs by an electrospinning method for wound 

healing.150 Their results showed that the composite system exhibited antibacterial activity 

against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. Silver 

loaded dressings have also been reported as effective against non-bacterial targets, including 

fungi.151In a recent study, silver-containing activated carbon fibers compared with commercial 

silver dressings were investigated to determine the effects of different silver concentrations on 
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the dressing efficacies.152 that the “various silver-containing activated carbon fibers exhibited 

good antibacterial effects and biocompatibility in terms of cell viability and that silver 

concentration showed a minor influence on cell growth”. The authors concluded that silver-

containing activated carbon fiber and other commercial silver dressings aided wound healing 

by promoting granulation and collagen deposition. Chitosan and polyvinyl pyrolidone based 

film dressing containing silver oxide has been functionally evaluated for potential wound 

healing properties, compared to cotton, pure chitosan and other chitosan based dressing.153 The 

results showed better performance of the composite chitosan-PVP-silver oxide dressing 

compared to the other materials.  

Commercially, there are many dressings which are just upgrades of existing polymer 

based moist wound dressings, loaded with silver either in pure form, as salts or as nanoparticles 

for treating and / or preventing infection in various wound types. The different silver loaded 

dressings currently available on the market are summarized in table 5 below. Most of these 

have been reported in the peer reviewed scientific literature and shown in most cases to have 

antibacterial activity both in vitro154,155 135,136 and in vivo.156,157  

Table 5. Commercially available wound care products containing silver.158  

FORMULATION  PRODUCT NAME  MANUFACTURER  SILVER FORM  

Fibrous / cloths, 
others 

Silverseal Derma Sciences Silver oxide 

Tegaderm Ag Mesh 
Dressing with Silver 

3M Silver sulfate 

Urgotul SSD Laboratoies Urgo Silver sulfadiazine 

Vliwaktiv Ag, Absorbent 
Activated Charcoal 

Lohmann and Rauscher Silver  

Vliwaktiv Ag, Activated 
Charcoal Rope with Silver  

Lohmann and Rauscher Silver  

Films / meshes Acticoat 7 Smith and Nephew Elemental silver 

Arglaes film Medline Silver  

Restore Contact Layer with 
Silver 

Hollister Wound Care LLC Silver chloride 

Foams Acticoat Moisture Control Smith and Nephew Elemental silver 

Allevyn Ag  Smith and Nephew Silver sulfadiazine 

Biatain Ag Coloplast Silver 

Mepilex Ag Molnlycke Silver 

Optifoam Ag Adhesive Medline Ionic silver 

Optifoam Ag Non-adhesive Medline Ionic silver 

PolyMem Silver Island  Ferris Mfg. Corp. Elemental silver 

PolyWic Silver  Ferris Mfg. Corp. Elemental silver 

Restore non-adherent foam 
with silver 

Hollister Wound Care LLC Silver 

Silverlon Negative Pressure  Argentum Medical, LLC Ionic silver 
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SilverSite Centurion Silver alginate 

UrgoCell Silver/Cellosorb 
Ag 

Urgo Medical Silver salts 

V.A.C GranuFoam Silver KCI Silver 

Gauze Urgotul SSD/S.Ag  Urgo Medical Silver sulfadiazine 

Hydrocolloid Contreet Hydrocolloid Coloplast Silver  

SILVERSEAL Hydrocolloid  DermaSciences Silver 

SureSkin EuroMed Silver zeolite 

Hydrofiber Aquacel Ag ConvaTec Ionic silver 

Hydrogel Elta Silvergel Elta Silver 

ExcelGinate Ag MPM Silver  

Gentell Ag Hydrogel Wound 
Dressing 

Gentell Silver sulfadiazine 

Silvasorb Gel Medline Ionic silver 

SilverMed Antimicrobial 
Silver 

MPM Silver 

SILVERSEAL DermaSciences Silver oxide 

Silver-Sept Antimicrobial 
Gel 

Anacapa Tech Inc Silver salt 

Powder Arglaes Powder Medline Silver  

Wash SilverMed Antimicrobial 
Wound Cleanser 

MPM Silver microparticles 

 

3.2.4 Antimicrobial peptides and bacteriolytic enzymes 
Infections caused by multi-drug resistant organisms, including methicillin-resistant 

Staphylococcus aureus (MRSA), vancomycin-resistant Staphylococcus aureus (VRSA), 

extended spectrum beta-lactamase (ESBL), vancomycin-resistant Enterococcus (VRE) and 

multidrug-resistant Acinetobacter baumannii (MRAB) can lead to increased patient morbidity 

and mortality and increase of the cost of treatment due to prolonged hospitalization. 

Antimicrobial peptides (AMPs) are recognized as promising candidates to overcome infections 

caused by resistant bacteria. These therapeutic agents are widely synthesized in nature by 

microorganisms, plants and animals (both invertebrates and vertebrates) as components of their 

natural defences against invading pathogens. AMPs are active against a broad spectrum of 

microorganisms, including multidrug-resistant strains such as MRSA, VRSA, ESBL, VRE and 

multidrug-resistant Acinetobacter baumannii due to the fact that they have a low propensity 

for developing microbial resistance making them very efficient at treating infection159.140 This 

activity is attributed to a rapid mechanism of action and the ability to discriminate between 

host and microbial cells (cell selectivity) making them promising candidates for clinical 

applications and potential alternatives to conventional antibiotics. More than 2,000 

antimicrobial AMPs have been reported with differences in their sequence and structure, and 

http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCYQFjAA&url=http%3A%2F%2Fcid.oxfordjournals.org%2Fcontent%2F46%2F8%2F1254.full&ei=v_meVbSSLMa1UfXSgIAE&usg=AFQjCNEP3NUTwXPhfXxY_KxlQJlETPWsLw&sig2=FQ2-OKtKm6QhLJ3T0R8E4Q&bvm=bv.96952980,d.bGQ
http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCYQFjAA&url=http%3A%2F%2Fcid.oxfordjournals.org%2Fcontent%2F46%2F8%2F1254.full&ei=v_meVbSSLMa1UfXSgIAE&usg=AFQjCNEP3NUTwXPhfXxY_KxlQJlETPWsLw&sig2=FQ2-OKtKm6QhLJ3T0R8E4Q&bvm=bv.96952980,d.bGQ


 20 

they all are generally low molecular weight (10–50 amino acids) peptides and have at least two 

positive charges.160  

AMPs are widely used to functionalize biomaterial surfaces which impart to it anti-

biofilm properties and their immobilization within wound dressings is just one of the 

applications in the biomedical field.161 Chemically and physically cross-linked natural and 

synthetic hydrogels are probably the most versatile platforms for the delivery of drugs and 

peptides to mitigate biofilm formation. In particular, when hydrogels are used to 

simultaneously co-deliver antimicrobial polymers/peptides and conventional antimicrobial 

agents, a strong synergistic effect can be achieved.162 Biodegradable antimicrobial polymers or 

peptide-loaded gels are more attractive than gels loaded with antibiotics or metal (e.g. silver) 

nanoparticles since bacteria easily develop resistance to antibiotics, and the non-degradability 

of metal nanoparticles can result in toxicity. Good results were also obtained when AMPs were 

included in freeze-dried wafers, polyelectrolyte multilayers or cotton gauzes.163,164  

The use of bacteriolytic enzymes can be another promising strategy for the treatment 

and prevention of drug resistant organisms and biofilm establishment. The biopolymers 

involved in cell attachment are the main target of such enzymes, leading to an inhibition of 

biofilm formation or promoting detachment of established biofilms. Several enzymes have 

been shown to exhibit this anti-biofilm activity and are currently extensively studied for 

preventing bacterial colonization on surfaces if incorporated into anti-biofilm coatings.161 

Recently, Miao et al. proposed the use of these molecules to produce a functional wound 

dressing with antimicrobial activity against a drug resistant bacterial strain.165 Lysostaphin, a 

cell lytic endopeptidase derived from bacteriophages, was immobilized onto biocompatible 

polymeric fibers generated by electrospinning to obtain an anti-infective bandage. The 

resulting dressing was tested in an in vitro skin model, and showed good activity against 

Staphylococcus aureus and a low toxicity toward keratinocytes, suggesting a possible 

application of these materials as antimicrobial wound dressings. Other hydrolytic enzymes 

derived from bacteriophages have been proposed as promising and potent antibacterial 

therapeutics even against MRSA and VRSA strains, and for this reason they can become an 

interesting future therapeutic tool as first line antibiotics in the battle against resistant bacteria 

strains.166  
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3.2.5 Poly(hexamethylene) biguanide hydrochloride (PHMB) 
PHMB is a low molecular weight polymer with structure (figure 3) related to 

chlorhexidine. It is an antimicrobial agent with broad spectrum activity against several Gram-

positive and Gram-negative bacteria, fungi and yeast and reported to be particularly active 

against the difficult to control Pseudomonas species. Due to its water solubility, it is used in 

water-based products, which are most susceptible to microbial growth. As a preservative, 

