
r 
9) 
3 
Q 
r 
0 
0 
h 
0 11 
v 
(D 
7 rc 
c 
7 
ET 
BJ 
rc mm 
< 
(D 
a 
n 





Handbook of perturbative QCD 
Version 1.1 

The CTEQ Collaboration 

George Sterman’, John Smith 
Institute for Theoretical Physics, State University of New York, Stony Brook, NY 
11794-3840 
John C. Collins, James Whitmore 
Department of Physics, Pennsylvania State University, University Park, PA 16802 
Raymond Brock, Joey Huston, Jon Pumplin, Wu-Ki Tung, Hendrik Weerts, 
Chien-Peng Yuan 
Department of Physics & Astronomy, Michigan State University, East Lansing, 
MI 48824-1116 
Stephen Kuhlmann 
Argonne National Laboratory, Argonne, IL 60439-4815 
Sanjib Mishra 
Department of Physics, Harvard University, Cambridge, MA 02138 
Jorge G. Morfin, 
Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 
Fredrick Olness 
Department of Physics, Southern Methodist University, Dallas, TX 75275 
Joseph Owens 
Department of Physics, Florida State University, Tallahassee, FL 32306 
Jianwei Qiu 
Department of Physics, Iowa State University, Ames, IA 50011 
Davison E. Soper 
Institute of Theoretical Science, University of Oregon, Eugene, OR 97403 

To be published in Reviews of Modern Physics. 

@ CTEQ Collaboration, 1994. 

‘Editor 

1 



Abstract 

The elements, theoretical basis and experimental status of perturbative quantum chromo- 
dynamics are presented. Relevant field-theoretic methods are introduced at a non-specialist 
level, along with a review of the basic ideas and methods of the parton model. This is 
followed by an account of the fundamental theorems of quantum chromodynamics, which 
generalize the parton model. Summaries of the theoretical and experimental status of the 
most important hard-scattering processes are then given, including electron-positron anni- 
hilation, deeply inelastic scattering and hard hadron-hadron scattering, both as induced by 
electroweak interactions and by quantum chromodynamics directly. In addition, a discussion 
is presented of the global fitting approach to the determination of parton distributions in 
nucleons. 
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I Introduction 

The standard model of elementary particles and their interactions has two basic compo- 
nents: the spontaneously broken SU(2) x U(1) 1 t e ec roweak theory, and the unbroken SU(3) 
color gauge theory, known as Quantum Chromodynamics (QCD). If we date the birth of the 
theory of strong interactions to the discovery of the neutron, QCD has existed for about a 
third of the ensuing time, profoundly deepening and enlarging our view of the subject. 

Perhaps it is worthwhile to recall the situation in strong interaction studies at the time 
when QCD emerged. Into the mid-sixties, the picture of strong interactions centered on 
general principles of scattering amplitudes (analyticity, unitarity, crossing, etc.) that could be 
developed without information on elementary constituents. The idea was widely entertained 
that the strong interactions were not to be described by a renormalizable field theory of 
point particles, which had been so successful for quantum electrodynamics (Weinberg, 1977; 
Schweber, 1994). Whether one accepted this viewpoint or not2, in the absence of a viable 
theory of strongly-interacting elementary particles it was clearly necessary to rely on general 
properties of the scattering matrix. Perturbative field theory, if utilized at all, could be 
employed primarily to illustrate and explore the consequences of these properties (Eden, 
Landshoff, Olive and Polkinghorne, 1966). 

In this context, Regge theory (Regge, 1959; Chew and Frautschi, 1961; Collins, 1971), and 
its allies and generalizations, such as the dual model (Veneziano, 1968; Mandelstam, 1974) 
and Reggeon calculus (Gribov, 1968; Abarbanel, Bronzan, Sugar and White, 1975; Baker 
and Ter-Martirosyan, 1976), which described particles primarily as analytic features of the 
S-matrix, flourished. A large body of experimental data, including near-forward elastic 
(Giacomelli, 1976), diffractive (Goulianos, 1983) and high-multiplicity inelastic scattering 
(Mueller, 1970; Frazer et al., 1972) are still best understood in this language. These devel- 
opments also gave rise, of course, to string theory (Nambu, 1970; Goto, 1971; Green, Schwarz 
and Witten, 1987). Th e weak and electromagnetic interactions of hadrons with leptons was, 
and still is, profitably described by current algebra (Gell-Mann and Levy, 1960; Adler and 
Dashen, 1968), which provided elementary operators, the currents, even without elementary 
particles. The currents themselves are linked to strong dynamics by the partially conserved 
axial vector current hypothesis, which led to an effective field theory for pions (Weinberg, 
1970) that remains today our fundamental picture of low-energy strong interactions (Wein- 
berg, 1979; Leutwyler, 1992). Into this rich and complex set of investigations and viewpoints 
came partons and quarks. 

The study of the strong interactions was transformed with the advent of accelerators 
in the multi-GeV energy range. The famous SLAC experiments of the nineteen sixties 
and seventies were the first to show the point-like substructure of hadrons (Bloom et al., 
1969; Friedman and Kendall, 1972). The parton model (Feynman 1969; Feynman, 1972; 
Bjorken and Paschos, 1969) h s owed that elementary constituents, interacting weakly, could 
convincingly explain the central experimental results. In the same period, the quark model 
(Gell-Mann, 1964; Zweig, 1964; Kokkedee, 1969) rationalized hadron spectroscopy. Out of it 
grew the idea of color (Han and Naumbu, 1965; Greenberg, 1964), a new quantum number 

2For an impression of this intellectual climate, see the lectures of Chew and Dalitz, published side-by-side 
in Dewitt and Jacob, 1965. 
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postulated in the first instance to avoid the apparent paradox that the quark model seemed 
to require spin-l/2 quarks with bosonic statistics. 

The idea of extending the global color model to a gauge theory (Fritzsch et al., 1973; 
Gross and Wilczek, 1973b; Weinberg, 1973) was in many ways a natural one3, but the 
motivation for doing so was incalculably strengthened by the new-found ability to quantize 
gauge theories in a manner that was at once unitary and renormalizable4, motivated in 
large part to describe electroweak interactions. Concurrently, the growth of the technology 
of the renormalization group and the operator product expansion (Wilson, 1969; Callan, 
1970; Symanzik, 1970; Christ, Hasslacher and Mueller, 1972; Frishman, 1974) made it clear 
that any field theory of the strong interactions would have to have an energy-dependent 
coupling strength, to harmonize the low-energy nature of the strong interactions, that give 
them their name, with their weakness at high energy (or short distances). The concept of 
asymptotic freedom (Gross and Wilczek, 1973a; Politzer, 1973), satisfied almost uniquely by 
quantum chromodynamics, brilliantly filled these demands. 

As will appear in the following sections, asymptotic freedom is a perturbative concept. 
Yet, as searches for free quarks, let along gluons, continued to give null results, it became 
evident that the perturbation theory of quantum chromodynamics had to be approached 
somewhat differently than that of, say, quantum electrodynamics. The usual S-matrix and 
cross sections for isolated quarks and gluons in QCD all vanish, completely replaced by 
bound-St ate dynamics. This is the hypothesis of “confinement”. After some time it also 
became obvious that although asymptotic freedom is a perturbative prediction, confinement 
is not. The use of perturbation theory in quantum chromodynamics, that is, “perturbative 
&CD”, therefore developed rather slowly and even haltingly, amid considerable scepticism. 
Nevertheless, many predictions of the theory, primarily but not exclusively associated with 
inclusive processes, do not depend upon its long-distance behavior. These short-distance 
predictions are realm of perturbative &CD. 

Since QCD remains an “unsolved” theory, with no single approximation method applica- 
ble to all length scales, the justification for the use of perturbative QCD rests in large part 
directly on experiment. In this regard, many of us remember vividly the rapid transforma- 
tion of quantum chromodynamics from a promising but controversial candidate theory to a 
full-fledged part of the standard model, taken perhaps too confidently for granted. In this 
transformation, the achievements of lattice-based numerical studies also played an important 
role (Wilson, 1974; Kogut and Susskind, 1975; Creutz, 1983). 

Over time, it has become ever clearer that perturbative QCD naturally describes a large 
set of high energy, large momentum-transfer cross sections. It is in this restrictive yet 
important area that its formalism has developed, and in which it has proved an invaluable 
tool in the study of the strong interactions. Beyond this, however, the very successes of 
a purely perturbative approach challenge us to bridge the gap between perturbative and 
nonperturbative aspects of the theory. Every experiment in strong interactions tests QCD 
from some fixed “short” distance to its very longest distance scales, over which the value of 
the strong coupling may change radically. From a mathematical point of view, as well, QCD 
has special features. As we shall outline below, many of the basic tests and predictions of 

3See in this connection the lectures of Gell-Mann and Wilczek in Zerwas and Kastrup, 1992 
4Among the lan dmarks of this development are Faddeev and Popov, 1967, ‘t Hooft, 1971a, ‘t Hooft, 

1971b, ‘t Hooft and Veltman, 1972 and Lee and Zinn-Justin, 1972. 
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the theory rely on arguments “to arbitrary order” in perturbation theory. Thus, the very 
role of perturbative expansions in four-dimensional quantum field theories is accessible in 
QCD as in no other component of the standard model. Perhaps the greatest legacy of QCD 
will be in the theoretical and experimental methods that must still be developed to meet its 
unique demands. 

Our motivation in this handbook is to review the basic ideas and methods of perturba- 
tive &CD, especially in those areas for which there is ample experimental verification. This 
work is meant to be a sourcebook on perturbative &CD, accessible and useful to experts and 
novices, experimentalists and theorists alike. In it, we have collected discussions of the basic 
ideas and applications of the theory. While we have no intention of replacing more scholarly 
presentations of field-theoretic techniques and experimental reviews, we have included in the 
next two sections and in the appendices considerable introductory material on the basic con- 
cepts of &CD, its perturbative treatment, and on the parton model, out of which it grew. In 
the fourth section, we summarize the basic theorems upon which the perturbative treatment 
rests. We hope that sophisticated readers will find useful the discussions, applications and 
experimental reviews of specific processes and techniques in the sections that follow. These 
are organized according to process, including electron-positron annihilation, deeply inelastic 
scattering and hadron-hadron cross sections, first those induced by electroweak interactions 
and then those induced by QCD itself. We conclude with a description of the “global” 
approach to nucleon parton distributions. For the simplest processes, we have exhibited 
theoretical predictions explicitly. Given the complexity of many recent results, this is not 
always possible, and we have relied in this case on references to the literature and, as is 
increasingly becoming relevant, to specialized computer programs. 

This article is the product of the CTEQ collaboration as a whole, consisting of both 
experimentalists and theorists, and we have not attempted to enforce on ourselves an artificial 
uniformity of presentation and style. We hope and believe, however, that readers will find 
below a coordinated and fundamentally unified text. We would also like to think of this as an 
evolving document, and in this, initial version, concentrate on inclusive high-energy reactions, 
for which the most basic results and processes are treated in detail. Directions abound for 
expansion, particularly toward moderate energy, the perturbative-nonperturbative junction, 
and hadronic structure: elastic scattering5, “small-x” evolution 6, pQCD in the Regge limit 
7, Sudakov resummation techniques?, asymptotic behavior g, QCD coherence”, QCD in 

5Brodsky and Lep a g e, 1989 summarizes this subject up to that time. Much recent work has discussed 
the roles of Sudakov effects (Lepage and Brodsky, 1980; Landshoff and Pritchard, 1980; Mueller, 1981; Pire 
and Ralston, 1982; Botts and Sterman, 1989; Li and Sterman, 1992) and “soft” physics (Isgur and Llewellyn 
Smith, 1989; Radyushkin, 1984; Jacob and Kroll, 1993). 

‘See especially the reviews of Gribov, Levin and Ryskin, 1983, Levin and Ryskin, 1990 and the discussion 
of modified evolution in Mueller and Qiu, 1986. 

‘See Kuraev Lipatov and Fadin, 1976, Balitskii and Lipatov, 1978, Lipatov, 1989, Faddeev and Korchem- 7 
sky, 1994. 

sFor a variety of applications, see Collins and Soper, 1981, Mueller, 1981, Sen, 1981, Sterman, 1987, 
Collins, 1989, Catani and Trentadue, 1991, Catani, Turnock, Webber and Trentadue, 1993. 

gTkachov, 1983. 
loSee the reviews Dokshitzer, Khoze and Troyan, 1989, Dokshitzer et al., 1991 and Bassetto, Ciafaloni 

and Marchesini, 1983. 
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nucleiI and transparency 12, on the (supporting) roles of pQCD in Monte Carlo simulations 
of event structure, QCD sum rules and heavy quark effective theory, and much more. Work 
in this direction is already proceeding. 

“Reviewed in Frankfurt and Strikman, 1988. 
12Brodsky, 1982, Mueller, 1982, Brodsky and Mueller, 1988. 
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II Field Theory Background 

This section reviews a number of relevant facts about QCD as a field theory, primarily 
its Lagrange density and Feynman rules, amplitudes and their renormalization, and the 
concepts of asymptotic freedom and infrared safety. We assume here a general familiarity 
with elementary methods in field theory. More detailed discussions of field theory topics 
may be found in textbooks. Asymptotic freedom, infrared safety and the renormalization 
group applied to QCD are also covered in a number of useful reviews (Muta, 1987; Mueller, 
1989; Sterman, 1991; Dokshitzer et al., 1991). 

1I.A Lagrangian 

The flurry of fields, indices and labels in the telegraphic formulas that follow in this 
subsection are probably accessible only after the benefit of a pedagogical introduction that 
must be found elsewhere. We anticipate, however, that some number of readers may find 
these formulas a useful refresher of memory. Others will be satisfied by the summary of 
perturbation theory rules in Fig. 1, and will wish to skip to subsection II.B, which begins a 
review of quantum theoretic concepts much less dependent on the technical content of &CD, 
but which, toward the end of this section, explain what is special about QCD. 

Quantum Chromodynamics is defined as a field theory by its Lagrange density, 

Ly; [$+), 6,(x), A(z), c(x), F(z); g, mf] = kmr. + &uge + &mt , (11.1) 

which is a function of fields ($f (q uark), A (gluon) and c (ghost)) and parameters g and mf. 
f labels distinct quark fields. rCinva,. is the classical density, invariant under local SU(N,) 
gauge transformations, with N, = 3 for &CD. Linvar is of the form that was originally written 
down by Yang and Mills (Yang and Mills, 1954) 

c. InvaP. = x & [$ [A] - 
f 

mfl d~r - fF2 [Al , 

= 5 5 5 &,p,j [W;,Qji [A] - @pdji ] $f,cr,i 
f=l a,+1 ij=l 

J’,w,a[A]Fp”a[A]. (11.2) 

In the second expression, we have written out all indices explicitly, using the notations 

Dp,ij [A] s 8pSij + igAp,(Ta(F))ij 7 (11.3) 

and 

F,,,,(A] = ~,A,, - &A,, - gC,ixA,bA,, . (11.4) 

Let us describe what these formulas represent, working backwards from Eq. (11.4). 
F PV,o is the nonabelian field strength defined in terms of the glum vector field At, with 

N:- 1 group components b. g is the QCD (“strong”) coupling and the C&c, a, b, c = 1. . . N:- 
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1, are real numbers, called the structure constants of SU(N,), which define its Lie algebra. 
As mentioned above, for QCD (Fritzsch et al., 1973; Gross and Wilczek, 1973b; Weinberg, 
1973), N, = 3, but for many purposes it is useful to exhibit the NC-dependence explicitly. 
N, is often called the “number of colors”. 

The Lie algebra is defined by the commutation relations of the N: - 1, N, x N, matrices 
(T,tF))ij that appear in the definition of Dp,ij, Eq. (11.3), 

[T,@-), TbtF)] = ica&!-$F) . (11.5) 

These commutation relations define the algebra. Here we have taken the T,cF) to be her- 
mitian, which makes QCD look a lot like QED. Some useful facts about the algebra of 
generators are listed in Appendix A. 

D$[A] is the covariant derivative in the NC-dimensional representation of SU(N,), which 
acts on the spinor quark fields in Eq. (11.2), with color indices i = 1. . . N,. There are nf 
independent quark fields (nf = 6 in the standard model), labeled by flavor f(= u, d, c, s, t, b). 
In the QCD Lagrangian, they are distinguished only by their masses. 

The quark fields all transform as 

$,cz,j Cx) = Uji( X)tif,a,i (2) 7 (11.6) 

under local gauge transformations, where 

11 (11.7) 
ji, 

with p,(z) real. Defined this way, Uij(X) for each x is an element of the group SU(N,), which 

is the local invariance that has been built into the theory. The corresponding transformation 
for the gluon field is most easily expressed in terms of an NC x N, matrix, A,(x), 

N;-1 

[Ap(x)]ij E x Apa(~)(Ta(~)).. rl ’ (11.8) 
a=1 

which is the form that occurs in the covariant derivative. The gluonic field is then defined 
to transform as 

A;(x) = U(x)A,(x)U-‘(x) + ;[a,U(x)]U-l(x). (11.9) 

With these transformation rules, the gauge invariance of fZinvor is not difficult to check. 
The gauge invariance of &nvor actually makes it somewhat difficult to quantize. This 

problem is solved by adding to Cinva,. g auge-fixing and ghost densities, fZCgauge and &host, as 
in Eq. (11.1). Th e f ormer may be chosen almost freely; the two most common choices being 

(11.10) 
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where d’ is a fixed vector. The first defines the set of “covariant” gauges, the most familiar 
having X = 1, the Feynman gauge. The second defines the “axial” or “physical” gauges 
(Leibbrandt, 1987), since taking X to infinity eliminates the need for ghost fields. Here, 
picking d’ light-like, n2 = 0, defines the light-cone gauge. For X 4 co, a nonzero value 
of n . A leads to infinite action, and for this reason the physical gauges are often called 
“n . A = 0” gauges. 

Finally, in the covariant gauges we must add a ghost Lagrangian (Feynman, 1963; Dewitt, 
1967; Faddeev and Popov, 1967; ‘t Hooft and Veltman, 1972) 

L ghosi = (‘@o)(~had - g%&)Cd, (11.11) 

where c,(z) and &(x) are scalar ghost and antighost fields. In the quant’ization procedure, 
ghost fields anticommute, despite their spin. In an SU(N,) theory, the ghost fields ensure 
that the gauge fixing does not spoil the unitarity of the “physical” S-matrix that governs 
the scattering of quarks and gluons in perturbation theory. 

1I.B Feynman Rules and Green Functions 

The perturbation theory (Feynman) rules for QCD are summarized in Fig. 1. With 
our choice of (hermitian) generators !I”, tF) the quark-gluon coupling is just like the QED 
fermion-photon vertex, except for the extra matrix factor 5”‘F’. The remaining rules for 
vertices are not difficult to derive in detail, but their essential structure is already revealed 
by the correspondence (a,$) + -iq,,, where qp is the momentum flowing into the vertex at 
any field 4. 

As for the propagators, we pause only to notice some special features of physical gauges. 
In the n . A = 0 gauge, we have, from the propagator in Fig. 1, 

kpG,“(k,n) = i 
n2kv 

- 
,“:k - (n . k)2 

(11.12) 

Note the lack of a pole at k2 = 0 on the right-hand side of this relation. This means that the 
unphysical gluon polarization that is proportional to its momentum does not propagate as a 
particle in these gauges. The lack of a pole for the gluon scalar polarization is the essential 
reason why ghosts are not necessary in physical gauges. This simplification also makes these 
gauges useful for many all-order arguments in pQCD. The price, however, is the unphysical 
poles at n . k = 0, which are often thought of as principal values, 

‘(n .‘k)a E i (n. k: if)” + (n. kY ic)” ’ 1 (11.13) 

This definition, however, is awkward beyond tree level (when loops are present) and other 
definitions (Mandelstam, 1983; Leibbrandt, 1987) are necessary to carry out loop calculations 
correctly (Bassetto, Nardelli and Soldati, 1991; Bassetto et aE., 1993). In any case, it is often 
desirable to back up results derived in physical gauges with calculations or arguments based 
on covariant gauge reasoning. 
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The Feynman rules allow us to define Green functions in momentum space. These are 
the vacuum expectation values of time-ordered products of fields, 

(27d4@1 + . . . + pn)Gcq...,,, (PI,. . . ,p,) = fj J &xjemiPi’*i 
i=l 

WI ~[hI~(~l) * - * At, (Gd] (0) , (11.14) 

where the oi represent both space-time and group indices of the fields, collectively denoted 
by 4. At any fixed order in perturbation theory, Gal...,,, is given by the sum of all diagrams 
constructed according to the rules of Fig. 1. Corresponding to each of the fields in the 
matrix element, every diagram will have an external propagator carrying momentum pi into 
the diagram, with free external indices cyi. Essentially all of the physical information of the 
theory is contained in its Green functions. 

1I.C From Green Functions to Experiment 

The route from Feynman rules, through Green functions to experimentally observable 
quantities is straightforward, but involves a number of steps which it may be useful to 
outline. In what follows, we will briefly review the roles of the S-matrix, cross sections, 
renormalization schemes and regularization. 

We do not address yet the issue of whether perturbation theory is of any use for reliable 
calculations of physical quantities in QCD. 

II.C.l The S-matrix and Cross Sections 

By themselves, Green functions are not always direct physical observables. For one 
thing, their external lines are not necessarily on-mass-shell, and, in a gauge theory, the 
Green functions are not even gauge invariant. The relation between Green functions and 
physical quantities like cross sections is, however, quite simple. Let us review the basic steps 
in a generic situation with fields &. 

First, a two-point Green function has a pole at p2 = rn2. Near the pole, it has the form 
of a “free” propagator (Fig. 1) times a scalar constant Rb, 

Gap(p) + R,G,&I)~“” + finite . (11.15) 

If the particles under discussion are hadrons, then Rd and the physical mass A4 are not 
perturbatively calculable. If, nevertheless, we discuss the perturbative S-matrix for quarks 
and gluons, then R& and M can be computed as a power series in the coupling 

Rd = 1+ O(g2> 
M = m + O(g2). (11.16) 

The S-mattiz is simply the amplitude for the scattering of momentum eigenstates into other 
momentum eigenstates. In particle physics, the most important S-matrix elements describe 
the scattering of two incoming particles into some set of outgoing particles. The S-matrix is 
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derived from Green functions by “reduction formulas”, of the general form 

s ((Pl, 31) + (Pi?, s2) ---f (p3, s3) + . . . (p,, s,)) = n$J(p;, & 

i x [ Gd;;f~e’] 
%4dPl,P2, -P3, *. * ,-p,) ) (11.17) 

where now si represents the spin (and other quantum numbers) of particle i. Here $(p;, ~i)~; 
represents the wave function of external particle i, given by 

U(P7 s> for an incoming Dirac particle 

Zi(P? s> for an outgoing Dirac particle 

Z(P, s> for an incoming Dirac antiparticle 

V(P, s> for an outgoing Dirac antiparticle 

dP7 s> for an incoming vector particle 

c* (P? s> for an outgoing vector particle . (11.18) 

Once again, Gn;Pi (pi)lree is the free propagator, for field i, but with the correct physical mass 
of the corresponding particle. 

From the S-matrix, it is customary to define the transition matrix T by 

S= I+iT, (11.19) 

with I the identity matrix in the space of states. For momentum eigenstates, T contains an 
explicit momentum-conservation delta function, which it is convenient to separate explicitly, 

iWP1, Sl> + (P2, s2) + (p3, s3) + . . . (p,, s,)) = 

(w464(Pl + p2 - p3 - . . . - pn) 

xM((~l, 4 + (~2, s2) + (p3, s3) + . . . (p,, sn)) . 
(11.20) 

It is M-matrix elements that are used to derive cross sections, by integrating the general 
infinitesimal cross section, 

da ((Ply Sl) + (pi?, s2) + (p3, s3) + . . , (p,, sn)) 
1 
I 

= 4JiFEj=&G 
dPS, 

x IM ((~1, a> + (~27 s2) + (~3, s3) + . . . (p,, s,)>12 , 
(11.21) 

over n-particle phase space, 

dPS, = N d3pi i 2Wi(2’lr)3 ) N(2a)464(pl + p2 - 2 pj) , 
j=3 

(11.22) 
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Here N; = 1 for vector and scalar particles, as well as for Dirac particles when we normal- 
ize their wave functions according to ;il(p, s)u(p, s) = 2m. For the other common choice, 
E(p, s)u(p, s) = 1, we have Ni = 2m for Dirac fermions. If one integrates a differential cross 
section over the phase space for n identical particles, then one should include an additional 
factor of S, = l/n! that compensates for counting the same physical state n! times. When 
discussing the perturbative expansion of a cross section, it is often useful to work directly 
with diagrams for IMI”. The rules for this expansion are almost the same as for the S-matrix, 
and are summarized in Appendix B. 

II.C.2 UV Divergences, Renormalization and Schemes 

Green functions, and consequently cross sections, calculated according to the unmodified 
Feynman rules described above suffer a severe problem when we include diagrams with loops. 
These are the ultraviolet (UV) divergences, associated with infinite loop momenta. We may 
think of these divergences as due to virtual states in which energy conservation is violated 
by an arbitrarily large amount. Let us see how these problems come about, and review how 
they can be solved in perturbative calculations. 

A typical one-loop integral UV divergence is illustrated by the diagram with scalar lines 
in Fig. 2. For scalar lines the diagram is given, before renormalization, by 

I 
4 

r+“)(p) = - 
(krt4 (k2 - m2,,,;- k)2 - rn2) 

1 
= 

I J 

4 

dx 0 (:?T;~ (@ - 2xp . &- xp2 - m2)2 

1 

I I d4k’ = 
dx 0 (27r)4 (k’2 + x( 1 -i)p2 - m2)2 ’ 

(11.23) 

In the second equality, we have combined the two denominators into one by a trick known as 
Feynman pammeteriaution. In the third, we have completed the square in the denominator 
by the change of variable k’ = k - xp. Of course, all this is purely formal, since the integral 
as it stands is divergent for k + 00, that is, in the ultraviolet. Nevertheless, let us consider 
a one loop integral of the generic form, 

1 
r(““)(p) = 1 & (k2 _ M2(p))2 ’ (11.24) 

which is undefined because of a logarithmic divergence at infinity. We let M2(p) denote the 
dependence on external momentum(a) of the diagram (and “Feynman parameters” like x 
above). In QCD there is in general also momentum dependence through Dirac traces and 
vector indices in the numerator, but they won’t affect the point we are trying to make right 
now. 

The purpose of renormalization is to replace divergent integrals like the one above by 
finite expressions, in a systematic fashion. For the logarithmically divergent integrals at 
hand, renormalization consists of the replacement (suppressing the x integral) 

I+“)(p) + rren(p, /L) _ --z In M2(P) 

.( ) (47r)2 p2 ’ 

19 



where p is a new mass, not included as a parameter in the original Lagrangian of the theory. 
Note that we can check Eq. (11.25) by differentiating Eq. (11.24) with respect to M2, doing 
the (now convergent) k integral, and then integrating the result with respect to M2 to get 
Eq. (11.25) up to a constant. To begin with, 1-1 is completely arbitrary, and may differ from 
integral to integral. It is necessary to specify a set of rules to determine the value of p for 
each divergent diagram. Such a set of rules is called a renormalization scheme. 

There are two basic kinds of schemes currently in wide use. 

(i) In a momentum subtraction scheme we choose 

c1 = M(Po) + typo) = 0, (11.26) 

with po some fixed set of external momenta, and r a particular divergent vertex func- 
tion. This is what is done in quantum electrodynamics, for instance, when we renor- 
malize so that all the one (and higher) loop corrections to the photon-electron vertex 
vanish at zero momentum transfer. (In this case po is any point where the photon 
momentum is zero, and the electrons are on-shell so that p: = mz.) 

(ii) In the second generic renormalization scheme, p is chosen the same for every diver- 
gent integral, and appears as a free parameter in renormalized Green functions. This 
defines a minimal subtraction scheme. Because of its underlying simplicity, minimal 
subtraction is favored for many practical pQCD calculations. See Appendix C for its 
basis in “dimensional regularization” . Despite this rather technical origin, minimal 
subtraction for one-loop diagrams reduces to the simple prescription described here. 
The precise scheme for minimal subtraction that is usually used is called the “modified 
minimal subtraction” or MS scheme. 

Clearly, what we have said so far is highly simplified. It can be shown that these renormal- 
ization schemes are flexible enough to handle not only logarithmically, but also quadratically 
divergent integrals, and apply to multi-loop as well as one-loop integrals. Suffice it to say that 
these issues may be handled, and the substitution (11.25) we have just described captures 
the heart of the issue (Collins, 1984). 

II.C.3 The Renormalization Scale and Experiment 

The question now naturally arises, what can we do with a theory that has an arbitrary 
parameter p in it ? The procedure for getting unique experimental predictions is this. For 
simplicity, let us assume we have a massless theory with only a single coupling constant g. 
We now compute a cross section - any cross section - which we will call a(p, p), with p 
denoting the momenta of the particles involved. The perturbation theory for o will always 
have some UV divergent integrals in it, so its (renormalized) perturbation series will look 
like 

4P7 4 = 2 G(P, 4g2” 9 (11.27) 
n=l 

where A is the highest order that we have had the strength to compute, and the a, are 
coefficients that are the results of the computation, Now first we go out and measure a(p, cl) 
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for some particular set of momenta 17. Next we fix 1-1 to be whatever we like. Then we can 
solve Eq. (11.27) for g, with a result that we denote g(p). (g(p) is implicitly also a function 
of p, and of A.) This may not seem to accomplish much, until we realize that we can now 
compute cr for any value of p. Thus, at the price of doing one experiment, we have predictions 
for a whole set of experiments. Not only that, but if g really is the only parameter in the 
theory, we have unique predictions for every single cross section in the theory for which we 
are willing to compute a perturbative series. 

Now, because a(p, p) is a physical quantity it must be independent of our choice of ~1, 
which leads us to the equation 

%P, cl) = 0 7 
QP 

(11.28) 

where we must remember to keep the p dependence in g(p). This equation holds exactly if 
we have the exact solution of the theory. If we apply it to the finite order approximation 
Eq. (11.27), th en there will be errors of the order of the first uncomputed term in the per- 
turbation expansion l3 . This will be a useful approximation if the coupling is small, which 
leads us to our next topic, asymptotic freedom. 

1I.D Asymptotic Freedom 

The successes of QCD in describing the strong interactions are summarized by two terms: 
asymptotic freedom (Gross and Wilczek, 1973a; Politzer, 1973) and confinement. To under- 
stand the importance of these two attributes we should recall some facts about the strong 
interactions. Hadron spectra are very well described by the quark model, but quarks have 
never been seen in isolation. Any effort to produce single quarks in scattering experiments 
leads only to the production of the familiar mesons and baryons. Evidently, the forces be- 
tween quarks are strong. Paradoxically, however, certain high energy cross sections are quite 
successfully described by a model in which the quarks do not interact at all. This is the 
parton model that we will describe in Section III. Asymptotic freedom refers to the weakness 
of the short-distance interaction, while the confinement of quarks follows from its strength 
at long distances. 

An extraordinary feature of QCD is its ability to accommodate both kinds of behav- 
ior. It does this by making the forces between quarks a rather complicated function of 
distance. Qualitatively, when two quarks are close together, the force is relatively weak (this 
is asymptotic freedom), but when they move farther apart the force becomes much stronger 
(confinement). At some distance, it becomes easier to make new quarks and antiquarks, 
which combine to form hadrons, than to keep pulling against the ever-increasing force. The 
realization that a single theory might describe such a complicated behavior is commonplace 
nowadays, but it required a major reorientation in our way of thinking about fundamental 
forces. 

The detailed evidence for the coexistence of asymptotic freedom and confinement in QCD 
is a complicated web of analytic and numerical results and inferences. In this handbook, 

13How to minimize these errors in practical cases is a subject of on-going discussion and controversy 
(Stevenson, 1981; Stevenson, 1984; Brodsky, Lepage and Mackenzie, 1983; Brodsky and Lu, 1994). We shall 
take the point of view that weak ~1 dependence is a good qualitative sign that errors are not large, but that 
this assumption must be closely examined on a case-by-case basis. 
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we will be concerned mainly with the experimental consequences of asymptotic freedom. 
Nevertheless, in the following we will try and give the reader an idea of the origin of these 
properties of QCD, as they are embodied in the Feynman rules that we have just outlined. 

II.D.l Forces in QCD and QED 

A reasonably direct approach to asymptotic freedom and confinement is through a discus- 
sion of the effective forces that are implicit in the Feynman rules of the theory. To see what’s 
involved, we can consider first the more familiar case of quantum electrodynamics (QED), 
where we know quite well the basic force, the Coulomb force, derived from the potential 
between two particles at rest, 

V(Ql, Q2, r) = $y . (11.29) 

Q1 and Q2 represent the magnitudes of two charges, separated by r. The charges are mea- 
sured in a system of units in which the permittivity of the vacuum (es in mks units) is unity. 
(This is the usual system of units for quantum field theory.) Let us see how this potential 
comes about in QED, which is the abelian version of the gauge theory with Lagrange density, 
Eq. (11.2). 

The Coulomb potential may be derived by considering the scattering of two very heavy 
charged particles. If the particles are sufficiently heavy, we can ignore energy transfer com- 
pared to momentum transfer, and use a nonrelativistic approximation (p2/2M < M). If we 
wanted to go into detail, we would compute the nonrelativistic scattered wave functions in 
terms of momentum transfer, from which we could infer a spatial potential. We will short- 
circuit this reasoning and just give the rule: the potential is the spatial Fourier transform 
of the gauge field propagator, considered as a function of three-momentum (lkl) only, multi- 
plied by the coupling constants at the vertices and divided by -i. For equal charges, Qi = e, 
this is 

V(r) = -e2 

=“?ho J 
O” d]csin(klrl) 

klr I 
, (11.30) 

where the second equality comes from the angular integrals. That this is the Coulomb 
potential for unit charges follows from the integral formula, 

J 
O” dssin(X) 7r 

0 -=2* X 
(11.31) 

The purpose of this simple exercise is to show how close the Feynman rules are to our ideas 
of potential and force. What we have verified so far is that the potential can be found from 
the lowest order diagram shown in Fig. 3. 