PHMB is used in cosmetics, personal care products, fabric softeners, contact lens solutions and 

hand washes. Moreover, PHMB has also been used to prevent microbial contamination in 

wound irrigation and sterile dressings and has been reported for use in reducing bloodstream 

infection caused by catheter use.167 In a study comparing electrospinned polylactide (PLA) 

nanofibers loaded with either PHMB or chlorhexidine, it was shown that the nanofibers became 

smoother and their diameter smaller with increasing amount of PHMB with a resultant increase 

in surface roughness and hydrophobicity of the scaffold.137 The PHMB-loaded PLA scaffolds 

showed antibacterial properties by inhibiting adhesion and bacterial growth, and at the same 

time exhibited biocompatible characteristics that allowed cell adhesion and proliferation of 

fibroblasts and epithelial cells in vitro.137 In a randomized clinical trial, comparing the 

effectiveness of bio-cellulose dressing containing PHMB with silver sulfadiazine cream, in 

partial thickness burns, the former showed faster and better reduction in pain compared to the 

silver sulfadiazine cream. This suggests that PHMB reduced the duration of inflammation by 

controlling infection..168 Dilamian et al.169 prepared composite electrospinned membranes 

using chitosan and polyethylene oxide incorporating PHMB to impart antimicrobial properties 

for use as a medical biomaterial. The effect of PHMB on the electrospinnability and 

antimicrobial properties of chitosan/PEO nanofibers were studied together with viscosity of the 

solutions and nanofiber morphology. The results showed that PHMB in chitosan/PEO solutions 

resulted in decreased zero-shear rate viscosity up to 20%, whilst increasing PHMB from 0.5 

mM to 1 mM led to formation of thinner fibers. The drug loaded fibers showed activity against 

Escherichia coli and Staphylococcus aureus with a burst release of PHMB from the materials 

in the first hour.169  
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Figure 3 Chemical structure of PHMB 

3.3 Anti-inflammatory and analgesic dressings 
 Wound healing begins with an acute inflammatory phase within a few hours after injury 

with release of exudate rich in proteins. This causes vasodilation through the release of 

histamine and serotonin, which allows phagocytes to enter the wound and engulf dead cells. 

As a result of this inflammatory phase a wound clot is formed, to stop bleeding, and 

givestrength and support to the injured tissue. However, this inflammatory phase is also 

characterized by swelling and pain, which can be severe in certain wound types. In chronic 

wounds, the wound is stuck in a continuous cycle of inflammation and patients can be in 

constant pain, which can be very debilitating. Pain also occurs either due to repeated tissue 

insults caused by physical trauma, but most common wound pain is probably due to dressing 

change, especially in the case of dry wounds, debriding, and wound cleansing. In addition, 

wound infection can contribute to wound pain by triggering a continuous inflammatory 

response. The response against the infecting microorganisms causes the release of 

inflammatory mediators and stimulates the production of enzymes and free radicals, which can 

cause tissue damage.170 Furthermore, the pain-related stress reduces the immune response to 

infection and stimulates pro-inflammatory cytokine production in wounds.171 For these reasons 

the treatment of pain and infection should be prioritized on an equal basis.  

 Wound pain can be classified into two types: nociceptive and neuropathic pain. 

Nociceptive pain is an appropriate physiological response to a painful stimulus, and occurs as 

a result of tissue damage. This type of pain is usually time limited, but when the wounds are 

slow to heal, the prolonged inflammatory response may cause heightened sensitivity in both 

the wound (primary hyperalgesia) and in the surrounding skin (secondary hyperalgesia).171 

Neuropathic pain is an inappropriate response caused by a primary lesion or dysfunction in the 

http://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRw&url=http://www.google.com/patents/WO2005040323A1?cl%3Den&ei=cfaiVfyXE8e5UdCRjpgC&bvm=bv.97653015,d.bGQ&psig=AFQjCNFKZjXwlo35tO_oXxOviDGXIaX5kA&ust=1436829675198692
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nervous system. Nerve damage is the commonest cause of the primary lesion, which may be 

due to trauma, infection, metabolic disorder or cancer. Neuropathic pain is a major factor in 

the development of chronic pain.172 Reduction of pain is the highest treatment priority from the 

patient’s perspective, especially in the case of a chronic wound. An appropriate wound 

management can significantly improve a patient’s quality of life and may indirectly promote 

healing by improving appetite and sleep.173 In skin transplants to help wound regeneration, the 

wound created is extremely painful since the layer of skin harvested touches the painful nerve 

endings and therefore requires pain management at the secondary wound site. 

   

Topical treatment using pharmacological agents is an effective and safe approach to 

manage wound pain. Medicated dressings can perform the two essential functions (i) the 

treatment of the cause (e.g. wound infection) and (ii) the management of the actual wound pain. 

The treatment of wound infection, by reducing bacterial load and thereby reducing the 

inflammatory stimulus to the nervous system, should result in a reduction in pain. 

Antimicrobial drugs, however, may take some days to have a significant effect on pain. 

Therefore, to obtain rapid pain relief, dressings loaded with drugs, such as local anesthetics 

(e.g. lidocaine), or NSAIDs can be very useful to reduce wound pain during wear time and at 

dressing change. In particular, ibuprofen has excellent local effects on superficial wounds, 

without detectable systemic levels174  and provided clinically relevant pain relief for patients 

with exuding, painful venous ulcers.175-178 In a multi-center randomized controlled trial, 

Arapoglou and co-workers examined the analgesic effect (over 5 days) of foam dressings 

loaded with ibuprofen (112.5 mg) compared to local best practice wound management in 

various wound types (arterial, venous and mixed arterial-venous ulcers, vasculitis an traumatic 

ulcers).175 They showed that the ibuprofen releasing foam dressing produced significantly 

higher analgesic effect than the local best practice group based on patient scores. They 

concluded that local pain relief by ibuprofen is possible in the most common painful exuding, 

chronic and acute wounds and therefore a safer alternative to systemic drug administration.175 

Romanelli et al. showed that the commercial ibuprofen containing foam dressing (Biatain Ibu, 

Coloplast, Denmark) provided better pain relief for painful exuding wounds compared to 

patients treated with local best practice wound management.178 

 Another option to induce efficient analgesia in patients with severe skin wounds is the 

topical application of opioids. Opioid receptors are up regulated during inflammation and in 

addition to its analgesic functions, they can also directly modulate the inflammatory process 

and wound healing.179,180 Topical opioid treatment can be used to achieve local analgesia and 
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increase wound healing, reducing the severe adverse effects of systemic administration. 

Furthermore, wound dressings can be properly engineered to ensure a slow release, increasing 

the safety and extending the interval between regular dressing changes.181  

 

4 ADVANCED DRESSINGS CONTAINING 
BIOLOGICAL AGENTS 

4.1  Growth factors  
 The use of growth factors to promote wound healing has always been considered one 

of the possible therapeutic approaches to overcome the problem of difficult to heal (chronic) 

wounds. Growth factors (GFs) are a class of biomacromolecules locally secreted by the 

extracellular matrix (ECM), capable of regulating biological processes by transferring signals 

between cells and their local environment, regulating proliferation, migration and 

differentiation of cells.182,183 Interactions between the ECM, GFs, and cells are fundamental to 

all phases of wound healing and abnormalities in those interactions usually lead to chronic 

wounds.184 In an exhaustive review, Barrientos et al.185 summarized the action and the 

therapeutic effects of various GFs in the clinical management of non-healing wounds. Four 

GFs have shown the greatest potential for wound healing in randomized controlled trials: 

granulocyte-macrophage colony-stimulating factor (GM-CSF), platelet derived growth factor 

(PDGF), basic fibroblast growth factor (bFGF) and vascular endothelial growth factor 

(VEGF).186 The local application of the GFs on the wound site is essential to exert a therapeutic 

action on wounds, but the need for continuous local injection makes this formulation difficult 

to use in clinical practice. The formulation of GFs in a topical delivery system (cream, gel or 

ointment) directly administered to the wound surface could facilitate their therapeutic 

application in the clinical management of non-healing wounds. However, to date, only 

REGRANEX® Gel (Becaplermin 0.01%, Smith & Nephew, UK) has been approved by the 

FDA for the treatment of diabetic foot ulcers.187,188 Despite the ability of Becaplermin to 

accelerate wound closure and significantly reduce amputations,189-192 its use is expensive, 

requires frequent dressing changes and is associated with an increased risk of cancer.188  

 Polymeric wound dressings were successfully developed for incorporation of free GFs 

using biocompatible biomaterials such as gelatin,193,194, dexran,195, collagen196  or chitosan.197. 

Micro and nano encapsulation are often necessary to protect GFs during the formulation and 

production phases and to achieve a long-term exposure, a characteristic required for the 
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delivery of GFs to chronic wounds. Furthermore, as reported by Ulubayram et al.194, 

incorporating GFs into a wound dressing either in free form or loaded within microspheres, (to 

provide sustained release) have shown greater effects in wound healingthan only free GFs. 