Beyond lowest order in perturbation theory the potential will still be the Fourier trans- 
form of the scattering amplitude, 

v(r) = J $$e -ik.rA(k2 > 7 (11.32) 
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with A(k2) g’ lven at lowest order by single-photon exchange as above. 
Let’s pursue our picture of the nonrelativistic scattering of heavy particles in perturbation 

theory a bit further, and discuss the effect of some of the perturbative corrections to Fig. 3, 
shown in Fig. 4. 

These graphs describe O(e4) contributions to the potential, whose momentum dependence 
may be different from the lowest order. We may think of the fermion loop in the first diagram 
as virtual “light” fermions, of a mass m << M. To define the potential at this order, we 
actually need to introduce an infrared cutoff, or to sum over soft photon emission, and to 
carry out renormalization. All this will not affect the main point we want to make here, 
however, and we shall assume that this has been done, without going into details. Rather, 
we shall concentrate on the physical picture. 

Our basic problem is that we cannot separate experimentally the contributions of the 
various diagrams of Fig. 4, or those from yet higher orders, from the lowest order amplitude. 
As we shall see, the higher-order corrections modify the momentum dependence, and there- 
fore the potential. How then, do we ever manage to determine the electromagnetic coupling? 
We do it by defining the amplitude at some fixed momentum transfer -k2 = to to be 

4to) A(to) = - , to 
where the fine structure constant a is 

e2 

“=iL 

(11.33) 

(11.34) 

Notice that this form says nothing yet about the momentum dependence of A(t), only about 
what it is at a specific value of its argument. Since we define this to be the coupling divided 
by to, the value of the coupling that we find depends upon the to that we choose. 

The qualitative effects of the corrections in Fig. 4 to e2(to) = 47ra(to) are easily un- 
derstood without explicit calculations. The main contribution is from the first diagram, in 
which the two incoming charges are linked by a virtual photon that includes a “self-energy” 
diagram consisting of a fermion-antifermion pair. The net charge of such pairs is zero, and 
they act to “screen” each of the original charges, as seen by the other. We may think of each 
heavy charge as being surrounded by a cloud of light charged pairs. If the incoming charges 
are far apart, each sees a very large cloud which serves to decrease the effective charge of the 
other. As to increases, however, the charges come closer together (by the uncertainty princi- 
ple), get inside the clouds, and the screening becomes less effective. This we can summarize 
bY 

$e2(t0) > 0, 
0 

(11.35) 

at least for contributions from the first diagram. Actually, the next two diagrams, in which 
virtual photons are emitted and reabsorbed by one of the charges, do not change this result, 
because at this order, the emission of an extra virtual photon does not change the charge 
distribution at all. Explicit calculations show that Eq. (11.35) holds quite generally. It states 
that as the momentum transfer increases, the observed charge also increases. We will see how 
to make this observation quantitative in the next subsection. Clearly, this is a problem at 
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extremely high energies. For QED, however, the charge, as observed in Coulomb scattering 
(to = 0) is so small, that e2(to) does not become large until truly astronomical scales. 

Now let us see what happens in QCD, where we define an effective charge g2(to) by direct 
analogy to Eq. (11.33). We also define an effective “fine structure constant” for QCD by 

% g2 =- 
47r * 

(11.36) 

The corrections of Fig. 4 are all present in &CD, with photons replaced by gluons. In 
addition, at the same order, we also have to include diagrams with three-gluon couplings, as 
in Fig. 5. 

As in QED, the effect of virtual corrections is to surround our heavy (nonabelian) charged 
particles by clouds of charge. There is a very important difference, however. In the non- 
abelian case the emission of a gluon does not leave the nonabelian charge of the heavy 
particle unchanged. Although the total charge is conserved, it “leaks away” into the cloud 
of virtual particles. Thus, for small to, when the two heavy particles stay far apart, they are 
actually more likely to see each other’s true charge. As to increases, they penetrate further 
and further into each other’s charge clouds, and are less and less likely to measure the true 
charge. For this (only heuristic!) reason, we may expect “antiscreening” for the nonabelian 
theory, just the opposite of QED, 

$a,(to) < 0 * 
0 

(11.37) 

This means that as to increases, the observed coupling decreases. This is what we mean 
by asymptotic freedom. At the same time, as to decreases, the coupling increases. Again, 
explicit calculation verifies this behavior. Of course, it is easier to go to small energy than 
large, and we shall see that at low energies the effective coupling deduced from perturbation 
theory actually diverges. This shows that perturbation theory will not be applicable at 
low energies where, apparently, the interaction becomes very strong. In this fashion, a 
perturbative description at short distances and high energies is compatible with confinement 
at long distances and low energies. 

Let us now go on to make these observations more quantitative, by introducing an ex- 
plicit equation for the effective coupling. This discussion will also serve to introduce a very 
important concept for &CD, the renormalization group. 

II.D.2 The Renormalization Group and the Effective Coupling 

Let’s see what the two-particle scattering amplitude looks like for momentum transfers 
not equal to t 0. As we have seen, it is necessary to introduce a unit of mass, 1-1, called the 
renormalization scale. In the case at hand, for heavy-particle scattering with momentum 
transfer to, we may choose p as 

p2 = -to. (11.38) 

This notation is a generalization of the specific choice, Eq. (11.33), that we have made to de- 
fine the amplitude. In fact, the latter is a special case of a “momentum subtraction scheme”, 
as introduced in Section II.C.2. To define A(t 0 in perturbation theory, it is necessary to ) 
introduce a renormalization mass, and Eq. (11.33) is one way to do this. 
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In terms of crJ(p2), the amplitude is of the form 

A(k2) = a.(P2); + a2d(P2> 
W2h2> 

,$ (11.39) 

with a21 a number and a20 a possibly complicated function of the masses and the infrared 
cutoff. Now here is the fundamental observation, upon which the renormalization group is 
based. The group consists of simply the set of all resealings of ~1. The amplitude A(k2) is 
a physical quantity, that can, in principle, be measured by experiment. As such, it cannot 
depend on our choice of p2. This is equivalent to Eq. (11.28), or in this case, 

(11.40) 

Then, from Eq. (11.39), 
/ps(P2) 

dP 
= -a21cbf(p2) + ... . (11.41) 

Thus, we have derived an equation for the effective coupling, which determines its p depen- 
dence, so long as the coupling remains small enough that higher-order terms remain small. 
The solution to this equation is known as the eflective or running coupling. According to 
our observations above, in QCD we will find that a21 > 0, so that the coupling decreases as 
1-1 increases. Thus, asymptotic freedom is a quantifiable concept. 

The conventional way of ex ressing asymptotic freedom is through the dependence of the 
linear coupling g(p) = J+- 4Kra,(p ), 

pi4 - = PMP>> 3 
dP 

where the beta function is a power series in g beginning at O(g3), 

B(g)=-s(~~l+(%)231+...) * 

(11.42) 

/?I can be found directly from a21 calculated as above, or from any other physical quantity 
that depends on ~1 in perturbation theory. It is, as expected, positive for &CD, 

I% = 11 - 2nf/3 = (llN, - 2nf)/3 , (11.44) 

where nf is the number of flavors of quarks and N, the number of colors. The positive contri- 
bution, 11, comes mainly from the nonabelian diagrams, Fig. 5. The negative contribution, 
-2nf/3, which weakens asymptotic freedom, comes from the the fermion loop diagram in 
Fig. 4. In these terms, the solution to the lowest order approximation to Eq. (11.42) can be 
written in terms of oB as 

44> 
as(p2) = 1 + (pi/47r)c&~)ln(~2/& 

(lowest order), (11.45) 

where the value of a,(&) gives the boundary condition for the solution of the differential 
equation, In this form, the running coupling seems to depend on both (IY,(&) and & but 
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in fact it has to be independent of where we start. Therefore, it is often convenient to write 
cys(p2) in terms of a single variable, 

47t. 
@s(p2) = /3rln(p2/A2) 

(lowest order), 

where 
A = poe-ww44N (lowest order), (11.47) 

sets the scale for the running coupling. This scale is the famous &on which is the subject 
of much measurement. 

A more accurate solution for (ws(p2) is obtained by using the first two terms in the beta 
function. One conventionally writes cr, (~1~) in an expansion in powers of l/ 1n(p2/A2), where 
the coefficient of [l/ ln(p”/A”)]” is a polynomial in ln( 1n(p2/A2)). Keeping /3i and ,Bz allows 
us to determine the coefficients of [1/1n(p2/A2)12, 

dP2> 1 _ _I Pd4n(~2/A2>> 
4n PlW2/A2> P8n2(p2/A2) •t ’ ( ln3$/A2)) ’ 

(11.48) 

where & = 102 - 38nf/3. Notice that there is no contribution of the form c/ln2(p2/A2). 
Such a contribution can be absorbed into a redefinition of A. One defines A by the condition 
that c = 0. If renormalization is carried out according to the MS scheme, then A here is 
called Am. 

1I.E Quark Masses 

Having discussed the QCD coupling, we now turn to the other physical parameters in 
the Lagrange density, Eq. (II.l), the quark masses. When we compute higher order loop 
graphs in the theory, the corrections to the masses are divergent (infinite but temporarily 
controlled by some regularization process) and the masses themselves must be renormalized. 
The simplest renormalization scheme,“MS” involves the continuation of the theory into a 
dimension different from four (Appendix C). Let us illustrate this feature in QED, in the MS 
scheme. When we compute the one-loop change in the mass, we find, in 4 - 2~ dimensions, 

3e2 1 
m0 =m{l+-- &$ E + o(e4)} 9 

where mo is the mass parameter in the Lagrangian in the absence of interactions (e = 0), 
and m is the parameter that we use in the interacting case. Note that both masses are still 
mathematical parameters. As expected, as E + O(n + 4) the difference between the two is 
infinite, corresponding to an infinite shift in the mass due to the interaction of the electron 
with its own electromagnetic field. This is not as bad as it sounds, since mo, in particular, is 
not observable. The advantage of using this particular renormalization scheme is that m and 
mo are related by a simple formula which involves an expansion in pole terms with residues 
which are powers in the renormalized coupling constant. 

Note that neither m nor me is the physical mass of the electron. We must define the 
physical mass of the electron, m,, as the position of the pole in the renormalized electron two- 
point Green function. An examination of the corrections to this propagator in perturbation 
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theory yields the finite relation 

me = m{l + $(2 - i In 5) + O(e4)} 

where ~1 is an arbitrary mass scale. We thus know the identification between the mathemat- 
ical parameter in the renormalized Lagrangian and the quantity which is measured in the 
laboratory. 

For QCD this last step does not work. Color confinement is postulated to explain the 
absence in Nature of free quarks and therefore the physical mass is unobservable. In per- 
turbation theory there is a parameter mo and a renormalized parameter m, which is treated 
in the renormalization group equation in the same way as the coupling constant. If we 
choose the mass independent renormalization scheme given above then the solution of the 
renormalization group equation follows from the introduction of a running coupling con- 
stant g(p) for the quark-gluon interaction and also a running mass m(p) for every quark 
flavor (up,down,strange,etc). In the theoretical analysis of deep inelastic scattering from 
“light-mass” quarks the only true scale is the quantity AQ~D. The running masses decrease 
as the scale increases so ratios such as m,,/AQcD, are small for the up, down and strange 
quarks (Gasser and Leutwyler, 1982). Therefore we are justified in treating these quarks as 
massless. The running mass is evaluated at a scale where it is small, and therefore plays no 
role in the analysis of data. 

In the case of the heavier quarks, such as charm, bottom and top the masses from 
spectroscopy are large AQ~D < m, < rnb < mt, so there are new scales in the theory. 
First we observe that when we choose the renormalization scale close to the mass rnQ of 
the heavy quark, the pole of the heavy quark propagator is close to p2 = rn$ (with order 
a,(mo) corrections). At scales of virtuality well below the quark mass, the only effects of 
heavy-quark propagators are in loop corrections and of a form that they can be canceled by 
adjustment of renormalization counterterms. This is the decoupling theorem of Appelquist, 
Carazzone and Symanzik (Symanzik, 1973; Appelquist and Carazzone, 1975; Appelquist and 
Carazzone, 1977). When we work with virtualities well above the heavy quark mass, it is 
the mass that can be neglected: we treat the quark on the same footing as the light quark 
and the renormalization scale ~1 is of order the large scale. Clearly we have two regimes: 
when p >> mg, the heavy quark participates fully, and when ,Y < rn9, we should omit 
the heavy quark. Matching conditions are necessary. As Collins, Wilczek and Zee (Collins, 
Wilczek and Zee, 1978; Witten, 1976; Georgi and Politzer, 1976) showed, this can be done 
by a suitable choice of renormalization scheme. They use MS for everything when ~1 > mQ, 
but they use zero-momentum subtraction for loops with heavy quarks when p < mQ, and 
MS for everything else. This method gives automatic decoupling of heavy quarks when it 
is applicable, and allows calculations at scales of order mQ with all mass effects taken into 
account. At the break point /-I = mQ the number of active quark flavors in the beta function 
is changed by exactly one, and the coupling is made continuous there. It can be shown by 
explicit calculation that, at the one-loop approximation, this break point is at p/mQ = 1 
and not at some other ratio, provided that MS renormalization is used. If desired, higher 
order corrections to this matching condition can be calculated. It is not yet known how to 
make an accurate direct experimental measurement of a running quark mass, so we simply 
adjust mQ to fit a physical quantity such as the production cross section. Therefore one 
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should not be surprised when these masses do not exactly agree with the naive expectation 
of one-half the energy of the threshold for “open” heavy quark production. 

1I.F Infrared Safety 

With our solution for the running coupling, we now have an idea of how asymptotic 
freedom can help in a practical case. Let a(pi . pj/p”, mf/p2, g(p)) represent some physical 
quantity that we can compute in perturbation theory, 

~(‘7, $, g(p)) = ncoan(py, $)a:(p) , (11.51) 

where the p; denote external momenta and mi the internal (quark) masses rnf and any 
external invariants that are also small. It is quite common that the coefficients ai are large, 
regardless of the value of (Y.(P). In fact, almost all cross sections in perturbative QCD are 
infrared (IR) divergent, because of the vanishing gluon mass (see Section IV). That is, they 
are not even defined in the renormalized theory. Nevertheless, we will find that there is a 
large class of quantities which are infrared safe (Sterman and Weinberg, 1977; Dokshitzer 
et aZ., 1980). Infrared safe quantities are those which do not depend on the long-distance 
behavior of the theory. For such quantities, the a, are infrared finite, and also possess a 
finite limit for vanishing mi, so that 

(11.52) 

where Q2 is a scale characteristic of the large invariants among the p; . pj. (When there is 
more than one such scale, the situation becomes more complicated, but can remain within 
the realm of pQCD.) 

For an infrared safe quantity, Eq. (11.28) has the solution 

471 z2 o, g(p)) = a(l, 0, g(Q)) v (11.53) 

in which all momentum dependence has been put in the couplings. When Q is large, the 
coupling decreases, and the perturbation series becomes better and better. 

A major goal of perturbative QCD is to identify and analyze experimental quantities to 
which asymptotic freedom may be applied consistently. We will often find it necessary to 
reorganize the perturbation series to identify and compute infrared safe quantities. Typical 
of the results are the factorization theorems to be discussed in Section IV. Before reorgani- 
zation, the coefficients in the perturbation series are so large that it is of no practical value 
to use them. After reorganization, we isolate factors for which low order perturbation theory 
is useful in practical applications. 
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III The Parton Model: Fundamental Cross Sections 

1II.A Overview 

The parton model is applicable, with varying degrees of accuracy, to any hadronic cross 
section involving a large momentum transfer. Historically, its development (Feynman 1969; 
Bjorken and Paschos, 1969; Feynman, 1972) was a response to the observation of scaling 
(Bloom et aE., 1969; Breidenbach et al., 1969; Friedman and Kendall, 1972), which we shall 
define below. The parton model interprets scaling as a consequence of charged pointlike 
constituents in the proton. These pointlike constituents are the quarks of QCD. 

The parton model is, in essence, a generalization of the impulse approximation. We 
assume that any physically observed hadron, of momentum p” is made up of constituent 
particles, its “partons”, which we will identify with quarks and gluons. At high energy, we 
neglect the masses of hadrons and partons compared to the scale Q of the hard scattering. 
Furthermore, we assume that every relevant parton entering the hard scattering from an 
initial state hadron has momentum xv, with 0 2 x 5 1; here p” is the momentum of the 
parent hadron and within the hard scattering we make the approximation p2 = 0. 