Electrospinned nanofibers is another very popular approach to develop novel multifunctional 

platforms by integrating controlled release strategies within scaffolding materials, which are 

able to control and regulate the wound healing process.198 Different fabrication techniques have 

been used for the development of GFs–loaded electrospinned fibers. GFs can be incorporated 

into the nanofibers199 or conjugated onto the fibers surface200 and different release 

characteristics are obtained, depending on the loading method. An interesting hybrid approach 

was proposed by Kulkarni et al. which used a layer-by-layer assembly technique, to obtain a 

dressing able to preserve the bioactivity of encapsulated EGF whilst allowing the tuning of 

EGF release for an extended period, depending upon the number of layers deposited onto the 

surface.201  

 Wound healing is one of the most complex mechanisms in the human body where 

multiple cellular pathways are simultaneously activated by different molecules. For this reason, 

the delivery of a single GF might be insufficient and a combined action of different GFs was 

shown to improve the reparative processes in the wounded skin of diabetic mice better than 

single-agent treatment.202 Furthermore, the local concentration and the spatio-temporal 

gradients can be crucial for a successful treatment and combining different preparation 

techniques provides the possibility of simulating the natural conditions involved in the wound 

healing process. Using a combination of encapsulated and free GFs, it is possible to engineer 

a multiple release system with a controlled, sequential release of GFs mimicking the 

physiological action sequence and providing the most effective outcome. Multiple GFs 

including bFGF, EGF, VEGF and PDGF were encapsulated in collagen and hyaluronic acid 

based electrospinned nanofibers loaded with gelatin nano-capsules by Lai et al. for sequential 

release of the GFs on the wound site196 GFs encapsulated either in nanofibers or in 

nanoparticles are released over 1 month by gradual degradation of nanofibers/nanoparticles 

simulating the temporal release of regulatory factors in the normal wound healing process. The 

initial delivery of bFGF and EGF bio-mimics the early stage of the wound healing process, 

whereas slow controlled release of VEGF and PDGF-BB imitates the late stage of skin 

reconstruction promoting re-epithelialization, dermal reconstruction and formation of mature 

vasculature as confirmed by in vivo studies on streptozotocin-induced diabetic rats.196 

 Platelets can constitute a natural potential source of multiple GFs and proteins involved 
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in tissue regeneration. For this reason topical treatments with platelet derivatives have 

increasingly been described as capable of accelerating wound healing and to aid in tissue 

repair.203 Platelet lysate (PL) is a hemo-derivative obtained through platelet destruction by 

freeze-thawing and was shown to have activities of different cell types involved in wound 

healing.204 The possibilities to use allogeneic PL, which minimizes individual variability, 

represents an advantage compared to patient derivatives such as platelet-rich plasma (PRP) or 

platelet-rich fibrin (PRF). Different controlled-release systems have been developed to provide 

sustained delivery of PL to the wound, including sponge-like dressings,205 mucoadhesive 

gels206 and eyedrops.207 Recently a powdered alginate formulation was proposed for the 

combined delivery of PL and vancomycin hydrochloride in chronic skin ulcers.208 The alginate 

particles released the active drugs and also absorbed wound exudates to form a gel and at the 

same time enhance fibroblast proliferation.208 

4.2 Nucleic acids 
 The local delivery of GFs presents some challenges and there has been limited   success 

of clinical trials.  The combined effects of physical inhibition and biological degradation cause 

significant loss of drug activity which minimizes their therapeutic efficacy. The introduction 

and expression of exogenous DNA into a host cell to achieve a permanent insertion (known as 

gene therapy) or transient transformation (gene medicine) has great potential in the treatment 

of wounds, stimulating the cells themselves to produce the GFs directly onto the wound site.209 

Such an approach could avoid the degradation of GFs on the wound site and achieve a 

temporary expression of these factors until wound closure. One of the first attempts to use a 

plasmid DNA coding for interleukin 8 (IL-8) genes in wound healing was by Hengge et al. by 

injecting naked genes into the skin which resulted in a significant recruitment of dermal 

neutrophils.210 However, naked DNA constructs injected into the skin has been proven to have 

a low transfection efficiency due to their fragility in the extracellular environment, large size 

and electrical charge. The transfection efficiency can be enhanced using a gene-activated 

matrix (GAM) that, allows better control over the duration of transgene expression and 

promotes new tissue formation in a more effective way. A controlled release from a matrix can 

maintain the right level of the vector over time, providing repeated opportunities for 

transfection/transduction and extending transgene expression. For this reason, the design 

parameters of gene-loaded scaffolds (e.g. material, architecture, vector incorporation, 

biochemical cue presentation) are very important and directly affect the transgene expression 

and tissue repair.211 Biodegradable carriers loaded with adenoviral vectors have been 



 27 

investigated for gene transfer in different animal wound healing models showing an increased 

granulation tissue formation, vascularization and re-epithelialization compared to controls 

treated with carriers alone or carriers containing a reporter gene vector.212-214 However, the 

limited loading capacity, the high costs of production and the safety risk restrict their 

application range. Synthetic DNA delivery systems, known as non-viral vectors, have the 

advantage to deliver genes to target cells without the potential for recombination with wild type 

viruses and possible cellular damage due to repeated exposure to the viral vectors.215 Typically, 

these non-viral vectors are complexes of naked plasmid DNA (pDNA) with cationic polymers 

(polyplex), lipid (lipoplex) or inorganic particles. These synthetic constructs have a lower risk 

of toxicity and offer the possibility of using a wider range of DNAs with different sizes, but at 

the expense of lower transfection efficiency compared to viral vectors. The transfection rate 

and the consequent success of the therapy, depends  on the degradation rate of biomaterials and 

the cellular infiltration into the scaffolds. The control of these two parameters allows a 

modulation of the therapeutic action over a long period of time, making this system very 

attractive for wound dressing application. Hydrogels containing pDNA coding for TGF-

beta1216 and VEGF217 have already been shown to promote wound healing in mouse wound 

models. Electrospinned nanofibers can be easily engineered to obtain scaffolds for delivery of 

nucleic acids due to their high surface area, high porosity and interconnected pores beneficial 

for cell adhesion/proliferation and oxygen/nutrient transfer.198. The blending of DNA with an 

electrospinning solution did not give satisfactory results due to improper encapsulation and 

transfection efficiency132 but the development of other techniques, such as the incorporation of 

DNA-loaded particles into nanofibers, core–shell nanofibers, or surface modification, helped 

to overcome the low transfection efficiency of naked DNA-loaded nanofibers.198 y Saraf et al., 

formulated a fiber mesh scaffold containing a non-viral gene delivery vector 

polyethyleneimine-hyaluronic acid complex (r-PEI-HA) and pDNA within the sheath and core 

of the fiber, respectively.218 They showed that the release rate and the transfection efficiency 

could be tuned by changing parameters such as concentration of pDNA and molecular weight 

of the core polymer.  

 Small interfering RNAs (siRNA) are small pieces of double-stranded mRNA that can 

inhibit gene expression and prevent the production of specific proteins.219 The use of siRNA in 

wound healing could provide a gene-specific silencing of inflammatory or other specific 

proteins directly involved in chronic wounds. However, for an effective siRNA wound therapy, 

it is necessary to protect and deliver the nucleic acid directly into the cytoplasm, a process 
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complicated by the very short half-life in vivo and by the difficult cellular internalization.219 

Research in this field is very attractive and many biomaterials and nanoparticles (NPs) are 

constantly developed and optimized to create efficient delivery systems for siRNA.220 

Biodegradable scaffold injected or implanted directly at the wound site have already been 

investigated and demonstrated the ability to achieve a high level of gene silencing efficiency 

and tunability in vivo.221 However, despite the enormous potential of these technologies in 

wound healing, only few attempts222,223 have been made to develop dressings or medical 

implants for localized and sustained siRNA delivery to the wound. 

4.3 Stem cells  
 In recent years, there has been increasing evidence showing that the paracrine effect of 

stem cells can play an important role in wound healing, in particular regulating the levels of 

cytokines and GFs around the wound site.224-226 Compared to many differentiated cell 

phenotypes, stem cells are potentially permanent residents of the wound site and naturally 

modulate the healing response in acute and chronic wounds, synthesizing and delivering 

multiple GFs. The use of biomaterial scaffolds loaded with stem cells can provide a local 

delivery of GFs, and at the same time, strengthen the action of the stem cells which creates a 

favorable environment to promote cell adhesion, proliferation, migration and differentiation. 

Different cell types and methods can be used in the stem cell therapy of wound healing and 

Branski et al. have provided a detailed outline of these technologies.227 Bone marrow-derived 

stem cells (BMSCs) are probably the most studied marrow-derived stem cells (MSCs) and 

several clinical studies have demonstrated their usefulness in wound healing.228,229 However, 

bone narrow harvesting is an invasive, and painful procedure and some pathologic conditions 

(e.g. severe burn trauma, sepsis, silver sulfadiazine toxicity or old age) can reduce the BMSCs 

availability.227  

Adipose-derived stem cells (ADSCs) are considered an interesting alternative to BMSCs 

for wound healing application because they express a similar array of cytokines and GFs and 

can be easily isolated from sections of whole fat (biopsy) or lipo-aspirate, which means a less 

aggressive and painful harvesting procedure. The biggest challenge in the use of MSCs is to 

keep the cells in contact with the wound bed and keep them viable in the hostile wound 

microenvironment. In situ forming injectable hydrogel dressings have been successfully 

applied for the delivery of large volumes of cells or biomolecules as they allow the retention 

of the cells at the injection site, therefore increasing efficiency. Furthermore, the relative ease 
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of loading living cells into those systems and the conformability to complex tissue or implant 

shapes make hydrogels a very popular scaffold for cell encapsulation.230 BMSCs231 and 

ADSCs232 loaded thermo-responsive hydrogels have already been tested in wound models and 

showed potential as a bioactive wound dressing. A new interesting application of ADSCs is as 

filler in biodegradable sutures to provide a local pro-regenerative effect at the injured site. The 

simultaneous release of key molecules involved in the different phases of wound healing in 

association with the mechanical wound fixation, represents a promising tool to promote wound 

healing. 

 

5 DRESSINGS CONTAINING NATURALLY DERIVED 
AGENTS 

5.1  Naturally occurring plant compounds 
The development of new wound management products based on traditional or 

alternative medicine has become very popular in recent years. Before the advent of modern 

medicine, people of all continents used medicines from natural sources and nowadays the 

perception towards traditional medicine has also changed. Natural products, including the ȕ-

glucans, aloe, honey, cocoa, essential oils and oak bark extracts are already used in wound 

healing.233 However, the lack of standard methods to evaluate their composition has made it 

more difficult to determine the true efficacy of these products for wound healing.  

 

5.1.1 Aloe vera 

Aloe vera (Aloe barbadensis) preparations have been used for centuries to treat wounds 

and burns and it’s wound healing properties have always attracted the interest of the scientific 

community. Aloe vera gel is an extremely complicated mixture of natural products, but the 

biological activity is principally attributed to polysaccharides and glycoproteins (e.g. lectins) 

present in the leaf pulp.234 Acemannan, the main polysaccharide present in aloe vera gel, seems 

to play an important role in the wound healing process by inhibiting bacterial growth and 

stimulating macrophage activity.235 Furthermore, the anti-septic and antimicrobial activity are 

also related to the presence of natural antiseptic agents such as lupeol, salicyclic acid, urea 

nitrogen, cinnamonic acid, phenols and sulfur, which have inhibitory activity against fungi, 

bacteria and viruses.236 Several authors have already proposed the use of aloe vera as alternative 

to synthetic drugs to develop active wound dressing materials useful for wound healing 
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applications.237-239  

 

5.1.2 Other plant extracts 

Table 6 summarizes the use of other herbal medicines useful in wound care. Plant 

extracts from Chamomilla recutita,240 Hamamelis virginiana,241 Polisiphonia lanosa 

seaweed,242 Acacia arabica and Moringa oleifera,243  are already being employed in the 

development of advanced wound dressings. Recently, a collagen sponge containing an extract 

of Macrotyloma uniflorum, generally utilized as cattle feed, was developed by Muthukumar 

and coworkers.244 The plant extract imparts antimicrobial activities to the sponge and at the 

same time, increased the tensile strength and the stability against collagenase enzyme.  

Table 6. Extracts from different plants useful in wound healing. Adapted from Dorai et al.244,245  

Herbal medicine 
Properties 

Aspilia Africana Hemostatic properties on wounds, inhibits the growth 
of microbial organism, accelerates wound healing, 
treatment of rheumatic pain, bee and scorpions stings, 
remove corneal opacity and foreign bodies from the 
eyes 

Bridelia ferrugunea, Parkia 
biglobosa Jacq 

Increased the proliferation of dermal fibroblast 

Elaeis Guineensis leaf extract Improve tissue regeneration 

Cedrus libani, Abies cilicica 
subsp cilicica 

Improved wound healing and anti-inflammatories 
properties 

Carapa Guineensis leaves Increased rate of wound contraction, skin breaking 
straight and hydroxyproline content 

Combination of Yasha 
Bhasma, shoea robusta and 
flax seed oil 

Increased wound contraction, higher collagen content 
and better skin breaking straight  

Hippophae rhamniodes L Improve wound healing 

Carica papaya latex Increased wound contraction and epithelialization rate 

Methanol extract of 
Heliotropium indicum Linn. 
leaves 

Improve wound healing 

Rafflesia hasselti, buds and 
flower extract 

Improve wound healing rate and wound contraction 

Melaleuca alternifolia Antimicrobial, antiseptic, antiviral, antifungal and anti-
inflammatory properties 

 

Essential oils are the volatile products of secondary metabolism of plants and can be 
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obtained from plant flowers, seeds, leaves, fruits and roots most commonly via distillation, 

expression or solvent extraction. Approximately 3,000 essential oils are known, of which 

around 300 are commercially important.136 Some of these, such as thyme oil, oregano, bay, 

lavender, peppermint, cinnamon, tea tree, rosemary, eucalyptus and lemongrass  have been 

found to exhibit antimicrobial properties, but only lemongrass, oregano and bay essential oil 

showed antimicrobial activity at concentrations <<2% (v/v).246 Liakos et al.247 tested the 

antimicrobial and antifungal properties of nine different essential oils at three different 

concentrations incorporated in a sodium alginate-based film. The loaded films showed the 

capacity of inhibiting bacterial and fungal growth depending on the essential oil type and 

concentration and can be suitable to use as novel antimicrobial wound dressing. Several other 

studies have been conducted on the antimicrobial activity of essential oils in wound dressing 

systems. Thyme oil was successfully incorporated into chitosan films to obtain antibacterial 

and permeable films for wound healing applications.249 Thyme oil showed good antimicrobial 

effects on both Gram-negative and Gram-positive microorganisms and its efficacy as safe and 

effective source of natural antioxidant and antimicrobial agents was confirmed also by their 

incorporation into gelatin films250 and N-carboxybutylchitosan /agarose foam using 

supercritical carbon dioxide.251 Eugenol and limonene were doped in nanofluid-based 

magnetite and used to fabricate modified wound dressings with antimicrobial properties.252 

Garcinia mangostana extracts were incorporated into electrospinned chitosan based nanofiber 

mats that showed the ability to inhibit the growth of Staphylococcus aureus and Escherichia 

coli.253 However, essential oils, due to their hydrophobicity, tend to have a poor dispersion and 

eventual phase separation can occur either in solution or in the final dried film. To avoid these 

phenomena and improve the dispersion and the stability of the essential oils, the use of a 

surfactants is often required. A different approach was used by Catanzano et al.248 who 

proposed a microemulsion as carrier to obtain a homogeneous distribution of tea tree oil in an 

alginate hydrogel. 

5.2  Honey  
 in which nectar is collected and stored in beehives. Over centuries, honey, produced by 

the pollination bioactivity of industrious honeybees (Apis mellifera), has been valued for its 

biomedical activity in treating various types of wounds including burns, diabetic ulcers, 

pressure ulcers and leg ulcers.254 Different ancient Sumerian and Greek manuscripts mentioned 

the use of honey as a drug against wounds such as ulcers.255Even as far back as World War I, 

Russian soldiers used honey to prevent wound infection as well as to accelerate healing of their 
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wounds. The Germans also used honey in combination with cod liver oil to treat ulcers, burns, 

fistulas and boils.256 A broad spectrum of wounds are reported to be responsive to honey, 

including scratches, boils, amputation, leg ulcers, burns, chill blains, burst abdominal wound, 

cracked nipples, fistulas, diabetic, malignant, leprosy, traumatic, cervical, varicose and sickle 

cell ulcers, septic wounds, surgical wound or wounds of abdominal wall and perineum257.238 

The pharmacological activities of honey258,259 relevant for wound healing include, 

antimicrobial, deodorizing, debriding, osmotic, anti-inflammatory and antioxidant actions 

which are known to enhance the rate of wound healing.260 Various studies have demonstrated 

the antimicrobial effectiveness of honey in killing challenging wound-infecting bacteria261 with 

significant increase in randomized clinical trials using honey to treat wounds.259 In its natural 

state, honey contains major and minor ingredients which account for its biomedical actions in 

the treatment of various wounds including burns and ulcers254 and these ingredients vary in 

their physico-chemical properties depending on the plant species on which the bees feed as 

well as the climatic and variations in general vegetation.262 The main ingredients in honey are 

carbohydrates of which 95% are sugars, (mainly glucose and fructose) which form the building 

blocks for other more complex sugars present in quite small quantities. These sugars form 

during a chain of enzymatic (invertase, diastase, glucose oxidase and catalase) reactions 

occurring within the honeybee during the ripening of honey or by chemical action in the 

concentrated honey.263 Honey also contains various organic acids, such as gluconic acid, which 

make up just 0.5% of the total solids with pH  ranging from 3 to 4.5.Other acids in honey 

include formic, acetic, butyric, lactic, oxalic, succinic and tartaric acids.263 Another group of 

important constituents of honey are polyphenols which account for the natural antioxidants 

properties. Among these polyphenols, catechin, quercetin and taxifolin have been reported to 

have the highest anti-oxidation effects.264  

 