Parton model cross sections are calculated from the tree graphs (no loops) for partonic 
scattering, by combining them with probability densities, as follows. Consider collisions of 
hadrons A and B to make some suitable final state, e.g., one containing a lepton pair of 
large invariant mass. (This particular case is the Drell-Yan process.) Then the parton model 
cross section for this process has the schematic form, 

OAB (P, P’) - CJ ’ dx dx’ C&P, x’P’) h/A(x) &jl&‘) , (111.1) 
porto7u ij O 

where 6;j is the corresponding Born approximation cross section for the scattering of partons 
i and j to produce the chosen final state, and &/h(x) is the probability density for finding 
parton i in the hadron h, carrying momentum xp, 0 5 x 2 1. 4ilA is called the distribution 
of parton i in hadron A. 

Similarly, for a final-state hadron C, with momentum e, we relate hadronic to partonic 
cross sections by 

dm@> - CJ l dz dh(+) G/&z) , (111.2) 
partons It O 

where now DC/~(Z) is the fragmentation function that describes the probability for parton Ic, 
with momentum .@‘/z to produce a hadron C(4?p) in the final state. A general parton model 
cross section will involve both initial- and final-state hadrons of definite momentum. 

III.A.l Heuristic justification 

The physical insights behind the parton model are most easily seen in deeply inelastic 
lepton-hadron scattering. Fig. 6 gives a schematic picture of this process in the spirit of the 
parton model. Fig. 6a shows the system before the scattering, as seen in the center-of-mass 
frame. The hadron, say a nucleon, consists of a set of partons (denoted by x’s), in some 
virtual state of definite fractional momenta tip. The central observation is that this virtual 
state is characterized by a lifetime r in the nucleon rest frame. The precise value of r depends 
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on the details of nucleon structure. Let us suppose, however, that there is an effective lower 
bound, r > 7-0, so that the nucleon is made up primarily of virtual states of non-zero lifetime 
in its own rest frame. 

In the center-of-mass system, the nucleon suffers both Lorentz contraction and time 
dilation. Thus, in this frame, the lifetime of our virtual state is ~(1 - ~*~/c~)-l’~ >> 7, 
with z1* the velocity. Combined with Lorentz contraction (indicated in the figure by a disc 
shape), this means that the time it takes the electron to cross the nucleon vanishes as the 
center-of-mass energy goes to infinity. 

Therefore, at the time of collision, Fig. 6b, the electron sees a collection of partons that 
are effectively “frozen” during its transit. To exchange a large momentum qp with one of the 
partons, the electron must come as close to it as 0(1/Q) in the transverse direction, by the 
uncertainty principle. The details of the exchange depend on the underlying electron-parton 
interaction, such as QED. 

Most importantly, if we assume that the partons are more-or-less randomly spread out 
over the disc, the probability of finding an additionaE parton near enough to take part in the 
hard scattering is suppressed by the geometrical factor 

l/Q” 
aR3 ’ 

(111.3) 

with RO the radius of the nucleon. Such an estimate makes sense to the extent that the 
partons are effectively “frozen” during the short time it takes the electron to pass by. Then 
the cross section may be written as the probability of finding a parton with given momentum 
fraction, times the cross section for the interaction. 

After the collision, Fig. 6c, anything may happen, and as the scattered electron recedes, 
the fragments of the nucleon interact, create quark pairs and eventually respect confinement. 
All this is assumed to take place on time scales that are also long compared with the electron’s 
collision with the nucleon. Then the process of “hadronization”, by which quarks and gluons 
coalesce into the observed particles, happens too late to influence the hard scattering itself. 
This assumption underlies the idea of treating the parton-electron scattering in the elastic 
Born approximation. We do not assume that the scattered quark is really on-shell, only 
that it is much closer to the mass shell than Q2, and lives a much longer time than l/Q, as 
Q 400. 

In summary, the parton model rests upon two physical concepts: the Lorentz contraction 
and time dilation of internal states of the nucleon, and the long-time nature of hadroniza- 
tion. The “initial-state” interactions between partons happen too early to affect the basic 
scattering, and hence the inclusive cross section, while the “final-state” interactions between 
fragments happen too late. Up to kinematic factors, then, the scattering is directly propor- 
tional to the density of partons, which is frozen over the short scattering time scale. 

To apply the parton model formulas, Eqs. (111.1) and (111.2), we need to calculate elastic 
scattering processes for these partons in the Born approximation. Of course, we don’t get 
something for nothing, and it will also be necessary to incorporate information on the struc- 
ture of hadrons via the functions #i/h(x). The magic of the parton model is that it is not 
necessary to solve the problem of hadron binding. Instead, the required information will be 
available from experiment. To see how, we study cross sections for the scattering of hadrons 
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and leptons. Such cross sections will begin at order 02, with o = e2/4r the electromagnetic 
(or more generally electroweak) fine structure constant. 

1II.B Lepton-Hadron Cross Sections 

There are three standard lepton-hadron parton model cross sections, corresponding to 
the following underlying partonic reactions: lepton-parton elastic scattering, lepton pair an- 
nihilation into parton pairs, and parton pair annihilation into lepton pairs. They correspond, 
respectively, to deeply inelastic scattering, e+e- annihilation and the DreZZ- Yan process. At 
the (observable) hadronic level, these cross sections are all inclusive for hadrons in the final 
state. In this subsection we treat deeply inelastic scattering. 

III.B.l Deeply inelastic scattering kinematics. 

A deeply inelastic scattering (DIS) process is generically of the form 

e(k) + h(p) + e’(k’) + X , (111.4) 

where L’(k) represents a lepton of momentum Ic p, h(p) a hadron of momentum p, and X an 
arbitrary hadronic state. Normally, h(p) will b e a nucleon or nucleus. The process, illustrated 
in Fig. 7, is initiated by the exchange of vector boson V. The classic DIS experiment is totally 
inclusive in the hadronic final state, so that it is necessary only to observe the outgoing lepton, 
of momentum P. The discussion of DIS, more than any other cross section, is couched in 
a rather specialized kinematic notation, which we will now briefly review. It should be kept 
in mind that the kinematics are much more general than the parton model, and even than 
PQCD. 

In DIS, the momentum transfer between lepton and hadron, q, is spacelike, 

qp = kp - ktp , 

-q2 = Q2. (111.5) 

In addition, as the term implies, in DIS the hadronic final state X has an invariant mass 
much larger than that of the nucleon. This is normally parameterized in terms of the Bjorken 
scaling variable, x, -q2 Q2 -- 

x- 2p.q =5Gyv7 
(111.6) 

where u is the energy transferred from the lepton to the hadron in the hadron (target) rest 
frame, 

v=p-q/mh=Ek-Ep. (111.7) 

u is naturally related to the dimensionless variable y, 

Y =!!2= & - & 

P*k & ’ 
(111.8) 

that measures the ratio of the energy transferred to the hadronic system to the total leptonic 
energy available in the target rest frame. 
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For a nucleus with atomic number A, it is usually convenient to rescale x by A, so that 
the denominator in Eq. (111.6) is still the mass of a nucleon. For fixed x, the mass of the 
hadronic final state is given by 

W2 =mE+$(l-x). (111.9) 

Thus, for x fixed and Q2 large, the mass of the hadronic final state is also large. 
The incoming lepton may be an electron, a muon or an (anti)neutrino, for recent refer- 

ences, consult (Geesaman et al., 1990), and the exchanged vector boson a photon, W*, or 
2. At lowest order in electroweak interactions, the cross section may be split into leptonic 
and hadronic parts, 

d3k’ 
da = - 4 

2 2 %G (r>W,v,h(PY q> 7 2sjk’l4+!(q2 - mv) 

where V labels the exchanged vector boson, of mass mv, and where 

cv = e, 
9 

CWf = - 
2Jz’ 

(111.10) 

(111.11) 

for reasons which will become clear in a moment. (Note that each weak interaction coupling 
involves g = e/sinew). In this equation, we assume the form -gap/(q2 - mc) for the 
vector boson propagator, neglecting gauge- and mass-dependent terms proportional to qaqp. 
Corrections to this approximation vanish for V = y, and are suppressed by the ratio rne/rnv 
for V = W*,Z. 

The leptonic tensors can be evaluated explicitly (with a conventional but arbitrary nor- 
malization) from 

J% (k7 cd = $w~,(Y-~~~,l~ (111.12) 

where l?ve is the perturbative vertex coupling lepton .!! to vector V and the (unique) out- 
going lepton P, but with the factor cc removed. The factor l/2 is for the spin average for 
unpolarized electrons: it should be removed for neutrino scattering. To be specific, we may 
take 

r;,* = YP , (111.13) 

r&w+” = YV - 75) , (111.14) 

rypfi = YP(l +75) * (111.15) 

The hadronic tensor, on the other hand, is defined to all orders in the strong interaction 
in terms of the matrix elements 

WjF(P, 4) = & c c @(P, a)bv;(o)lx) (Xl?‘,(O)lh(p, a>> 
0 x 

x (27r)“fi4(P + q - Px) ’ (111.16) 
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Here, j:(x) is the appropriate operator electroweak current, labeled by the corresponding 
vector boson, and divided by the appropriate cv Eq. (111.11). (This procedure does not 
result in unit coupling for quarks; see Section III.B.2). When appropriate, we average over 
the nucleon spin, 0, which simplifies our analysis’4. We have performed this average in 
Eq. (III.lG), and the normalization factor includes a factor l/2 for this average. 

Symmetry properties give important restrictions on the form WiL”) may take. These 
restrictions may be summarized by expanding the tensor in terms of scalar structure functions 
WJVh). The general expansion may be expressed as t 

wj;“’ = - (gpu - y) WfVh’(x,Q2) 

+ (f’p - $7) (pu - quy) --$W-vh’(x,Q2) 

. 
’ -qluXaP q u--&WiVh’(2,Q2) . (111.17) 

Note that there are a variety of conventions in the literature about the definitions of Wi, 
and of the variable u. This variation is less pronounced for the scaling structure functions 
Fi to be defined below. Our conventions for the Fi’s are consistent with those in the 1992 
Review of Particle Properties (Particle Data Group, 1992) (taking into account its Erratum 
r5 (Particle Data Group, 1992)!), and with the detailed derivation found in Chapter 6 of de 
Wit and Smith, 1986 although our M/i differ from those of the latter). 

The structure functions are generally parameterized in terms of x and Q2. At this stage, 
there is no relation between the W(Vh) for different bosons V, although parity invariance of 
the strong interactions implies that 

W,‘rh’(x,Q2) = 0 (for photon exchange only) . (111.18) 

The functions Wi of Eq. (111.17) are usually replaced, for the purposes of exhibiting data, 
by alternate, but equivalent, structure functions Fi, which will turn out to be particularly 
simple in the parton model, 

fi(x, Q2) = W(x,Q2) , 

f’2(5,Q2) = $72(x, Q2> , 

J’3(x,Q2) = &W3@7 Q2> . (111.19) 

Yet another equivalent basis for the structure functions is inspired by assigning polarizations 
to the vector boson V, in the target rest frame: 

dd = -& 1, -40) , 
14Spin-dependence has lately emerged as a topic of interest and controversy in experiment (Ashman, et 

al., 1988; Ashman, et al., 1989; Alguard et al., 1978; Alguard et al, 1979; Baum et al., 1983) and theory 
(Efremov and Teryaev, 1988; Altarelli and Ross, 1988; Carlitz, Collins and Mueller, 1988; Bodwin and Qiu, 
1990; Jaffe and Manohar, 1990; Gliick and Reya, 1991). 

15The erratum refers to the expression for F3 on page III.52 in Particle Data Group, 1992; it does not 
apply to the Particle Properties Data Booklet. 
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4q) = +p,i,O)) 
1 

%&I) = &/Q2 + v2;0,0,v) . (111.20) 

These correspond to helicities of +l, -1 and to longitudinal (sometimes called “scalar”) 
polarization for the exchanged particle, respectively. Up to corrections of order mi/Q2, 
W$“) has the expansion, 

w;;h’ = c E;(q)&J)Y FYh)(x, q2> 3 
x 

(111.21) 

where X = L, R, long labels the helicity. In this approximation, the “helicity” structure 
functions are related to the structure functions of Eq. (111.19) by the simple relations 

FL,R = FI f F3 , 
F2 

&ng = 22 - Fl . (111.22) 

The structure functions can be found directly from experiments in which only the out- 
going lepton’s momentum is measured. For instance, the differential cross section in terms 
of the dimensionless variables x and y may be written in terms of incoming and outgoing 
lepton energies and scattering angle in the target rest frame as 

d&h) 
- = 
dxdy 

Nw) [2W,(Vh) (x, q2) sin2(0/2) + lKjvh)(x, q2) cos2(O/2) 

f W-jvh)(x, q”) “zhE’ sin2(0/2)] , 

where the f corresponds to V = IV*, and where 

N(e%) mttE = 8?7ar2- 
Q* ’ 

Nb’w+) = N(“w-) = ra2 %E 
2 sin4(&)(Q2 + M&)2 ’ 

(111.23) 

(111.24) 

Here Bw is the weak mixing angle, and 7ra2/(2M$ sin4Bw) = G$/r, with GF the Fermi 
constant. 

Other useful expressions for this cross section are given directly in terms of y, 

d&h) 
- = 
dxdy 

+ 6v(y - ; x iVh) ) jF 1 (111.25) 

where Sv is +l for V = IV+ (neutrino beam),-1 for V = W- (antineutrino beam) and zero 
for the photon. mh is the target mass. 
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III.B.2 Cross Sections and Parton Distributions 

Now let us see what the parton model has to say about DIS. As emphasized above, in the 
parton model the scattering of the nucleon is due entirely to the scattering of its individual 
constituents. If these constituents are quarks and gluons, then only quarks will couple to 
electroweak currents in the Born approximation. The DIS cross section is then given by the 
probability, C#)flh(t), of finding a quark of flavor f and fractional momentum t in hadron h, 
times the cross section for the elastic scattering of that parton. 

A typical parton model DIS cross section is therefore given by 

d;y; 
k’ k’ 

(p, q) = c J’ dC; d;$;k, (tp, q) 4f/&) - 
f O 

(111.26) 

The distribution 4f/h is at this point undetermined. The perturbative equivalent of the 
parton model picture of DIS is illustrated, in “cut diagram” notation (Appendix B), in 
Fig. 8a. 

We note the absence of diagrams such as Fig. 8b, in which the scattering of quark f with 
fraction < interferes with the scattering of a quark of fraction <‘, the momentum being made 
up by an extra gluon. This feature is referred to as the “incoherence” of the parton model. 

From Eqs. (III.lO), (111.17) and (111.19) we derive relations for the structure functions Fi 
in the parton model, 

tiVh)(x) = $ $ @‘“(x/E) +f/h(t) (a = 1,3), 

F2(Vh’(x) = x I’ dt Ff?x/t> @f/h(t) - 
f 

(111.27) 

(111.28) 

Here the F!Vf) are the structure functions at the parton level; they can be calculated from 
the Born diagram of Fig. 9. The factor of l/t ’ m Eq. (111.27) arises from the normalization 
of the parton states as compared with the hadron states and from the factors of p in the 
definitions of the structure functions from WPV - the vector p” must be changed to &Y for 
scattering off a parton. 

For example, with electromagnetic scattering, we have 

( wq 
1 d3p’ =- P” Born J 87r (2432w,, 

Q; TRY,.@+ d)rd] (2~)~6(~)(# - p - q> , (111.29) 

where e&f is the electric charge of the quark of flavor f. A factor e has been absorbed into 
cr in Eq. (III.1 1). This gives 

2F;rf)(x) = FiTi’ = Q2fb(l - x) . (111.30) 

Substituting these functions into Eqs. (111.27) and (111.28), we find the electromagnetic 
structure functions in terms of quark distributions, 

~xF,(‘~)(x) = Fiyh)(x) = c @n$j,h(x) . 
f 

(111.31) 

Two important aspects of these expressions are: 
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(i) the structure functions depend on the Bjorken scaling variable x only, and not on the 
momentum transfer directly; 

(ii) the two functions satisfy the relation 2xFr = Fs. 

The first result is known as scuEing (Bjorken, 1969). Its observation (Bloom et al., 1969; 
Breidenbach et al., 1969; Friedman and Kendall, 1972) was the inspiration for the parton 
model. The second, known as the &&n-Gross reMion (Callan and Gross, 1969) follows 
from the specifics of the Born diagram, Fig. 9, and as such is evidence for the spin-l/2 nature 
of charged partons (the quarks). 

Evidently, measuring Fl or Fz immediately gives an experimental determination of the 
combination of distributions, Cf Q;$f,h(x) for h a proton or a neutron. Now isospin invari- 
ance implies that 

4 U/P = $d/n , $d/p = hi/n , (111.32) 

with u the up and d the down quark. In the approximation that the proton and neutron 
contain u and d quarks only, a measurement of F:! for p and n, combined with Eq. (111.32), 
determines the distributions &,h and &,h. These distributions can then be used to predict 
other DIS cross sections, such as neutrino scattering, to the same approximation. 