5.2.1 Antimicrobial activity 
The antibacterial activity of honey is reported against over 60 bacteria species including 

aerobes and anaerobes, Gram-negative, Gram-positive and some fungi. These include 

Pseudomonas aeruginosa, Staphyloccocus aureus, Candida albicans and Escherichia coli, , 

coagulase negative Staphylococci, Acinetobacter baumannii  Stenotrophomonas maltophilia, 

MRSA and VRE257-259.238-240 Furthermore, honey plays an important role in preventing biofilm 

formation.265 The high sugar content of honey was previously considered as the main 

antibacterial agent due to the osmotic action of sugars which deprive bacterial cells of water 

http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCYQFjAA&url=http%3A%2F%2Fcid.oxfordjournals.org%2Fcontent%2F46%2F8%2F1254.full&ei=v_meVbSSLMa1UfXSgIAE&usg=AFQjCNEP3NUTwXPhfXxY_KxlQJlETPWsLw&sig2=FQ2-OKtKm6QhLJ3T0R8E4Q&bvm=bv.96952980,d.bGQ
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vital for growth.266 However, dilution in water increased the antimicrobial efficiency of honey 

and further research later identified hydrogen peroxide as the main antimicrobial agent267.248 

The antimicrobial properties of honey is attributed to the cumulative action of high sugar 

content, acidity (low pH),266 hydrogen peroxide268,269 and some phytochemicals, including 

flavonoids and phenolic acids. The flavonoid, pinocembrin has been identified as an 

antimicrobial factor270 possibly resulting from the ability of flavonoids to form complexes with 

soluble proteins and cell walls of bacteria. Phenolic acids such as methyl syringate are reported 

to possess antibacterial activity, however they only account for about 4% of the nonǦperoxide 

antibacterial activity of diluted honey.271 Furthermore, freshly extracted honey from the comb 

is known to have high levels of lysozyme which possesses antimicrobial action.272 Other 

important chemical factors such as volatiles, organic acids, lysozyme, beeswax, nectar, pollen 

and propolis are important for the antibacterial properties of honey.273  

Though there is no conclusive evidence of benefit in medical use of honey,255 honey 

dressings, gels and the pure liquid have been gaining in popularity, fueled by scientific reports 

on their medical benefits and occasional news accounts of the dramatic recovery of a patient 

with chronic wound. The mostly low quality of the evidence and the heterogeneous nature of 

the patient populations make it difficult to draw overall conclusions about the effects of honey 

as a topical treatment for wounds. However, from data collected in a recent Cochrane review, 

honey appears to heal partial thickness burns more quickly than conventional (polyurethane 

film, paraffin gauze, tobramycin-impregnated gauze, sterile linen) treatment whilst infected 

post-operative wounds healed more quickly than antiseptics and gauze.274 Honey dressings are 

available in various commercial preparations such as honey gel ointment, honey impregnated 

tulle dressings, honey impregnated calcium alginate dressings, and honey-based sheet hydrogel 

dressings (table 7).130,258,275,276  
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 Table 7. Commercially available honey products used in wound healing 

Commercial name Company Forms Honey type 

MGO™ Manuka 
Honey 

Manuka Health 
New Zealand Ltd 

Pure Honey Manuka honey 

Manuka Fill® Links Medical Sterile Manuka Honey Manuka honey 

Manuka IG® Links Medical Honey impregnated gauze Manuka honey 

Surgihoney™ H&R Healthcare Pure Honey 
Bio-engineered 
honey 

TheraHoney® Medline Sheets, ribbon, gel Manuka honey 

Medihoney® Derma Sciences 

Hydrogel colloidal sheet, 
Honey colloid Dressing, 
calcium alginate dressings, 
gel and paste 

Manuka honey 

Activon® Advancis Medical 
Knitted viscose mesh 
dressing, pure honey 

Manuka honey  

Algivon® Advancis Medical 
Alginate ribbon and 
dressing 

Manuka honey  

Actilite® Advancis Medical 
Composite foam/silicone 
dressings, non-adherent 
viscose net dressing, 

Manuka honey  

 

Manuka honey is probably the most widely known honey used over centuries as a wound 

dressing. It is a mono-floral honey produced in New Zealand and Australia from the nectar of 

the mƗnuka tree (Leptospermum scoparium), plant which is endemic in parts of Australia and 

New Zealand. Manuka honey has been reported to exhibit antibacterial activity against a broad 

spectrum of bacteria including Staphylococcus aureus (including MRSA), Pseudomonas 

aeruginosa and VRE.277 The antibacterial properties of Manuka honey are principally, but not 

exclusively, due to methylglyoxal.278 Medihoney® Dressing (Derma Sciences, USA) was the 

first wound dressings based on active Manuka Honey to receive FDA approval for clinical use. 

According to the FDA, Medihoney® dressings are indicated for the management of light to 

moderately exuding wounds such as diabetic foot ulcers, venous or arterial leg ulcers, partial 

or full thickness pressure ulcers/sores, first and second partial thickness burns, traumatic and 

surgical wounds. 

A high-standardized synthetic antibacterial honey was developed by H&R Healthcare 

using a proprietary manufacturing process to produce precise levels of antimicrobial potency 
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through steady delivery of oxygen free radicals. Surgihoney® is a licensed sterile product based 

on natural, organic honey from a variety of sources, which has been developed for wound care 

and as a prophylactic dressing for wounds. The antimicrobial activities mediated by hydrogen 

peroxide279 make Surgihoney® active against both Gram-positive and Gram-negative bacterial 

at very low concentration.280  

Due to their natural origin and the high purity, honey dressings have few 

contraindications, however, they should be avoided in patients with a known history of allergy 

to either honey or bee venom. It was also reported that patients with diabetes should have their 

blood sugar monitored as they may be at higher risk of hyperglycemia due to the high sugar 

content of honey.275 

 Propolis (honeybee glue) is another natural substance produced by honeybee useful in 

wound healing.281 It is a resinous mixture of botanical balsams and resins with digestive 

enzymes of bees used principally as a sealant in the hive. In traditional medicine, propolis is 

widely used for the treatment of various ailments including ulcer and wound healing. The 

presence of biologically active ingredients such as flavonoids, phenolic acids, terpenes, benzoic 

acids, amino acids and vitamins, impart to propolis an antioxidant, antimicrobial and immune-

modulatory action with a resultant acceleration of wound healing.281,282 Collagen-based films 

containing hydro-alcoholic extracts of two different varieties of propolis were studied by de 

Almeida et al. on dermal burn healing in a rodent model.283 These films significantly decreased 

the inflammatory severity improving the biological events associated with burn healing and 

seems to be a promising new dressing for wound occlusion and tissue repair.283 

  



 36 

6 MEDICATED SUTURES 
Sutures are biomaterial devices (natural or synthetic), usually used for mechanical 

wound closure to hold tissues together following surgery or trauma. Suturing in one of the most 

ancient wound healing techniques and although other methods for mechanical wound closure, 

such as staples, tape, and adhesive, have been developed over the years, sutures are still the 

most widely used materials.284 Sutures are generally categorized according to the type of 

material (natural or synthetic), the lifetime of the material in the body (absorbable or non-

absorbable) and the form in which they were made (braided, twisted, and monofilament). Each 

type of suture has different characteristics, properties and surgical application, as reported by 

Pillai and Sharma.284 Despite the differences in materials and performance, the main goal of 

sutures is the approximation of the epithelial portion of the wound, maintaining the tensile 

strength across the wound until tissue tensile strength is adequate. To exert this action, sutures 

are in direct contact with the wound, and for this reason can represent a useful scaffold for local 

delivery of active molecules to the wound. 

 Despite the significant advances in aseptic principles of surgery and the ongoing 

improvement of minimal invasive surgery, surgical site infections (SSIs) are still the major 

source of prolonged illness and death in surgical patients.285 SSIs occur when pathogenic 

organisms (usually members of the Staphylococci family) proliferate in surgical wounds, 

resulting in the impeding of wound healing, separation of the wound edges (dehiscence), and 

increase in the risk of abscess in deeper wound tissues. At least 5% of patients undergoing 

surgery develop SSIs which increases the duration of hospitalization by 20-fold and results in 

a greater risk of readmission and higher healthcare costs.286 Sutures can be a source of surgical 

wound contamination because of their non-shedding surface to which bacteria can adhere, form 

biofilms and potentiate SSIs. The presence of foreign materials in a wound enhances the 

susceptibility of surrounding tissues to infection and in the presence of sutures only 100 colony-

forming units (CFU)/mg are necessary to produce infection.287 Bacteria can also contaminate 

the suture itself making local mechanisms of wound decontamination become ineffective.  

 To reduce bacterial adherence and colonization of suture materials, sutures impregnated 

or coated with antibacterial agents have been developed. Suture materials, especially braided 

or twisted sutures, are frequently coated to facilitate their handling properties and the 

incorporation of antibiotic drugs or silver ions is one of the approaches adopted to impart 

antimicrobial activity. Ideally, an antimicrobial-impregnated suture should prevent bacterial 

adhesion and biofilms formation using antiseptics drugs with a rapid, potent and broad 
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microbiocidal spectrum, long-lasting effects and no risk of developing antimicrobial resistance. 