Of course, in real life things are not so simple. Quantum mechanics tells us that vir- 
tual states will include quark-antiquark pairs of every flavor. The sum in Eq. (111.31) will 
therefore include the strange, charm, and even the bottom and top quarks, in addition to all 
the antiquarks. Although we may expect that the admixture of very heavy quark pairs in a 
nucleon is relatively small, we clearly need more information than is supplied by electromag- 
netic scattering alone, even to determine the distributions of light antiquarks, for instance. 
For this purpose, we will find neutrino and antineutrino scattering ideal. 

The parton model cross sections for charged weak currents are almost as easy to compute 
as for the electromagnetic current, and the answers are just as satisfyingly simple. Quarks of 
definite mass - that is, the quarks of the strong interaction Lagrangian - are not eigenstates 
of the weak interaction Lagrangian. As a result, the basic vertex for u + W- ---f d is almost 
like the vertex for V, + IV- + e-, i.e., (1/2&)gyp(l - ys), with g = e/sin&, but not 
quite. Instead, g is replaced by gvud, where Vud is an element in a three-by-three unitary 
matrix called the Cabibbo-Kobuyashi-Muskuwu mixing matrix. As a result of the mixing, the 
absorption of a IV- can change an up quark, not only into a down quark, with coupling gv,d 
but also into a strange quark, with coupling gV,,, or a bottom quark, with coupling g&b. 
The three mixing matrix elements VUd, VU, and Vub form a row of the unitary matrix V, and 
hence satisfy 

Iv,d12 + j&s12 + Iv,b12 = 1 . 

In practice, I$, is relatively small, and 

(111.33) 

V ud N cosOc, VU, - sin8c , (111.34) 

where 8~ is the same Cabibbo angle that was first introduced to relate strangeness changing 
to strangeness preserving weak decays. 

We are now ready to compute the parton model hadronic tensor for charged weak currents 
acting on the up quark, through the exchange of a W- from an incoming antiquark (of any 
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flavor). We find (compare Eq. (111.29)) 

(J/p-4) 1 J d3p’ 
PV Born = G (27r)32wpr Tr Ml - 75)(d+ d)rv( 1 - --y&J 

x (2d4S4(P’ - P - Q) 9 (111.35) 

where we have used Eq. (111.33), and have, as usual, neglected the masses of the outgoing 
quarks. The factors of lV,iI’ have summed to unity in the inclusive cross section, while the 
overall factors cw are absorbed into the normalization of the cross section as in Eq. (111.11). 

Computing the F’s for individual quarks and antiquarks, and hence for hadrons, is now 
a straightforward matter of taking traces. We won’t give the details here, only quote the 
results. The relation to parton distributions is simplified for some purposes in terms of the 
sums and differences of neutrino and antineutrino structure functions, 

FtWh) = ; (Fi(W+h) f FjW-“). 
if (111.36) 

We now introduce the notation Uh(x) for the parton distribution for quark U of charge 
2/3 (up, charm, top) in hadron h, and Dh(x) for quark D of charge -l/3 (down, strange, 
bottom). Also, it is convenient to define valence distributions for the U and D quarks by 

U/y(x) = Uh(X) - Dh(X) , (111.37) 

@xx) = Dh(x) - &(x) . 

The motivation underlying these definitions is that for every extra antiquark produced in a 
virtual state there is also an extra quark. The valence distributions are what is left when 
the influence of these “extra” quarks (usually called sea quarks) is removed. (However, note 
that sea quarks and antiquarks need not necessarily have the same distribution in x.) 

In these terms, the parton model results for charged weak interactions are remarkably 
informative. First of all, we find that the relation characteristic of spin-one half partons still 
holds, 

2xFjrh’ = FZ(fWh) . (111.38) 

The explicit results for the sums of structure functions are W’h) 
4% = XC1 Dh(X) + Dh(X,> ] + xC[ Uh(X) + Uh(X) ] , 

u Wh) 
F3+ = E&(x) +-p{(x) ) 

D u 
(111.39) 

while for the differences we get 

Fg?) = xX0;;(x) -x~U;(x), 

F$4Vh) = &)h(x) + Dh;) ] - x[ uh(x) + uh(x) ] . (111.40) 
D u 

If we measure all four of these distributions, for both p and n, and assume isospin invariance 
and an isospin-symmetric sea (i.e., a(x) = d(x) = S(x), with c(x) = b(x) = t(x) = 0), 
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the full set of cross sections becomes overdetermined, and the self-consistency of the parton 
model may be tested. The sole one of these assumptions that is dangerous in QCD is the 
assumption of isospin-symmetry of the sea quarks. 

For completeness, let us give the same results as above, in terms of neutrino (IV+) and 
antineutrino (IV-) structure functions directly, 

F$W+f’) = 24 c b(x) + c uh(x) ) , 

W-h) 
Fz = 2x( ;Dh(x, + ;uh(x,), 

D u 

and 

F,(W+h) 
= 2( ~044 - c uh(x) ) , 

D u 

F;W-h) 
= 2( -‘CDh(x) + cub(x))- 

D u 

(111.41) 

(111.42) 

(111.43) 

(111.44) 

1II.C e+e- Annihilation 

Another fundamental cross section is the annihilation of lepton pairs into hadrons, 
efe- + hudrons. There are three variations on this theme for which we can derive pre- 
dictions in the parton model: the total cross section, single-hadron inclusive cross sections 
and jet cross sections. 

III.C.l Total cross section 

The total cross section for e+e- annihilation into hadrons falls immediately into the 
parton model framework, because it is completely inclusive in the hadronic final state. At 
the same time, there are no hadrons in the initial state, so the parton-model cross section 
is given immediately in terms of the lowest-order electromagnetic elastic cross section for 
e+e- --+ qij. This cross section is given by the “annihilation” Feynman diagrams, shown in 
Fig. 10, in which the lepton pair annihilates into a virtual photon or 2 vector boson, which 
subsequently decays into the quark pair. The fermion-vector vertices are given by (compare 
Eq. (111.15)) eQiyp for the photon, with Qi the fractional electric charge of fermion i, and 
for the 2, 

erp = 
e 

sin ew cos ew 
7’ (K - 475) * (111.45) 

Here Ai and V;: characterize the vector and axial vector couplings, and are given by 

Ai = t3 - 2Qi sin2 8w , 

I$ = t3, (111.46) 

with t3 the weak isospin of (the left-handed component) of fermion i (t3 = +1/2 for neutrinos 
and up quarks, -l/2 for negatively charged leptons and down quarks). 
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At energies much less than the 2 mass, only the virtual photon is important, and we 
easily derive the cross section from the electromagnetic vertex alone, 

4 Ncm2 
~(shot = 3s (111.47) 

where N, is the number of colors, s is the squared center-of-mass energy, cy (= e2/47r) 
is the usual electromagnetic fine structure constant, and the sum is over all quarks with 
masses small enough to be produced at s. Qf is the fractional electric charge of flavor f. 
In computing Eq. (111.47), we have neglected quark masses compared to fi. Note that, 
because otot is directly proportional to N,, its measurement is a direct observation of the 
number of colors, N, = 3, jointly with the fractional charge content of each flavor. 

At very high energies, like those available at SLC and LEP, the 2 becomes important, 
and gives the full parton model annihilation cross section, 

+)tot = 4N;;u2 c 9; ( 
f 

1 - 2xVf” + [V; + A2f12x2) , (111.48) 

where the sum is over the final-state quarks and leptons and where 

(111.49) 

III.C.2 Single-hadron inclusive annihilation 

A stronger use of parton model methods is found in single-hadron inclusive (1PI) cross 
sections, for instance e+e- + h(p) +X, in which all events with a hadron of momentum p are 
included. The corresponding amplitudes, illustrated in Fig. 11, are the “crossed” versions of 
deeply inelastic scattering amplitudes for the hadronic antiparticle il. The latter process is 
found from 1PI annihilation by transferring h from final to initial state, where it is identified 
with h, and the positron from initial to final state, where it is identified as an electron. 

The kinematics for 1PI annihilation processes are developed in an analogous manner to 
deeply inelastic scattering. The basic scale is set by the total momentum, 

Q = e, + e, 

!12 = Q2>0, (111.50) 

with ei the incoming electron momentum. Two natural dimensionless variables, defined in 
terms of invariants, measure the energy and direction (relative to the electron momentum) 
of the produced particle in the center of mass system, q = 0, 

2P - Q x - = 
q2 ’ 

Y 
= P-h - = ;(I - 

P*q 
~0s Opel ) . 

These variables are the analogues of, but not identical to, the x and y defined in Eqs. (111.6) 
and (111.8). 

39 



For simplicity, we will specialize to 1PI through a photon, as is appropriate for energies 
well below the 2 mass. In this case we have, analogous to Eq. (111.10) for DIS, 

dot+,- = &(4)m$h)(P, q> dxdy > (111.52) 

with Lp” a leptonic tensor, given at order e2, and mpV the hadronic tensor (compare 
Eq. (III.lG)), defined by 

lv(yh)(p, q) = P” -& 5 (w~~o)lx, h(P, 4m h(PY 4lmwo 
I 
x (274464(P + q - px) 

= -&w - Y)Fph)(x, q2) 

+(Pp - %I- p;2q)(P. - Qv p$)-$~h)(x, q2) . (111.53) 

The p’s are 1PI structure functions, in terms of which the cross section is given by 

dc,h+,-(2, y, $) = 
dxdy 

(111.54) 

The factor NC is, as usual, the number of colors, included so that we do not have to sum 
explicitly over the colors of partons below. Note, as in Eq. (111.25), the explicit nature of 
the y (angular) dependence. 

The application of the parton model to 1PI cross sections is very straightforward. From 
Eq. (111.2) we have 

dxdy CJ dx’dzdo:+e-(x’, y, q2> D(Yh)(+qx’ _ 
dx’dy f 44 9 

f 

(111.55) 

where the sum is over quark flavors f (not including antiquarks), since in the Born approxi- 
mation only quark pairs, and not gluons, are produced in the annihilation process. D:(z) is 
the fragmentation function for quark f into hadron h, with the latter carrying fraction t of 
the momentum of the former. It now requires a very straightforward calculation, involving 
a single fermion trace, to derive the 1PI structure functions in the parton model, 

P/rh)(X) = QFDh/i(X) 9 (111.56) 

or, in terms of the cross section, 

do:+&, 3, (r2) = N m2 
dxdy +Q"r ( 1 i- cOS2 e&p) Dh/f(X) , 

f 
(111.57) 

where, as above, the angle is measured in the overall center-of-mass frame. 
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III.C.3 Jet Cross Sections 

From Eq. (111.57), we see that in the parton model the angular dependence of hadrons in 
the final state directly follows that of the underlying quarks. The 1 + cos2 8 dependence is 
characteristic of spin-l/2 particles (scalar quarks would have given sin2 0, for instance). This 
feature ranks with the Callan-Gross relation and the normalization of the total annihilation 
cross section, as fundamental evidence for quarks. 

There is even more to it than that, however. If we really take Eq. (111.57) seriously, we 
may conclude that each and every hadron appears in the final state in the same direction 
as the virtual quark whose fragmentation product it is. This would mean that in any given 
event, every hadron with a nonzero fraction of the total energy would move either in the 
direction of the virtual quark or of the virtual antiquark. In such a final state, all hadrons 
would appear as part of one or two jets of parallel-moving particles. Indeed, from this point 
of view, we can compute a jet cross section, which in the parton model is identical with the 
differential Born cross section for e+e- annihilation into quark pairs, 

d&;;)(cos 8, (I”) = 
dxdy 

(1+ co2 e) ) (111.58) 

where now B is the angle between either of the jets and the incoming electron in the overall 
center-of-mass frame. The factor of 2 relative to Eq. (111.57) comes from counting both jets 
equally. The integral of this cross section over 0 from zero to 7r is the total cross section, 
(111.48). 

Notice that this conclusion is not forced upon us by the parton model arguments of 
Section 1II.A. There we only claimed that the cross section for a single hadron is closely 
related to the underlying partonic direction. It is clear that the extension to jet cross sections 
is approximate at best. As we shall see, however, this approximation becomes better and 
better as the energy increases. In fact, we will be able to reinterpret the underlying Born 
cross section in any inclusive parton model cross section as a cross section for jets, emerging 
in the directions of, and with the energies of, the outgoing partons. In this, lowest-order 
approximation, the jets are “ideal”, and consist of a set of exactly parallel-moving hadrons. 
In realistic cross sections it will be necessary to define what we mean by jets more carefully. 

1II.D Drell-Yan Production 

The production in hadronic collisions of a lepton pair with large invariant mass (e+ e-, 
P+ p-7 P+qA, P-Q, etc.) yields complementary information to that revealed in deeply 
inelastic collisions and electron-positron collisions. 

Since the theoretical framework for the analysis of these processes was originally proposed 
by Drell and Yan 
production. 

l6 these reactions are commonly referred to as hadronic Drell-Yan (DY) 

The study of massive lepton pair production started with the Columbia-BNL experiment 
on proton-nucleus collisions (Christenson et al., 1970; Christenson et al., 1973). Reviews of 

“See Drell Levy and Yan, 1969a, Drell, Levy and Yan, 1969b, Drell, Levy and Yan, 1970, Drell and Yan, 
1970, Yan anh Drell, 1970, Drell and Yan, 1971. 
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the early work can be found in Lederman, 1976, Craigie, 1978 and Stroynowski, 1981. Since 
the lepton pairs have no direct interactions with hadrons they are really the manifestation of 
the production of virtual gauge particles, y , W l , 2, which couple to lepton pairs through 
electromagnetic or weak interactions. As the virtual gauge bosons are timelike, any on-mass- 
shell vector meson resonances which couple to virtual photons, such as the J/$ (Aubert et 
al., 1974) and the T (Herb et al., 1977; Innes et al., 1977), are produced. The intermediate 
bosons IV* and 2 can also be produced as physical particles when the center of mass energy 
is large enough. In the case of the intermediate bosons, the DY cross sections are largest 
when the particles are actually produced on-mass-shell. Given their well-known branching 
ratios into leptonic channels, the detection of single leptons at large p, is the characteristic 
signal for the production of IV* (Arnison et al., 1983a; Banner et al., 1983a; Bagnaia, et al., 
1983) and 2 (Albajar et al., 1987; Ansari et al., 1987). 

Let us consider first the basic electromagnetic reaction written as the production of a 
virtual photon followed by its decay into a lepton pair 

A(P) + WP’) --+ Y*(Q) + x 

+ l(k) + e’(V) + X) (111.59) 

where X labels all the undetected hadrons in the final state so that the process is inclusive. 
The notation is the same as in the previous sections. 
q = k + k’ satisfies q2 

Since the virtual photon is timelike, 
= Q2 > 0. One of the easiest variables to measure experimentally is 

q2, the invariant mass of the pair. It is convenient to introduce the DY scaling variable 

7 = q2/s, (111.60) 

where the total center of mass energy of the hadronic collision is determined from s = (p+~‘)~. 
The parton-model interpretation of the DY process is that in the hadronic collision two 

partons, say a quark-antiquark pair, annihilate to produce the virtual photon. In this case 
we write the hadronic DY cross section as a product of the partonic DY cross section for the 
reaction q([p) + q([‘p’) + l(k) + .t”(k’), t’ rmes two parton distribution functions 

d~!iif’% p’v d 
dq2 

= c 6’ dc d(’ q$f,A(Q doy’rn)($’ ““’ ‘) qQ,&‘) . (111.61) 
f 

The distributions 4(t) and 4(C) are assumed to be the same “universal” functions as 
measured in deeply inelastic scattering. The hard scattering is the Born approximation 
for quark-antiquark annihilation into a virtual photon, averaged over the color degrees of 
freedom of the initial quark and antiquark. The resulting differential cross section is 

dq(Ep C’P’ 

dq; 
, !7> 

= Qf 3Ncq2 
2%6(q2 - (<p + [‘p’)2). (111.62) 

Substituting this result and the definition of r into Eq. (111.61) we find for the photon 

e%P P’ q) 
dq; 

7 
= $$ c Q; 1’ dt dt’ 4+/A(t) s(T - tt’> dy/dt’). (111.63) 

c f 
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The general inclusive DY cross section is of the form, 

darB) 

dq2 
= 4(n2Px~>, (111.64) 

with V = y, IV*, 2. The factor a: 
function W,V 

contains the overall dimensions, while the dimensionless 
is defined as the integral over the appropriate product of distribution functions 

times couplings (in units of e), which we denote by PDX,, 

W,“,(T) = 1’ dtil dS’ S(T - tt’)P@&,5’) - (111.65) 

In the electromagnetic case we have 

y _ 47ra2 
uo - - 

3Ncq2s ’ 
(111.66) 

while WiB is computed with 

P%(t, t’> = T Q~{&/A(~)&,B(~‘) + &/~(t)&/~(t’)} . (111.67) 

For intermediate boson production, we only have to change a: and PDX,. In the cme of 
Z, we have 

a,z = 7 
7m2 1 + [l - 4sin8&12 

192N, sin4 0~ cos4 t9w (q2 - Mi)2 + M$r& 
(111.68) 

for the reaction qq + e+e-, where I’z is the total width of the Z boson, 

rz = CJGT 
24 sin2 0w COG BW 

[l - 4 sin2 8~ + 8 sin4 0,] . (111.69) 

The relevant product of distributions is 

p%(tr t’> = c C&#‘q/A@#‘q/B(t’) + &/A(t)&/&‘)) 
Q 

(111.70) 

for production in the q(r channel, where Cq = 1 + { 1 - 4]Qq] sin2 0~)~. 
The total 2’ production rate is found by integrating over q2, in the “narrow width ap- 

proximation” I’z < Mz, 

ug = 7r2cYs 
bVz(~ = -,q2 = M;), Mi 

12 sin2 ew ~0~2 ew s S 

The corresponding results for V = W- are 

7ra2 1 
u’w = 7 

12N, sin4 Bw (q2 - M$)2 + M&I’& ’ 

ma, 0 = COS2&d%dt)ds(t’) + ~A(~)sB(~‘)} , 

+ sin2 @C{~A(h?(t’) + cA(t)d&‘)} 

+(A * B), 

(111.71) 

(111.72) 

(111.73) 
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rw = ~Mw 
12 sin2 ew ’ (111.74) 

where GA = &/A, etc. AS usual, 8 w and Bc are the weak mixing and Cabibbo mixing angles 
respectively. Then the total IV- production rate is 

a!Z’ = 7r2cQ iW& Ml& 2 

3 sin2 ew ~0~2 ew s 
= -,Q 

S 
= M;). (111.75) 

1II.E O(QICY,) Processes 

The next level in complexity for parton model cross sections are those for which the 
partonic scattering involves the inelastic emission or absorption of a photon. The Born cross 
section will then be of order aa,, instead of 02, as above. These processes are photoproduc- 
tion and direct photon production processes, respectively (Owens, 1987). 