Furthermore, they should be biocompatible with medical products, not impair healing 

processes and be well tolerated in wounds with no toxicity or systemic absorption. Even though 

the development of an antibacterial surgical suture has been under consideration since the early 

1980s, the first commercial antimicrobial suture, Polyglactin 910 suture loaded with triclosan 

(Vicryl Plus®), was only approved for clinical use by the FDA in 2002. Different polymeric 

triclosan-coated sutures are actually on the market, but clinical studies are still unclear about 

the real effectiveness of these antibacterial sutures.286 The main disadvantage of triclosan is that 

its widespread use in non-medical products such as cosmetics, soaps and detergents, has 

resulted in a rise in triclosan-resistant bacteria.  

 The enormous market potential of this device makes research into anti-microbial 

surgical sutures very attractive and as a result, new potential alternatives to triclosan are 

currently under investigation. A suitable alternative to overcome triclosan bacterial resistance 

is chlorhexidine, a wide spectrum antimicrobial agent principally used as oral antiseptics. 

Chlorhexidine coated sutures were recently successfully developed using different fatty acids 

as coating material to achieve a high anti-microbial efficacy and biocompatibility.288 In 

addition silver,289 and AgNPs,290 have been proposed for suture coating, showing an anti-

inflammatory and antimicrobial activities suitable for potential clinical application.  

This new generation of suture materials when used to deliver GFs, enzymes or other 

biomacromolecules directly to the wound site, can result in significant improvement beyond 

the currently employed surgical procedures. Several studies have demonstrated the possibility 

of  incorporating GFs into polymeric bioadsorbable coating materials. Bigalke et al. 

investigated a poly(L-lactide) (PLLA) coating on a commercially available suture for the 

delivery of VEGF.291 The authors obtained a well-tuned VEGF release from the suture wire, 

which resulted in an increased vascularization and consequent wound healing enhancement. 

Other GFs, such as IGF-1 or growth differentiation factor-5, have been investigated and 

observed to promote healing in rat models of anastomoses292 and tendon repair293 respectively. 

An innovative approach for GFs release from a suture wire was proposed by Reckhenrich et 

al. who prepared a surgical suture filled with adipose-derived stem cells (ADSCs) to provide 

pro-regenerative features and allowed the treatment and the fixation of the wound in one single 

step.294 The incorporation of ADSCs into the inner core of the suture did not affect their 

viability and the cells remained attached to the suture materials after implantation, constantly 

releasing cytokine and GFs. However, the low mechanical properties of this ADSCs-loaded 

suture (due to the filling procedure), restrict their use only to elastic tissues.  
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Tissue degradation is a problem that often occurs at the repair site, resulting in increased 

risk of post-operative leakage. Implantation of a foreign material into the tissues invariably 

evokes a reaction, characterized by an elevated production of MMPs, an enzyme that degrades 

the extracellular matrix, allowing the suture to cut through the tissue and thus contributes to 

repair-site elongation and gap formation. Medicated sutures coated with doxycycline, an MMP 

inhibitor, were used to improve the suture-holding capacity in tendon repair procedure during 

early repair of collagenous tissues.295  

Though coating has been shown to be an easy procedure to prepare drug-loaded sutures, 

such fabrication procedures can have negative effects on the suture’s mechanical strength, 

especially at the site of the knot, which is essential for effective wound closure. Moreover, it 

has been shown that suture coatings can lead to physical disruption of the bioactive reagent 

during the mechanically bearing suturing process.296 To overcome these limitations, new 

strategies have been developed. For example, , Lee et al.297 prepared a composite surgical 

dressing by assembling together a drug loaded biocompatible polymeric sheet with a surgical 

suture material, which enabled controlled delivery of an analgesic drug,  and is already in 

clinical use. The drug loaded suture showed good biocompatibility and mechanical properties 

comparable to those of the original surgical suture and by modifying only the polymeric sheet, 

it is possible to tune the drug release for up to six days, effectively relieving the pain at the 

surgical site during the period of wound healing. Drug-eluting electrospinned fibers have been 

proposed for the local delivery of antibiotics298 and local anesthetics299 but their weak 

mechanical properties and difficulty of scaling up, make these sutures difficult to be applied in 

clinical settings.  

 Extrusion processes are usually employed for the large-scale synthetic production of 

sutures because they allow a precise and controlled manufacturing process resulting in uniform 

and reproducible properties. However, the high temperature required to melt the polymers can 

degrade the bioactive molecules, limiting the application of this process in the biomedical field. 

To protect the drugs from degradation, inclusion of active drugs into an organic or inorganic 

microstructure that can be dispersed in the polymeric matrix during the extrusion phase, has 

been proposed.300 Medicated sutures containing an anti-inflammatory agent loaded into an 

inorganic layered material has already been developed, showing the potential of this 

approach.301  
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7 TISSUE ENGINEERED SKIN SUBSTITUTES 
For wounds where there has been excessive skin loss or damage, in which both epidermal 

and dermal skin layers are lost, wound healing using only dressing materials or delivery of 

active agents alone is not viable. Therefore, alternative solutions using either artificial or 

bioengineered skin substitutes are required to allow the necessary regeneration and replacement 

of lost tissue. According to Mansbridge, tissue engineered skin substitutes, function effectively 

due largely to the ability of fibroblasts and keratinocytes to spontaneously form three 

dimensional structures similar to skin, though other cell types have been included which allow 

a wide range of properties naturally displayed by normal intact skin.302 Limova303 in 2010, 

made the following poignant summary about these highly advanced wound healing products: 

“extensive skin loss and chronic wounds present a significant challenge to the clinician. With 

increased understanding of wound healing, cell biology and cell culture techniques, various 

synthetic dressings and bioengineered skin substitutes have been developed. These materials 

can protect the wound, increase healing, provide overall wound coverage and improve patient 

care. The ideal skin substitute may soon become a reality”. Since this observation, several 

advances have been made in this field and skin substitutes represent a significant improvement 

over modern moist dressings and advanced drug delivery dressings. In addition, they also 

provide a more convenient alternative to the harvesting and use of skin grafts from healthy 

areas of the body as these are very painful and self-defeating because of the need to create a 

wound elsewhere in the body.  
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Unlike dressing or direct regenerative approaches, tissue engineered skin substitutes 

comprise fabricated biomaterial polymer matrix (such as collagen) which acts as scaffolds for 

engineered skin substrates which grow to actively replace lost tissue.  The scaffolds possess 

mechanical and anatomic characteristics ideally approaching that of the tissue (normal dermis) 

which they are to replace.304 The scaffold materials gradually degrade within the body, leaving 

behind a matrix of connective tissue with the appropriate structural and mechanical properties. 

Hartmann Fritsch et al305 have reported on reinforced collagen hydrogels as dermal-epidermal 

skin substitutes in rats. Their results showed that the skin substitutes developed into a 

homogeneous and well-stratified epidermis over the entire surface of the grafts, with a 

continuous basement membrane and dermo-epidermal junction. An antibacterial scaffold was 

prepared by electrospinning of a solution comprising dextran, polyurethane and ciprofloxacin 

HCl (CIP HCl) drug.306 The results showed favorable interaction between fibroblast cells and 

the scaffolds, in particular the ciprofloxacin loaded matrices.306 Jin et al307 also showed the 

potential of electrospinned nanofibers containing polycaprolactone and the plant extract of 

Memecylon edule as substrates for skin tissue engineering in burn wounds. 

Several tissue engineered skin substitutes are available on the market but these have been 

previously reviewed,1 and the reader is referred to this review for relevant references and more 

detailed discussion. However, there has been several published literature on the subject 

including newer models and advanced characterization of these wound healing systems, most 

driven by recent advances in tissue regeneration approaches including plastic surgery.  

Michael et al.308 proposed a mice model for the functional characterization and testing of 

skin substitutes using the dorsal skin fold chamber of mice. They inserted commercial dermal 

construct, (Matriderm®, MedSkin Solutions Dr. Suwelack AG, Germany) covered with 

collagen gel, into full thickness wounds in the skin fold chambers and showed good integration 

into the nearby healthy skin and wound epitheliazation within 11 days. They suggested that 

such a model could be useful in situations where a lack of sufficient areas for obtaining split 

thickness skin grafts becomes an issue.308 Martin et al.309 investigated the effect of tissue-

engineered biological dressing matrices loaded with human in vitro-differentiated adipocytes 

and ADSCs by evaluating re-epithelialization, granulation tissue formation and 
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neovascularization of full-thickness cutaneous wounds in fluorescent epidermis of a mouse 

model.309 It was demonstrated that the tissue engineered treated wounds showed significantly 

faster wound closure than control wounds without the dressing application over an 18-day 

period. They also showed by non-invasive imaging of GFP-expressing keratinocytes, that the 

rate at which the wounds re-epithelialized were similar for both groups with the treated wounds 

exhibiting thicker collagen enriched granulation tissues. It was concluded from this study that 

composite engineered substitutes comprising both adipocytes and ADSCs have potential to 

stimulate cutaneous wound healing when applied as temporary dressings. Table 8 summarizes 

other reported uses of tissue engineered skin substitutes for treating various types of wounds 

including chronic wounds. 
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Table 8. Selected tissue engineered substitutes reported in the literature for application to different wound types 

including chronic wounds. 

Matrix  Construct source Author/Reference 

Collagen Human dermis Netchiporouk et al.310  

Collagen-elastin Human subcutaneous adipose tissue Keck et al.311  

Synthetic electrospun 
polylactide (PLA) 

Finely minced split thickness human 
skin 

Sharma et al.312  

Collagen Living skin substitute Wahab et al.313  

EGF incorporated 
gelatin microspheres 

Bone-marrow-derived mesenchymal 
stem cells (BM-MSCs) 

Huang et al.314  

3D fibrin / collagen 
type 1-hydrogels 

Human dermo-epidermal skin 
substitutes (DESS) 

Klar et al.315  

 

 

8 ADVANCED WOUND HEALING THERAPIES  

8.1 Oxygen-associated therapies  
A significant number of recent research investigations have demonstrated the importance of 

oxygen in the field of chronic wound healing.316,317 Oxygen plays an essential role in support 

of cellular processes and infection control, and it is commonly accepted that inadequate cellular 

oxygenation and perfusion leads to impaired wound healing, triggering wound maceration and 

delayed healing.318 Chronic wounds, in particular diabetic ulcers, usually have a compromised 

circulation due to a disruption of the blood flow or edema, which decrease or prevents oxygen 

delivery to healing cells.  

Hyperbaric oxygen therapy was originally designed for use in decompression illness in 

deep sea divers and been used as an adjunct in wound healing for 40 years.319 This treatment 

involves placing the patient in a sealed chamber where 100% oxygen is pressurized to between 

1.5 and 3 atmospheres absolute (ATA) for 60 to 120 minutes over a course of multiple 

treatments. Hyperbaric oxygen significantly increases the oxygen saturation of plasma, raising 

the partial pressure (PaO2) available to tissues, which in turn causes vasoconstriction. This 

vasoconstriction on the arterial end reduces capillary pressure, which promotes fluid absorption 

into the venous system thereby reducing edema, as well as causing an increase in hyper-

oxygenated plasma to the tissues. Tissue repair processes such as collagen elongation and 

deposition and bacterial killing by macrophages are dependent upon oxygen, therefore 
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increased levels in wound areas that already have impaired perfusion, serve to facilitate wound 

healing. The application of hyperbaric oxygen is particularly advantageous in patients with 

diabetic foot ulcers where it is associated with significantly higher rates of wound healing and 

could significantly reduce the risk of major amputation.316,320,321 In addition to immediate 

assistance in healing, hyperbaric oxygen also has a role in long-term wound improvement, 

perhaps due to the realization of the full effects of neovascularization.322  

Topical wound oxygen therapy is an alternative method of administering oxygen to a 

wound, where 100% humidified, pressurized oxygen is directly applied to the surface of an 

open, ischemic wound in order to increase the local oxygen levels in the tissue. This route of 

administration involves injecting pure oxygen into a portable inflatable bag, which encases the 

wound area. Topical oxygen therapy, used as an adjunct to other therapies, has been shown to 

be effective for wound healing,323,324 and the low costs, greater portability, and reduced risks 

of oxygen toxicity make this approach more beneficial than hyperbaric oxygen.316 However, 

both these therapeutic approaches are time consuming and inconvenient for the patient due the 

required immobility during treatment.  

 The use of a therapeutic wound dressing to deliver oxygen directly to the cells may be 

an interesting strategy as it is more cost effective, portable and presents the possibility of 

promoting more rapid wound healing. Topically delivered dissolved oxygen has no deleterious 

effects and stimulates beneficial effects even on intact, non-wounded skin.325 Furthermore, 

these dressings maintain some of the properties of an ideal1 wound dressing providing all the 

desirable useful features to promote effective wound healing. Different approaches have been 

proposed to obtain local oxygen release from wound dressings. Oxygen can be stored inside 

the dressing between an occlusive upper layer and a lower permeable film, which allows the 

dressing to supersaturate the wound fluid with regenerative oxygen for days. These “oxygen 

reservoir dressings” are foam based dressings containing oxygen micro-bubbles which begin 

to “dissolve” when the foam is moistened with exudate, and once dissolved, oxygen can easily 

travel according to the oxygen gradient across poorly perfused tissue. Transcutaneous 

dissolved oxygen was demonstrated to promote wound healing and limit necrosis, thus 

decreasing the healing time and the pain at donor sites.326,327 

Oxyzyme® dressing (Crawford Healthcare Ltd, UK) is an enzyme-activated hydrogel 

dressing developed to support the wound healing process by releasing oxygen and also 

impeding microbial growth due to the release of iodine. The dressing is a two component 

advanced hydrogel containing glucose oxidase to generate hydrogen peroxide and a halide 

iodide to generate hypoiodite which leads to iodine production. When the dressing is removed 
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from its airtight package and the two layers are brought into contact with each other, the oxidase 

enzyme within the top layer is ready to start its reaction with oxygen. The enzyme activation 

generates a flow of hydrogen peroxide in the dressing. When applied on the wound, the 

hydrogen peroxide is converted to water and dissolved oxygen by serum catalase in the 

wound.328 The wound bed becomes rich in locally available oxygen, with all of its associated 

benefits, to work in harmony with the antimicrobial effects of the iodine and various other 

optimizing effects of the dressing. A similar product (Iodozyme® Crawford Healthcare Ltd, 

UK) has been developed for patients with chronic infection or bacterial bioburden using the 

same principle and differs only in the amount of iodine produced. Both dressings have lower 

levels of iodine if compared with other iodine based dressings, but have similar antimicrobial 

properties.328  

 

Table 9. Commercially available topically delivered dissolved oxygen dressing. 

 

Commercial 
name Company Form 

Oxygen 
delivery system References 

Oxyzyme® 
Crawford 
Healthcare Ltd, 
UK 

2 part sterile hydrogel 
dressing  

Enzyme-activated 
in situ oxygen 
production 

Moffatt et al.328  

OxyBand® 
OxyBand 
Technologies 
Inc, USA 

Self-contained multiple 
layers hydrocolloid 
dressing. The top layer is 
a waterproof barrier film 

Oxygen pre-filled 
wound dressing 

Lairet et al.326  

Oxygenesys® 
Halyard Health 
Inc, USA 

Adsorbent foam dressing 
Oxygen pre-filled 
wound dressing 

Kellar et 
al.325,327  

 

8.2 Negative pressure wound therapy 
 Negative-pressure wound therapy (NPWT) also known as topical negative-pressure 

therapy or vacuum-assisted closure has become an integral part of modern wound care practice 

and is used routinely in hospitals throughout the world, where it is estimated that 300 million 

acute wounds are treated globally each year.329-331 Morykwas et al. first reported on this NPWT 

using an open-cell foam dressing with the application of a controlled sub-atmospheric pressure 

for the treatment of acute and chronic wounds.332,333 NPWT promotes wound healing by 

applying a vacuum through a special sealed dressing. The continued vacuum draws out fluid 

from the wound and increases blood flow to the area.  

Preclinical and clinical studies have confirmed that NPWT provides a moist wound 
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healing environment, drains exudate, reduces tissue edema, contracts wound edges, 

mechanically stimulates the wound bed, alters blood flow in and around the wound edges, and 

stimulates angiogenesis and the formation of granulation tissue.332-334 The beneficial effects of 

NPWT on wounds are mediated by multiple mechanisms, which together contribute to the 

observed clinical effects. However, little is known about the influence of different NPWT 

settings on their biological activity in the wound.  

The dressings used for the technique include open-cell foam dressings and gauze with 

a pore range of 400-600 ȝm cut to fit the wound surface and sealed with an occlusive dressing 

intended to contain the vacuum at the wound site. The open-cell polyurethane foam dressing 

enables equal distribution of the negative pressure over the entire wound bed, and also allows 

exudate to flow freely for collection and removal in the canister. The foam can be used to pack 

open cavity wounds and can also be cut to size to fill underlying areas. The pore size of the 

NPWT dressing foam dressings are larger than other foam dressings to maximize tissue 

growth.332  The first device for NPWT introduced on the market was the V.A.C.® Therapy 

System (KCI, USA) and until 2003, was the only commercially available system. With the 

affirmation of the method, different devices were introduced with the main difference between 

them being the type of dressing used to fill the wound (foam or gauze).  