Once again, the cross section at the hadron level is given in terms of a convolution of 
parton distribution functions, the hard scattering parton-level subprocess cross sections, and 
the appropriate fragmentation functions. The inclusive invariant cross section of the type 
A + B --t C + X is given by 

Ec$iAB -+ c + x> = c Jdz.dzbdz~~y,A(Z.)~~,B(Zb) 
abed 

-+ cd)D+(+( d + i + ii), 

(111.76) 

where in our case a. . . d label partons and/or the photon. Hatted variables, (2) etc., refer to 
invariants of the partonic subprocess. As is conventional, we have explicitly exhibited the 6 
function associated with the phase space for the two-body scattering of massless particles in 
Eq. (111.76). Th e o th k’ er mematic factor, (a/&), is associated with the difference between 
the hadronic differential &d/dp& and the partonic differential (d/di). 

Now consider the process of direct photon production in hadron-hadron collisions. The 
term “direct photon” refers to those photons which are produced in the hard-scattering 
subprocess and are not decay products of some particle. There are two two-body subpro- 
cesses which can produce direct photons: the QCD Compton subprocess gq * yq and the 
annihilation subprocess q?j + yg. The cross sections for these are 

$w + YQ) = -Tyk$(; + i), 

and 

$(qq + -yg) = T:e:( 8 + f ) , 

(111.77) 

(111.78) 

where e, is the fractional electric charge of the quark q. Note that the running coupling, 
Q,, is a function of the renormalization scale 1-1. For transverse momenta of the order of fi, 
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these two subprocesses provide the dominant contribution to direct photon production. In 
other kinematic regions, it may be necessary to incorporate bremsstrahlung effects, which 
are QED corrections to purely hadronic two-body scattering. We shall discuss this issue in 
a later section. Here, we only note that we must also construct fragmentation functions of 
photons in partons, like D.,iq(z). 

The case of photoproduction is quite similar, since at the parton level one is just the 
time reversed version of the other. Accordingly, the subprocess expressions differ only by 
color factors associated with the interchange of the initial and final states. The two basic 
subprocesses are QCD Compton scattering and photon-gluon fusion, the cross sections for 
which are given by 

(111.79) 

and 

$(yg + q7j) = yei(i + f) . (111.80) 

These subprocess expressions may be used in Eq. (111.76) without fragmentation functions, 
in which case one obtains the cross section for jet production. On the other hand, inserting 
the appropriate hadronic fragmentation function enables one to calculate the cross section 
for the photoproduction of that type of hadron. 

1II.F The Parton Model and Experiment 

Historically, the parton model, or more traditionally, the Quark-Parton Model (QPM), 
was motivated by high energy experimental results of the late 1960’s, especially the famous 
deep inelastic scattering experiment at SLAC (Bloom et al., 1969; Breidenbach et al., 1969; 
Feynman 1969; Feynman, 1972). The subsequent success of this picture in providing a 
unified description of a wide variety of high energy processes gave strong impetus to the 
search for a theoretical foundation for its validity, resulting in the discovery of asymptotic 
freedom and the formulation of perturbative QCD as the basic framework for describing 
all high energy physics processes. In this section, we summarize the main features of the 
QPM which have been successfully compared with experiments. It is useful to keep in mind 
that the significance of QPM stems not from any specific triumph, but from the coherent 
framework it provides to correlate a wide range of processes. To review, the basic tenet of the 
QPM is that a large class of (physically measurable) high energy cross-sections are related to 
a class of (theoretically calculable) partonic cross-sections through a set of universal parton 
distribution functions, which represent the probabilities of finding partons inside hadrons. 

III.F.l Deep Inelastic Scattering 

There are a number of reviews of DIS experiments and comparisons of the measured 
structure functions F:(z,Q2) ( w h ere e = p(e), V, P and i = 1,2,3 (or L, for Zongitudinal)) 
with the QPM and &CD, see for instance, Sciulli, 1990 and Mishra and Sciulli, 1989. We 
shall only describe briefly the main features of this rather extensive area of experimental 
and phenomenological work. The expressions for Ff(z, Q2) in terms of the universal parton 
distribution functions &lA(z, Q2), where (a, A) label the parton and hadron (mostly nucleon) 
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respectively, are given in many textbooks, such as Roberts, 1990, review articles (for example, 
Tung et aZ., 1989) and in Section III.B.2 above. 

Scaling: The most striking feature of the first SLAC DIS data (Bloom et al., 1969; Brei- 
denbach et aZ., 1969) was scaling: the approximate independence of the measured structure 
functions F;(z, Q”) of Q2 - an indication of scattering from point-like constituents - the 
“partons” - analogous to the classic Rutherford experiment on atomic structure. The basic 
idea of the QPM originated from this observed fact, which has since been corroborated by 
similar observations in all high energy hard processes. 

Quarks as Partons: The identification of the “partons” with the previously known quarks 
(from hadron spectroscopy, which concerns physics at an altogether different energy scale) 
was cemented by a series of seminal experiments and phenomenological analyses: (i) the near 
vanishing of the longitudinal structure function in eN scattering suggested that the spin of 
the parton is l/2 - the Callan-Gross relation (Eq. (111.31)); (ii) the measured value of the 
ratio of total cross-sections for neutrino to antineutrino scattering on isoscalar nuclei (i.e., 
nuclei with equal numbers of protons and neutrons, and hence of u and d quarks) is about 3. 
This result can be derived by integrating the differential cross sections Eq. (111.25), using the 
QPM expressions Eq. (111.42) and Eq. (111.44) for the structure functions with all antiquark 
distributions set to zero. (The corresponding cross section ratio for scattering of neutrinos 
and antineutrinos from atomic electrons is also about 3 (Eichten et al., 1973)). This strik- 
ing fact strongly suggests that the nucleon consists primarily of spin l/2 partons, rather 
then anti-partons, which couple to the intermediate vector bosons the same way as the lep- 
tons; (iii) the subsequent detailed measurements of the differential cross-section d2a/dzdy, 
Eq. (111.25), and hence of the full structure functions J’ieh) (z, Q2), have consistently con- 
firmed this interpretation and yielded a wealth of information on the distribution of these 
partons inside the nucleon. 

The charge ratio: The structure function F~(x, Q2) 
y exchange processes (! = 

measured in neutral-current (virtual) 
e, p) and in charged current W* exchange processes (e = u, V) are 

in principle different. In the QPM, they are related to the same set of parton distribution 
functions - in fact, as a simple sum of the latter, each multiplied by an appropriate coupling 
constant (the squared charge for y* and an appropriate weak isospin matrix element for W* 

exchange). After summing over parton flavors, one expects F2(eA)(~, Q2)/F,(VA+‘A)(~, Q”) = 
5/18 for scattering off an iso-scalar target, A. This “charge ratio”, valid for all (x, Q”) where 
QPM applies, has been verified to a great degree of accuracy in the very high statistics 
DIS experiments, for example BCDMS and CCFR, after appropriate small corrections from 
strange and charm quarks and higher-order QCD corrections (Mishra, 1991). 

Quark number sum rules: The “valence quark” distributions of the proton satisfy the 
obvious quark number sum rules: 

N,, = J 0 
‘dz (U(X) - E(z)) = 2; Nd = o1 da: (d(z) - C&T)) = 1 J 
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In the QPM, linear combinations of these integrals are related to various integrals of mea- 
surable structure functions, e.g. 

IF vn 2 - f’;P] = N, - Nd = 1 (Adler Sum Rule) 

- xFlp] = N, + Nd = 3 (Gross - Llewellyn Smith Sum Rule) 

These sum rules have been extensively checked by all relevant deep inelastic scattering ex- 
periments. Within the experimental accuracy (and, by now, known QCD corrections to 
the latter), they are verified - the measured integral for the Adler sum rule is (Allasia et 
al., 1984; Allasia et aZ., 1985) 1.01 f 0.20; and for the GLS sum rule it is (Mishra, 1991) 
2.50 f 0.08. (There is an expected QCD correction to the naive QPM value for the GLS sum 
rule of approximately -0.34.) 

III.F.2 Electron-positron Annihilation into Hadrons 

Total cross-section and scaling The total cross-section for hadron final states in e+e- 
annihilation normalized to the point-like cross-section for e+e- + ~+ZJ- behaves roughly 
as step-functions in the center-of-mass energy (for a comprehensive review, see (Wu, 1984), 
staying constant (see Eq. (111.47)) over certain ranges (now known to correspond to regions 
between heavy quark flavor thresholds). This is the analogue of scaling behavior for DIS, 
and suggests that the underlying interaction mechanism is e+e- + parton-anti-parton pair. 
The absolute value of this ratio is proportional to the sum of the squared charges of the 
partons. The overall constant is 1 for spin l/2 partons and l/4 for spin 0 partons. The 
measured values agree well with the assumption that partons are quarks with the usual 
assigned charges. 

Two-jet final states as evidence for underlying partons The most direct evidence 
for the existence of partons perhaps come from the clear emergence of jet-like hadronic 
final states in experiments done at the PETRA and PEP e+e- colliders (Wu, 1984). The 
dominance of these events gave the first visual evidence for the underlying parton-anti-parton 
pair final state previously inferred indirectly from the total cross-section measurements and 
from DIS. 

Angular distribution and spin of the parton If we assume that the underlying parton 
picture, the angular distribution of the two-jet final states gives direct evidence on the 
angular distribution of the created parton pair, which is sensitive to the spin of the parton 
and its coupling to the virtual photon. The measured distribution agrees very well with the 
canonical (1 + cos28) distribution for spin l/2 partons: Eq. (111.58) and (Wu, 1984). 

III.F.3 Lepton-pair Production (Drell-Yan Process) 

The most convincing evidence that the QPM provides the correct framework for high 
energy processes in general came (historically) from its success in accounting for features of 
the measured lepton-pair production (A + B + ese- + X) cross-sections, using the same 
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simple parton picture and the same parton distributions determined from deep inelastic 
scattering. 

In the QPM, lepton-pair production proceeds through the basic quark-anti-quark anni- 
hilation qa + e+e-, the Drell-Yan process. The QPM cross-section at fixed center-of-mass 
pair rapidity, y = (1/2)ln(xr/xz), is given by 

d2a Q4dydQi = I---- 4:2x1x21 c e;(&/A(xdh&-Q) + $4/A(X4#‘q,~(X2)), Q 
where 21,~ = (Q/fi)e*y are scaling variables. The main features of this formula are: 

Scaling: The fact that the right-hand side is independent of any energy scale (say, Q) - i.e. 
the dimensionless cross-section satisfies scaling - is again evidence for the underlying point- 
like interaction (Lederman, 1979; Stroynowski, 1981) For a recent high-statistics experiment, 
see Brown, et al., 1989, Moreno et al., 1991. This feature allows one to predict the cross- 
section at higher energies from low energy measurements. We must re-emphasize that scaling 
is exactly true in the QPM, and that it is somewhat violated in &CD. 

Color factor: The overall factor in this formula contains a “color factor” 3 in the de- 
nominator which played an important role in determining Quantum Chromodynamics to be 
the underlying fundamental theory for strong interactions when parton distribution func- 
tions measured in deep inelastic scattering experiments were used in the above formula to 
test against lepton-pair cross-sections. To get quantitative agreement with experiment, the 
higher order corrections in a,(Q) predicted by QCD are essential. 

Cross-sect ion ratios: The above QPM formula for lepton-pair production leads to many 
simple predictions on cross-section ratios which agree well with experiment and were instru- 
mental in establishing the credibility of the QPM during its infancy. For instance: 

a(r+N + p+p-) 

+-N -+p+p-)- 

where N denotes an “isoscalar” target. This is indeed found to be true. This is the region 
where the “valence quark” is presumed to dominate. In contrast the ratio rises toward 1 for 
r + 0, where K* contain equal amounts of 6 and 2 quarks (Pilcher, 1979). 

Angular distribution of the leptons: 
lepton-pair production, qq 

Since the underlying fundamental process for 
+ !?+!-, is very similar to e+e- + p+p-, the angular distribution 

of the outgoing leptons in their center-of-mass frame is expected to be N (1 + cos2B) - just 
like for the latter - if the QPM is correct. Experiments amply confirm this fact (Lederman, 
1979; Stroynowski, 1981; Pilcher, 1979; Brown, et al., 1989). 

III.F.4 Other Hard Processes 

The basic features of QPM are also observed in other high energy “hard processes”, e.g. 
production of high transverse momentum direct photons and production of high transverse 
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momentum jets. Although the three processes described in previous sections played a more 
crucial role in establishing the &PM picture historically, all the hard processes are highly 
relevant in current studies of the QCD-improved parton model, which provides the foundation 
for the quantitative formulation of high energy processes in the Standard Model and beyond. 
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IV Perturbative QCD: Fundamental Theorems 

The first goal of perturbative QCD is to find a justification of the parton model in field 
theory, and to identify systematic procedures for improving upon parton model predictions. 
This program is conveniently summarized in terms of a series of fundamental theorems, 
which we describe below. We will motivate each of these basic results from the parton model 
cross sections of the previous section. It should be kept in mind, however, that the methods 
developed below allow us to address a wider range of problems than can be systematically 
treated in the parton model, and, although perturbative QCD is in some sense a descendent 
of the parton model, it has a life of its own. Moreover, many of the results of perturbative 
QCD have been derived from the fundamental Lagrangian of &CD. Thus they must be 
regarded as real predictions of the theory, and not just as a model. 

1V.A Infrared Safety in e+e- Annihilation 

The first set of theorems that we will discuss apply to e+e- annihilation. Here the results 
are simplified by the lack of hadrons in the initial state. We shall treat the perturbative QCD 
generalizations of parton model expressions for the total and jet cross sections. 

IV.A.l Total Cross Section 

The simplest of the parton model cross sections is the total cross section for e+e- anni- 
hilation into hadrons, Eq. (111.47). In this case, no phenomenologically determined parton 
distribution or fragmentation functions are necessary. Instead we have an absolute prediction 
which is in quite good agreement with experiment. Yet, Eq. (111.47) is the Born cross section 
for the production of a quark pair, not of physical hadrons, and it is hadrons that we observe 
in experiment, not free quarks. The success of this prediction is understandable because 
the total cross section is infrared safe in the sense described in Section 1I.F above. Recall 
that an infrared safe quantity becomes independent of the masses of light partons (gluons 
and light quarks) in the high-energy limit, and is dominated by highly off-shell virtual states 
in perturbation theory. In configuration space, an infrared safe quantity is correspondingly 
dependent only on the short-distance behavior of &CD, not on the long-distance dynamics 
that produce confinement and the details of the hadronic spectrum. Such a quantity pos- 
sesses a perturbative expansion in the running coupling that is free of logarithms or other 
sensitive functions which depend on large ratios, such as Q/m, with m a parton mass and 
Q the overall momentum scale. 

Thus, our first theorem of perturbative QCD is that the total e+e- annihilation cross 
section is infrared safe, 

not(Q2, p2, m2/p2, 4~1)) = &n(q2h2, 0, a,W{ 1 + o(m2/Q2) } , (IV.1) 

where m labels the fixed mass scales in the theory, p is the renormalization scale (Section 
II.C.2), and where we have factored out an overall factor Qw2, leaving behind dependence 
on dimensionless variables in the function Il. An important result is that, because of its 
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IR safety, the total cross section may be computed in massless QCD, up to corrections that 
vanish as a power of the energy as far as the light quarks are concerned. 

Now otot is a physical quantity, and is consequently independent of the renormalization 
scale p. In particular, we have 

n(Q2h2, 4~1~)) = IV, ~(9~)) , (IV.2) 

where we have suppressed the mass argument, since we are working in massless perturbation 
theory. Technically speaking, the cross section satisfies the renormalization group equation, 

VQ2h2, G(P)) = 0, (IV.3) 

but the content of this equation is the same as Eq. (IV.2). 
When the perturbative total cross section is exhibited, it is usually the right-hand side 

of Eq. (IV.2) that is given as a power series in aa( in which the coefficients are pure 
numbers, since all energy dependence is absorbed into the running coupling, 

l-I(l, aa( = A$$ 2 sn4XQ) . 
?I=0 

(IV.4) 

Here we have factored out the parton model result, Eq. (111.47), so that the first term in the 
series is 

so = 1. (IV.5) 

We will discuss the calculation of higher terms in Section V below. 
For large Q the running coupling, Eq. (11.48), 

aA&> P2 ln ln( Q”/A”) 
- = PI ln(i2/A2) - p,” ln2(Q2/A2) 47r +O (ln3Q2/hZ) ’ 

(IV.6) 

falls off, and remaining terms in the series are small corrections. Here is the reason that the 
parton model result works so well. 

The formal proof of the infrared safety of lI(Q2/p2) f o 11 ows from the famous theorem of 
Kinoshita and Lee and Nauenberg (Kinoshita, 1962; Lee and Nauenberg, 1964), that fully 
inclusive transition probabilities are finite in the zero-mass limit. Actually, the arguments 
of Kinoshita and Lee and Nauenberg require one to sum over all degenerate initial as well as 
final states, but in this case, because there are no hadrons in the initial state, a simple sum 
over final states will do. The extension of these results to QCD was discussed in Poggio and 
Quinn, 1976, Sterman, 1976, Sterman, 1978. 

The relevant physical observation that justifies infrared safety is that the creation of a 
quark pair is a short-distance phenomenon, and is not expected to interfere quantum me- 
chanically with the long-distance processes that produce hadrons from quarks. Consequently, 
the cross section can be thought of as a product of probabilities, one for quark pair creation 
(Born diagram plus calculable corrections), the other for the evolution of quarks to hadrons. 
In the fully inclusive cross section, we sum over all final states. Then, because of the absence 
of interference between short- and long-distance effects, the probabilities for hadrons to be 

51 



Perhaps the most important examples of Z are the various jet cross sections, to be discussed 
in Sects. V and VIII. 

Under what conditions will the cancellation of infrared infinities that occurred for the 
total cross section also occur for the quantity Z? Without loss of generality, we may assume 
that the S, are invariant under interchange of their n arguments tin. Then the discussion 
above of collinear and soft divergences should make it clear that one needs 

&+1(&I * * * 3 (1 - vz$, w> = WC, * * - ,243 (IWO) 

for 0 < A 5 1. That is to say, the measurement should not distinguish between a final 
state in which two particles are collinear and the final state in which these two particles 
are replaced by one particle carrying the sum of the momenta of these collinear particles. 
Similarly, the measurement should not distinguish between a final state in which one particle 
has zero momentum and the final state in which this particle is omitted entirely. 

The argument that a cross section specified by functions S with this property does not 
have infrared divergences may be understood as an extension of the KLN theorem (Kinoshita, 
1962; Lee and Nauenberg, 1964). The heuristic arguments given above for the total cross 
section apply in this case as well. We need only observe that long-distance interactions (and 
hence infrared sensitivity) arise from interactions that occur over a long time period. These 
are just the interactions involving parallel-moving particles or very low momentum particles. 
As long as the measured quantity is not sensitive to whether such a long-time interaction 
has occurred, one can still cancel the divergences in perturbation theory using unitarity: the 
sum of the probabilities that the interaction does or does not occur is unity. 

On the level of QCD calculations, infrared safety means that a quantity can be calculated 
in perturbation theory without obtaining infinity. Since the infrared infinities come from long 
distance physics, the physical interpretation is that infrared safe quantities are insensitive to 
long distance physics. 

1V.B Factorization Theorems in Deeply Inelastic Scattering 

In this subsection, we introduce two of the basic ideas of perturbative QCD, factorization, 
which enables us to derive and generalize the parton model, and evolution, which enables 
us to compute scale-breaking effects systematically. 

IV.B.l Factorization for structure functions 

Theorem. The field theory realization of the parton model is the theorem of fuctotization 
of long-distance from short-distance dependence for deeply inelastic scattering (Collins, Soper 
and Sterman, 1989). This theorem states that the sum of all the diagrammatic contributions 
to the structure functions is a direct generalization of the parton model results, Eq. (111.27) 
and Eq. (111.28), given by 

t-)(x, Q2) = a (6 Q2h2, &/cl”, 4.~~2)) 

x+ilh(t7 Pf 7 2) 7 (a = 1,3) (IV.11) 
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#++, Q2) = c 
i=f,f,G 

I’ dt C??~/t, Q2/p2, &p2, a,(,~~)) 

x4%/h(t7 Pf 7 P2) * 

Here i denotes a sum over all partons: quarks, antiquarks and gluons. 
We note, compared to the parton model formula, dependence on two mass scales, p 

and pf. The former is the renormalization scale, which is necessary in any perturbative 
computation. The latter, however, is specific to factorization calculations, and is called the 
factorization scale. It serves to define the separation of short-distance from long-distance 
effects. Roughly speaking, any propagator that is off-shell by ,$ or more will contribute to 
CLvi). Below this scale, it will be grouped into &/h. The precise definition of pf is made 
when we give a formal definition of the parton distributions. It appears in the definition 
of the parton distributions in a fashion very similar to the way the renormalization scale /I 
appears in renormalization. 

Often, it will be convenient to choose the two scales J.L and pf to be equal, but this need 
not be done in general. 

The substance of factorization is contained in the following properties of the functions 
CA’“) and +i/h. 

i. Each hard-scattering function 

C:vi)(dt, Q2h2, &p2, a&‘)), a = 1,2,3, (IV.13) 

is infrared safe, calculable in perturbation theory. It depends on the label a, on the 
electroweak vector boson V, on the parton i, and on the renormalization and factoriza- 
tion scales, but it is independent of long-distance effects. In particular it is independent 
of the identity of hadron h. For example, it is the same in the DIS of a proton and a 
neutron and, for that matter, in the DIS of a pion or kaon. It is a generalization of the 
Born elastic scattering structure functions in the parton model formula, Eq. (111.30). 

ii. The parton distribution, &/h([, pf, ~2, CX~(/J~)), on the other hand, contains uZE the 
infrared sensitivity of the original cross section. It is specific to the hadron h, and 
depends on pf. On the other hand it is universal, that is, it is independent of the 
particular hard scattering process that we treat: it is the same for the different structure 
functions Fr and F2, for example, and it depends on neither a nor V, nor even Q2, unless 
we pick p2 = Q2. It is a direct generalization of the parton model quark distribution. 

Use and interpretation. The use of factorization is also a generalization of the parton 
model. The C’s are to be computed in perturbation theory, and the 4’s are to be measured 
by comparing Eq. (IV.1 1) and Eq. (IV.12) to experiment, given explicit expressions for 
the C’s. Once enough information is amassed to determine the parton distributions from 
some standard set of cross sections, we can use factorization to provide predictions for other 
factorizable cross sections, and for the same process at other Q2. 

The essential question is therefore to give a method of computation for the hard scattering 
functions C(Vh). To do so, we use the fact that the C’s are independent of the external hadron. 
We can theyefore calculate them in perturbation theory, with the external hadron replaced 
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by a parton. This will require us to consider the distribution of a par-ton in a parton: $i/j, 
where we have a parton label instead of a hadron label. Then we will need a prescription 
for computing the cross sections or structure functions with a parton target and separating 
out the hard scattering from the parton distributions +i/j* 

Such a prescription obviously involves a degree of choice. A set of rules that makes the 
choices is often called a “factorization scheme”, by analogy to renormalization scheme. Such 
a scheme defines at the same time the hard scattering functions and the parton distributions. 
Once this has been done, we can discard the perturbative parton distributions, which have 
no particular meaning since they are dominated by infrared effects and thus by infrared 
parameters that we cannot measure. Nevertheless, the factorization theorem insures that 
the hard scattering functions determined in this calculation are insensitive to infrared scales 
and parameters, and are applicable to cross sections computed with phenomenologically 
determined hadronic parton distributions. 

Explicit results for hard-scattering functions may be found in Section VI, along with a 
discussion of the mechanics of their calculation for the archetypical factorized cross section: 
the electromagnetic DIS structure functions of a quark, FiYf). 

Genedizutions. So far, we have discussed factorization for the fully inclusive structure 
functions. Essentially the same factorization theorem applies, however, to any DIS cross sec- 
tion defined by a sum over hadronic final states that satisfies the same condition Eq. (IV.10) 
that implies infrared safety in e+e- annihilation (Libby and Sterman, 1978a). Other gener- 
alizations apply to non-scaling, “higher-twist” contributions17 and to spin-dependent distri- 
butions (Artru and Mekhfi, 1990; Collins, Heppelmann and Robinett, 1991; Collins, 1993a). 

IV.B.2 Factorization Schemes 

Even before we discuss how to define the distribution +f/f perturbatively, it is clear that 
in the absence of interactions, it should enable the factorization formula to reproduce the 
Born cross section. We must therefore have 

4;;(E) = w - 0 - (IV.14) 

(Here and below, we use a notation f(i) to denote the ith order in the perturbation expansion 
of a quantity f, which in the above equation is 4.) Then we find by direct substitution in 
Eq. (IV.ll) and Eq. (IV.12) that, for a = 1,2, 

F;rf)(o)(,) = Q;S(l - x) = Cpf)(o)(,) , (IV.15) 

just as in Eq. (111.30). 
Beyond lowest order in perturbation theory there is considerable ambiguity in separating 

the hard scattering functions from their corresponding parton distributions. In general, 
any choice for the parton distributions that satisfies Eq. (IV.14) at lowest order, and that 
absorbs all long-distance effects at higher order, is acceptable. Short-distance “finite parts” 

“Analysis of this kind has been phrased in terms of generalized parton distributions (Ellis, Furmanski and 
Petronzio, 1982; Ellis, Furmanski and Petronzio, 1983; Jaffe, 1983; Qiu, 1990; Qiu and Sterman, 1991a), and 
in terms of the operator product expansion (Okawa, 1981; Shuryak and Vainshtein, 1981; Jaffe and Soldate, 
1982; Luttrell and Wada, 1982) which fall off as powers of Q2. 
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at higher orders may be apportioned arbitrarily between the C’s and 4’s. A prescription that 
eliminates this ambiguity is what we mean by a factorization scheme. The choice of scheme 
is a matter of taste and convenience, but it is absolutely crucial to use schemes consistently, 
and to know in which scheme any given calculation, or comparison to data, is carried out. 
The two most commonly used schemes, called DIS and MS reflect two different uses to which 
the freedom in factorization may be put. 

The DIS scheme is appealing for its close correspondence to experiment (Altarelli, Ellis 
and Martinelli, 1979). In this scheme, we demand that, order-by-order in perturbation 
theory, all corrections to the structure functions Fivh) be absorbed into the distributions of 
the quarks and antiquarks. This means that at p = pf = Q, the hard scattering functions 
are exactly equal to their parton-model values: 

Ci”4)( 2) = Q;s(l - 2) , 

cp(x) = Q;S(l - x) , 

cyg)(x) = 0 ) (IV.16) 

to all orders of perturbation theory. Of course, it is possible to do this for only one of the 
structure functions. The other structure functions will receive corrections at order a, and 
beyond. Note that this definition does not fix the gluon distribution. 

The MS scheme(Bardeen, Buras, Duke and Muta, 1978), on the other hand, is appealing 
for its theoretical elegance and calculational simplicity. In this scheme the parton distri- 
butions are defined directly in terms of hadronic matrix elements (Curci, Furmanski and 
Petronzio, 1980; Collins and Soper, 1982). In their simplest form, these matrix elements 
may be given in terms of operators bi(Xp, kr) and bf(~p, kT), which annihilate and create 
parton i, with longitudinal momentum xp and transverse momentum kr, in hadron h of 
momentum p, 

+z(5,C12) = J 3 MP)I bf(~~,b) ~(xP&T) KP)) . (IV.17) 

The first (rightmost) operator absorbs the parton from the hadronic state, and the second 
emits it again. This parton distribution is, in essence, the expectation value of a number 
operator in the hadronic state. A little sophisticated footwork reexpresses the matrix element 
in Eq. (IV.17) in terms of the quantum field corresponding to parton i. Thus, for instance, 
the MS distribution for a quark of flavor f is given by 

bf/hh2) J 00 dy- 
= --oo z e -iz*+y- (h(p)! ?jqy-, o+, o+y+ 

x Tw? o+, 04 (h(P)) 7 (IV.18) 

where an average over the spin of h(p) is understood. Similar explicit expressions can be given 
for the antiquark (in which the roles of + and ?,& are exchanged) and for the gluon, for which 
the relevant field is FfT E (l/fi)(FoT + F3r) w h ere 2’ labels the transverse components 
relative to the momentum p. (There are some complications due to gauge invariance that 
we have ignored in definition (IV.18). See Section 1V.D) 

More insight into these two “canonical” ways of defining parton distributions can be 
gained from the explicit one-loop calculations described in Section V1.D below . 
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IV.B.3 Evolution 

Everything in the process just described was carried out for fixed Q2. But even a single 
DIS experiment supplies data over a range of momentum transfers. A remarkable conse- 
quence of factorization is that measuring parton distributions for one scale p allows their 
prediction for any other scale $, as long as both ~1 and p’ are large enough that both o,(p) 
and a,($) are small. This result, called the evolzltion of structure functions, increases the 
power of pQCD enormously. Thus, for instance, measuring Firh)(x, Q2) is enough to pre- 
dict, not only Firh) (x, Q2), but also Firh)(x, Qn) and 3’i7h)(~, Q’2) for all large Q’2. We 
should note that precise predictions require analogous information from neutrino scattering 
to perform the flavor separation of the parton densities. 

The evolution of the parton distributions is most often, and most conveniently, described 
in terms of integro-differential equations, 

P2&+i/hCx~P9P2) = C J,' $Rj F7 as(P2) 4jjh(C,P,P*) * 
j=f,j;G ( ) 

(IV.19) 

We have chosen p = pf. This equation is known as the Gribov-Lipatov-Altarelli-Parisi evolu- 
tion equation (Gribov and Lipatov, 1972a; Altarelli and Parisi, 1977). The evolution kerneh 
Pij(x) are given by perturbative expansions, beginning with O(a,). Their explicit forms will 
be discussed in Section VI below, The one-loop terms in the kernels are independent of the 
scheme used to define the parton distributions. 

Note that the integral on the right-hand side of Eq. (IV.19) begins at x. Thus, it is only 
necessary to know &,h(<, Qg) for < > x at some starting value of the scale 1-1 = Qe, in order 
to derive &,h(x,p2) at a higher value /J = Q. This is a great simplification, since data at 
small x are hard to come by at moderate energies. 

Without going into the details of the evolution kernels, we can get some insight into their 
use by applying Eq. (IV.19) to a parton state h = j and expanding to first order in oy,, using 
Eq. (IV.14), 

- I j X,~8(P2)) = Ej(X) + o(az) - 2 47 ( (IV.20) 

From this relation, we already see that the evolution kernels show up as the coefficients of 
the logarithmic factorization-scale dependence in one-loop calculations. 

The evolution equations control the dependence of parton distributions on the factoriza- 
tion scale. If we choose ~1 = pf = Q, the momentum transfer in DIS, then there are no large 
ratios in the arguments of the hard-scattering functions C, in the factorization theorem. Un- 
der these circumstances, we eqect the perturbative series for the C’s to be well under control, 
with no large coefficients of Q, at first order and beyond, at the same time that Q, itself is 
relatively small. Of course, this means that most of the information on Q2-dependence has 
simply been shuffled into the parton distributions. The beauty of the evolution equations 
is that they tell us how to compute this dependence, given only that we have measured the 
parton distributions at one scale &a. In the language of the parton model, the evolution 
equation enables us to compute the Q2-dependence of the parton distributions, and hence 
the “scale-breaking” of the structure functions themselves. 

It is relatively easy to derive the evolution equations (IV.19) directly from the factor- 
ization theorem, Eq. (IV.ll) and Eq. (IV.12). Th is instructive derivation also enables us 
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to introduce the famous analysis of scale breaking in DIS in terms of moments of structure 
functions. 

Evolution is directly related to our freedom in choosing the renormalization and factoriza- 
tion scales. We notice first that the value of pf in the factorization theorem Eq. (IV.11) and 
Eq. (IV.12) ’ f IS ree. Again, a natural choice for DIS is pf = p = Q, so that the CL”), as well 
as the $i/h, are functions of a,(Q2). With this choice, the evolution of parton distributions 
is sufficient to evolve the complete structure functions. 