NPWT can be used to achieve a variety of treatment goals, but cannot replace surgical 

procedures. The therapeutic efficacy depends on the patient and the characteristics of the 

wound,329 and usually may allow a wound to progress to the point at which a less invasive 

procedure is possible.335 NPWT can also be used in cases of infected wounds, as an adjuvant 

to an appropriate systemic antibiotic therapy. The application of negative pressure creates a 

hypoxic environment at the wound bed/dressing interface reducing the bacterial count at the 

wound bed up to 1,000 times after four days of treatment.336 Since its mode of action is not 

selective, NPWT is effective against difficult infections such as MRSA and drug-resistant 

bacterial strains. Commercially, a foam dressing coated with silver (GranuFoam™ KCI, USA) 

was developed to impart additional antimicrobial properties.337  

8.3 Physical therapies in wound healing 
8.3.1 Electrical stimulation 
 Electrical stimulation (ES) is believed to aid in wound healing for the treatment of both 

acute and chronic wounds by imitating the natural electrical current that occurs in injured skin. 

The body naturally creates and uses electrical energy that aids in the recruitment of cells 
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necessary for healing through a process called galvanotaxis or electrotaxis.338 The undamaged 

skin contains an electro-potential of 30 mV to 100 mV between the stratum corneum and the 

dermis, however, when the epithelial cells break down due to injury, this difference in potential 

is lost. This loss in potential is the earliest indicator stimulus signal to initiate cell migration 

and re-epithelialization, and many epithelial cells including human keratinocytes have the 

ability to detect electric fields and respond with directed migration.339 In addition, other cell 

types such as neutrophils, macrophages and fibroblasts seem to be sensitive to ES, increasing 

the migration rate.340 Some experiments indicate that when the electric field is removed, the 

wound healing rate is 25% slower.338  

The clinical evidence for the application of different types of ES to enhance cutaneous 

wound healing has recently been summarized by Ud-Din and Bayat.341 ES has been shown to 

have beneficial effects on the different phases of cutaneous wound healing in both chronic and 

acute wounds, concluding that the application of an electric potential on the wounded skin 

results in a significant improvement in wound area reduction or accelerated wound healing 

compared to the standard methods of care as well as improved local perfusion.341 Additionally, 

ES has action against bacterial infection, a major cause of impaired wound healing.342 Usually, 

the ES is applied using an external device by placing the electrodes on the skin, and often, 

directly onto the wound. Several different modalities of ES have been described for each wound 

type with varying voltages, currents, electrical waveforms, modes and length of time of 

application, and no device-related complications or adverse effects have been reported in the 

existing literature, indicating that the therapy is safe and easy to use.341  

Bioelectric dressings (BED) are emerging as a useful method of delivering ES to the 

wound site. This device combines the beneficial wound repair characteristics of both an 

occlusive dressing and an electrical gradient, and simultaneously utilizes two separate 

mechanisms that have been shown to aid wound healing. One of the first BEDs introduced on 

the market was PosiFect®RD (Biofisica UK Ltd), which contains a miniature electrical circuit 

that delivers a micro-current derived from two lithium non-rechargeable coin cell batteries to 

the wound bed for a minimum of 48 hours. This device has been demonstrated to have 

potentially multiple positive effects on all phases of wound healing, in particular in treating 

chronic wounds that have previously been non-responsive to treatment.343 A new bioelectric 

bandage based on the PROSIT™ technology was approved by the FDA to treat partial and full-

thickness wounds. Its dressing form, Procellera® (Vomaris Wound Care Inc., USA) is a woven 

metallic BED (figure 4A) activated by wound exudate, thereby generating  a sustained electric 

stimulation of 2 - 10 mV produced by micro-batteries of silver (Ag) and zinc (Zn) metals, 
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which are inside a woven material (figure 4B). After its application, the wound is covered with 

an overlying dressing to keep the wound moist and the dressing active for up to 30 days. The 

application of an electric field generated by Ag/Zn BED increases keratinocyte migration, a 

critical event in wound re-epithelialization, via redox-dependent processes,344 resulting in 

faster wound epithelialization and improved scar appearance.345,346 In addition, it showed 

antimicrobial properties against antibiotic-sensitive strains and multiple antibiotic-resistant 

strains of wound pathogens,347 even when these bacterial strains formed a polymicrobial 

biofilm.348 Procellera® can be easily cut to the size of the wound and conforms to irregular 

surfaces and to wound edges. The main advantage of these devices is that they are wire-less 

with no need for an external power source and can be applied and changed easily without the 

requirement for someone specially trained in ES.  

 

.  

 

Figure 4. Schematic diagram of the design, application (A), and electric fields (B) generated by Procellera® 
bioelectric dressing.344  
 

8.3.2  Pulsed electromagnetic therapy 
The use of pulsed radio-frequency electromagnetic field (PEMF) therapy, has shown 

notable success in healing of chronic wounds. PEMF is a non-ionizing energy at the shortwave 

radio frequency band of the electromagnetic spectrum, commonly at a frequency of 27.12MHz 

and widely used in the field of orthopedics. This therapy is non-invasive and can also be applied 

to the wound area through wound dressings to aid healing of chronic wounds such as venous 

leg ulcers.349 Furthermore, it has been reported that PEMF can also provide analgesic benefit 

to patients following surgery or other soft tissue trauma, with few reports of side 

effects.350PEMF devices such as Provant® (Regenesis Biomedical, USA) are already used for 

the treatment of chronic ulcers and postoperative pain, and a new wearable PEMF device was 
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successfully used for treatment and healing of four patients with non-healing wounds.351 

However, though the application of electromagnetic fields to the wound area significantly 

improved both diabetic and normal wound healing in mice,352 there is no clinically relevant 

evidence to show that electromagnetic therapy increases the rate of healing of venous leg ulcers 

in patients, and further research is therefore needed.349,353  

 

8.3.3  Low level laser therapy 
 Low-level laser therapy (LLLT) is a medical procedure that uses red and near-infrared 

monochromatic light (600 - 1000 nm) to enhance the body’s natural healing processes. When 

the light source is placed in contact with the skin, the light energy (photons) penetrates into the 

tissue, where it alters the healing process at a cellular level. It is not exactly clear how low-

level laser therapy works, but some reports354 suggest that photons are absorbed by the 

mitochondria and stimulate more ATP production and low levels of reactive oxygen species 

(ROS). These then activate transcription factors such as NF-țB, to induce many gene transcript 

products which provide the beneficial effects.354 The way light interacts with the biological 

tissues will depend on the characteristics and parameters of light devices but there is evidence 

that coherent (laser) and non-coherent (LED) light produce similar healing effects on tissues.355 

LLLT has been reported to promote osteogenesis,356 wound healing,334 and the eradication of 

bacterial biofilms.335 Currently, a large number of basic studies have reported bio-stimulative 

effects of LLLT on different types of chronic wounds both in animal models and in humans, 

but until now there is insufficient evidence to establish the usefulness of LLLT as an effective 

tool in wound care management.357,359,360 Further work is therefore required to confirm its 

clinical effectiveness in a conclusive way including randomised clinical trials.  
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9 CONCLUDING REMARKS 
 

Chronic wounds and other difficult to heal wounds have significant health, social and 

economic burdens on both patients and society in general and therefore of current topical 

interest worldwide.  

In this review, we have covered the current state of the art in chronic wound healing 

technologies involving the active treatment of these wounds, with emphasis on advanced 

therapeutically active systems and methods for healing of chronic and other difficult to heal 

wounds. The driving forces for the development of advanced dressings as improvements over 

currently used traditional and modern moist dressings, the evolution of the different advanced 

wound dressings reported in the literature and available commercially, have also been 

discussed. The major driving forces include the rise in an aging population and therefore 

increased incidence of pressure and venous leg ulcers, increase in obesity and associated type 

II diabetes, linked to diabetic chronic ulcers as well as the rise of super antibiotic resistant 

microorganisms (mainly bacteria) all of which increase the risk of delayed wound healing and 

potential morbidity (including amputations) and in severe cases, mortality. Other driving forces 

include the need to reduce cost to National Health Providers, by reducing hospital stays and 

nursing staff time spent with chronic wound patients. 

The review has covered many advanced wound dressings including biological dressings 

from natural biomaterial polymers (e.g. chitosan, collagen and hyaluronic acid), medicated 

modern dressings using agents such as antimicrobials (antibiotics, silver, PHMB, antimicrobial 

peptides) biological based dressings (comprising mainly GFs, stem cells, nucleic acids and 

other genetic materials), tissue engineered skin substitutes, dressings containing naturally 

derived wound agents such as Aloe and honey as well as more recent advances in NPWT, 

oxygen related dressings, electrical stimulation and laser therapy. Several challenges still 

remain in tackling the problems associated with chronic wounds and it is clear that even single 

advanced dressings and other advanced physical wound healing procedures, do not always 

address the problems encountered in chronic wounds for every single patient and therefore a 

combination of the above mentioned advanced systems will be required.  
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It is plausible that this will be the way forward in future developments for an ideal 

advanced dressing that will tackle the problems of chronic wounds including pain and 

inflammation, odor, infection caused by resistant bacteria, delayed healing and associated costs 

to health systems and populations worldwide. This is important given the many phases of 

wound healing and differences in complications observed in different patients. Therefore, a 

multi-targeted approach appears to be the best way forward and it is hoped that this review has 

contributed towards identifying the critical factors that need to be tackled to make this a reality 

in the near to medium term future. 
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