The derivation of evolution is simplified in so-called nonsinglet structure functions, the 
simplest of which are 

pww a G FyP) - Jy4 , (IV.21) 

where p is the proton and n the neutron. For the following discussion, we suppress the label 
V, and choose pf = ~1. J’iNS), for instance, satisfies the factorization theorem, 

FiNS’(x,Q2) = o1 $ CiNS) J ;, $,c&‘)) 

x 4NS(b2) , (IV.22) 

where &s is a “valence” quark distribution. More properly it is the difference between p 
and n quark distributions, 

4NS(x, P2> = c 9; [&,pk P”> - 4f/n(Xc, cl’,] 7 
f 

where we have absorbed the quark charges into its definition, which makes the short-distance 
function independent of f. 

The term “valence” refers to our expectation that the distributions of gluons, and of 
“sea quarks, produced in pairs by gluons, should be the same in the proton as in the 
neutron. These contributions, which are singlets under the isospin group SU(2), cancel in 
the difference in Eq. (IV.21). Note that this result holds exactly only for electromagnetic 
structure functions, since the electromagnetic interactions respect charge conjugation, which 
exchanges the roles of quarks and antiquarks. What remains is almost entirely due to 
the difference in the “valence” u and d quark content of the proton and neutron. The 
simplification in Eq. (IV.21) relative to Eq. (IV.ll) and Eq. (IV.12) is that the result is a 
single convolution, rather than a sum of convolutions. 

Now both the functions on the right of Eq. (IV.22) are functions of p, but the physical 
quantity F,(NS) on the left is not, 

d (NS) = o 
$1 - (IV.24) 

Thus, the p-dependence in CiNS) must compensate that of 4~s. The information contained 
in this observation may be brought out clearly by introducing moments of the structure 
functions, 

i$NS)(n, Q2) G J,’ dx x~-~F{~~)(x, Q2) 

= 6iNS) (% $, %b2)) &NS(% p”) 9 (IV.25) 
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where CtNS) and &s are 

@W ( Q2 n, --p G(P~)) = 1’ drl f-lC!Ns)(~, 5, O&U*)) , 

6NSh p”) = J o1 dt ‘?+#NS(& p2) . 
Now, applying moments to Eq. (IV.22), we find that 

p-$ In $NSh p2> = -~~Ns’(a&2)) 

= d In C;(NS) 
-Pdp 

(IV.26) 

(IV.27) 

where riNS)(cr,(p2)) ’ is a function of o, only, since this is the only variable that &s and 
CcNS) have in common. (Note that the ratio Q/PI in C, for instance, is independent of the 
pf-dependence in 4, because the latter would occur in ratios like ,u/X, with X an infrared 
cutoff.) yp) * is known as an anomaEous dimension, since it acts like a factor ~-7~ 
(dimensionless!) function In &s( n, p2). 

in the 

The anomalous dimensions 7n can be constructed directly from the one-loop value of 
the parton distribution. (At one loop $f/f and 4 Ns 
Although 4f/f is certainly not IR safe, riNs) 

are the same for an external quark.) 

The derivative of &1 
is, because it is also a derivative of dNS)(n). 

f,f is particularly simple, however, 

p = 
n -p$ In 4NSh %(p2)) 

= -- “,” i’dx x+=$(x) + ~(a:) , (IV.28) 

with Pact found from Eq. (IV.20). T o ive substance to these rather abstract consider- g’ 
ations, let us exhibit the explicit integral from which we find ytNS), which may be found 
directly from the explicit form for Pqq(x), given in Section VI, 

= . 

We note an important subsidiary result 

yiNS) = 0 7 

which states that the integral of the NS distribution, 

Ml z J o1 dt hS(t, p2> , 

(IV.29) 

(IV.30) 

(IV.31) 
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is independent of the factorization scale. This is gratifying, since n/r, measures the number 
of valence quarks. For n > 1, the Y~‘S are all positive and increase with n. This means that 
higher moments, which test the size of &s(z) near x = 1, vanish more rapidly than lower 
moments as Q2 + 00. Along with yiNS) = 0, this implies a “softening” of 4~s with Q2, in 
which the average x decreases as Q2 increases. This behavior is characteristic of all parton 
distributions. 

The formal solution to the evolution equation Eq. (IV.27) gives the behavior of &s(n, Q2) 
as a function of Q2 and hence of FiNS)(n, Q2), 

4NS h Q2) = @NSh Q,“> 

dt mMQ%')) 

FiNS)(n, Q2) = c!NS)(n, 4Q2>) &S(n, Qif) 

1 +$ 
xexp -- 1 J 2 o o dt r,MQ;e')) 

The Q2 behavior thus determined depends on whether or not our theory is asymptotically 
free. Writing 

+‘S) n = !ql) ) 
7r n 

(IV.33) 

and using Eq. (11.46) for the one-loop running coupling in &CD, we find 

EtNS)(n, Q”) - ;r zi\:z [ 1 
-2y!‘)/4ih 1 

a - (IV.34) 

This is a relatively mild logarithmic Q*-dependence, which is consistent with an approximate 
scaling over the limited range of Q2 in early experiments (Friedman and Kendall, 1972). It 
is to be contrasted with the behavior in a hypothetical “fixed-point” theory, in which 

Qs (P2> -w , P-+00 
(IV.35) 

with o. # 0. In the latter case we would have a power scale-breaking 

9l (1) 
-2r7= 

FiNS)(n, Q2) N . (IV.36) 

The evolution result, Eq. (IV.32) was known for some time (Christ, Hasslacher and Mueller, 
1972) before asymptotic freedom was discovered (Gross and Wilczek, 1973a; Politzer, 1973). 
The inconsistency of experimentally-observed scaling behavior with strong scale breaking 
like Eq. (IV.36) seemed to make the application of field theory to the strong interactions 
problematic. The derivation of approximate scaling from asymptotic freedom was therefore 
a very important result (Gross and Wilczek, 197313; Georgi and Politzer, 1974; Gross and 
Wilczek, 1974). 

PhysicaZ Content of Evolution. In the parton model, &h(x) has the direct interpretation 
of the density of partons of type i and fractional momentum x in hadron h. In p&CD, 
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4i/h(x,fi2) has essentially the same interpretation, but with the added restriction that the 
parton be off-shell by approximately no more than the scale fi2. Beyond this limit, a parton 
would be incorporated into the hard-scattering functions C:) in Eq. (IV.ll) and Eq. (IV.12). 

Now if QCD had a natural maximzlm off-shellness Qi for its virtual partons, then we 
would have 

(bi/h(x, Q2) = +i/h(x, 0:) (Iv.37) 

for all Q2 > Q& and the theory would exhibit true scaling behavior. Note the close corre- 
spondence of this assumption to the assumption r > 70 for the lifetimes of virtual states in 
our heuristic justification of the parton model in Section III.A.l. In a renormalizable the- 
ory, however, this rzever happens: there are always states of arbitrarily short lifetimes, and 
lines that are arbitrarily far off-shell. That is the reason the theory must be renormalized 
to begin with. The evolution of &,h(x, Q2), therefore, measures the distribution of off-shell 
partons. The rather weak evolution of an asymptotically free theory, Eq. (IV.34), shows that 
production of these partons is not strong. 

1V.C Other Factorization Theorems 

IV.C.l Drell-Yan 

The factorization theorem for the Drell-Yan process is typical of factorization theorems 
for a large class of hard scattering processes1s and it is formulated as follows. 

The process is the inclusive production of a lepton pair of high invariant mass via an 
electroweak particle in hadron-hadron collisions. The classical case is a high-mass virtual 
photon: A + B --f y* + anything, with y* --f e+e- or y* -+ ,&p”-. Here A and B are two 
incoming hadrons. Essentially identical theorems apply to the production of W or 2 bosons. 

We let s be the square of the total center-of-mass energy and QP be the momentum of 
the y*. The kinematic region to which the theorem applies is where 6 and Q large, with 
Q2/s fixed. (Q is @.) The transverse momentum ~1 of the y* is either of order Q or is 
integrated over. 

In the case that qI is integrated over, the factorization theorem for the unpolarized 
Drell-Yan cross section reads: 

da 
= dQ2dydQ c J’ d&t J’ db &IA(~A,P~) 

a,b zA 2B 

~,~~e?$?Q; $,as(p) 

+ remainder , (IV.38) 

‘*Early papers on this subject include Mueller, 1974, Politzer, 1977 and Sachrajda, 1978. All-order 
discussions, concentrating for the most part on the role of collinear divergences were given in Amati, Petronzio 
and Veneziano, 1978a, Amati, Petronzio and Veneziano, 197813, Libby and Sterman, 1978a, Libby and 
Sterman, 1978b, Ellis, et a2, 1979, Efremov and Radyushkin, 1981a and Efremov and Badyushkin, 1981b. 
The delicate role of infrared divergences was brought out in the two-loop calcualtions of Doria, Frenkel and 
Taylor, 1980 and Di’Lieto, Gendron, Halliday and Sachrajda, 1981, and were dealt with at all orders by 
Bodwin, 1985, Collins, Soper and Sterman, 1985 and Collins, Soper and Sterman, 1988. For a review of the 
status of the theorem, see Collins, Soper and Sterman, 1989. 
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where y is the rapidity of the virtual photon in the overall center-of-mass frame and dR is 
the element of solid angle for the lepton pair: the polar and azimuthal angles for this decay 
are 8 and 4 respectively relative to some chosen axes. The remainder is suppressed by Qw2 
compared to the term shown. The sums over a and b are over parton species, and we write 

(Iv.39) 

The function Ha,, is the ultraviolet-dominated hard scattering cross section, computable in 
perturbation theory. It plays the role of a parton level cross section and is often written as 

Hab = 
d6 

dQ2dyd0 ’ 
(IV.40) 

The parton distribution functions, 4, are the same as in deeply inelastic scattering. Fig. 12 
illustrates the factorization theorem. 

As in DIS, extensions to more specific final states are possible. For instance, jet cross 
sections, defined by analogy to e+e- annihilation, obey factorization formulas of the same 
form as Eq. (IV.38) (Libby and Sterman, 1978a). Other extensions, to first nonleading power 
in Q* (Berger and Brodsky, 1979; Berger, 1980; Qiu and Sterman, 1991a), and to polarized 
scattering lg are also possible. 

IV.C.2 Single-Particle Inclusive Cross Sections 

We consider high pl inclusive single-particle production in hadron-hadron collisions A + 
B + C + X. This is the most complicated of the single-particle inclusive cross sections. 
Applications to e+e- annihilation and to DIS are straightforward variations on this theme. 
Let the initial-state hadrons have momenta PA and pi, and let the observed hadron have 
momentum PC. The factorization theorem reads 

da 
= 

Ecd3pc abc 
c/d& dte $ ha,A(tA, p) ~b,B(h?, I-1) 

(PC/d% cl) &/ck p2>, (IV.41) 

which is illustrated in Fig. 13. (The sum is over the various flavors of partons (quarks, anti- 
quarks and gluons) that can participate in the hard scattering process, while &,A and &,lB 
are the parton densities for the initial hadrons, and DC/~(Z) is the fragmentation function. 
The hard scattering function lild&/d3kc is for the scattering a + b ---f c + X at the parton 
level; it is a purely ultraviolet function, free of all mass singularities, so that it can be cal- 
culated perturbatively. The variable z represents the fractional momentum of the measured 
hadron relative to its parent quark, so that we set 2 c = ZFC, when we use the center-of-mass 
frame of the hard scattering. For DIS the corresponding theorem has only a single parton 
distribution, while for e+e- there are none. 

“For example, see Ralston and Soper, 1979, Efremov and Teryaev, 1985, Artru and Mekhfi, 1990, Qiu 
and Sterman, 1991b, Jaffe and Ji, 1991, Collins, 1993a, Collins, 1993b. 
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It can be checked that with the normalizations indicated, the fragmentation function can 
be interpreted by saying that .zDc,Jz) dz is the number of hadrons of type C in a parton 
of type c that have fractional momentum z to z + dz. Because of the factor Z, it is common 
to define the fragmentation function to be dclc(z) f z&,~(z), rather than D. However, the 
behavior of D under Lorentz transformations is simpler, and this is important, since we can 
define a function for the fragmentation into two observed hadrons, for example. 

It might appear that we have neglected the possibility that the hadron C has trans- 
verse momentum relative to the parton c. However, this is not so. In accordance with the 
derivation of Eq. (IV.41), we have actually integrated over all small values of this transverse 
momentum, while realizing that the dependence of the hard scattering on small changes in 
the transverse momentum vanishes as Q + co. Large values of this transverse momentum 
are correctly taken care of by the higher order corrections to the hard scattering function. 

Like parton distributions $(x,p2), the fragmentation functions D(z, p’) evolve in ~1, 
according to equations very similar to Eq. (IV.19) (G ‘b rr ov and Lipatov, 1972b; Mueller, 
1978; Collins and Soper, 1982). The evolution kernels are closely related to, but not identi- 
cal with, those for the parton distributions. 

1V.D Operator Definitions of Parton Distribution and F’ragmen- 
tation Functions 

In this section, we collect the operator definitions 2o of the parton distribution and frag- 
mentation functions for reference, including spin-dependent cases. All the definitions have 
ultraviolet divergences, and these must be renormalized (Mueller, 1978; Collins and Soper, 
1982) away to define finite parton distributions and fragmentation functions to be used in 
the factorization formulas. Although these definitions are not necessary for all phenomeno- 
logical uses, they are needed to make precise the rules for Feynman graph calculations, for 
example. 

IV.D.l Quark Distribution Functions 

The distribution function for a quark of flavor i in a hadron h with momentum p, in the 
plus direction is (Collins and Soper, 1982) 

&/h(t) Z J ~e-itp+ym(p 1 ~i(O, y-, OL)$Pemig.Lie dY’-A~(o,Y’-,o)l.~i(o> 1 p). (Iv.42) 

The path ordered exponential of the gluon field is needed to make the definition gauge invari- 
ant. Here and below, t, denotes the generator T, tF). We see that the simplified distributions 
of Eq. (IV.18) are exact only in the A+ = 0 gauge. 

In the case that the hadron can have polarization, the helicity asymmetry of a quark in 
a hadron is defined by 

XA~h/h(t) = J dy- -;tp+ y- -g-e ( I P &(O, y-, OJq 

20See Mueller, 1978, Curci, Furmanski and Petronzio, 1980, Collins and Soper, 1982, Ralston and Soper, 
1979, Artru and Mekhfi, 1990, Collins, Heppelmann and Robinett, 1991, Collins, 1993a, Jaffe and Ji, 1991. 
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dy’- A$(O,y’- ,O)t, (IV.43) 

where X is the helicity of the hadron, normalized so that X = fl corresponds to a fully 
polarized nucleon. 

A hadron may also have a component of spin transverse to the collision axis. We define 
a transversity asymmetry, AT&/h, of the quark by 

STAT&/h(r) E J dY- -i<p+u- 
2ne 

X p ?ji(O, y-, 0,) y+~'ys 
( I 

dy’- A$(O,y’- ,O)t. (IV.44) 

where ST is the transverse part of the hadron’s Pauli-Lubanski spin vector, normalized so 
that 100% transverse polarization corresponds to ~5s~~ = -1. 

IV.D.2 Gluon Distribution Functions 

Operator definitions for the distribution of gluons in a hadron are made in an analogous 
fashion to those for quarks: 

2 

d’g/h(t) = CJ dY- -i<p+y- 
j=l TqFe (P ( G+~(O,Y-,OPG+~(O) ( P), (IV.45) 

&&/h(t) = 5 P$’ J We 

dY- -icp+ y- 

jj’=l 
(P 1 G+j(O, Y-, O,PG+j’(O) 1 P>, 

e 
,=1W46) 

dY- &r.fg/h(t) z j,$l p&l J we -itp+v- (p 1 G+j(O, y-3 Od=+j’(o) / J’),i, Po,y 

(X47) 

where G,, is the gluon field strength tensor and P denotes the path-ordered exponential 
of the gluon field along the light-cone that makes the operators gauge-invariant, in exact 
analogy to Eq. (IV.42) 

PPPexp o’ i/ - dd- &i-(0, Y'-, 01)Ta 1 , (IV.48) 

where T, = TjA) are the generating matrices for the adjoint representation of color SU(N,). 
The j index runs over the two transverse dimensions, and the spin projection operators are 
defined by 

phel z phel 
11 22 = 0 

phel s -phel 
12 21 

= i’ 
7 

pli? 
wj E 2nj?ljl - 6jjl. 

(IV.49) 

(IV.50) 

64 



By angular momentum conservation, the linear polarization of a gluon is zero in a spin-$ 
hadron (Artru and Mekhfi, 1990). The reason is that the linear polarization is measured by 
an operator that flips helicity by two units. Since no helicity is absorbed by the space-time 
part of the definition of the parton densities (the integrals are azimuthally symmetric), the 
helicity flip in the operator must correspond to a helicity flip term in the density matrix for 
the hadron. In the definition of the linear polarization of the gluon, Eq. (IV.47), the hadron 
must therefore be of spin higher than l/Z, e.g., a deuteron, of spin 1; we assume it is in a 
pure state of linear polarization in the direction np to define A~f~,t,. 

IV.D.3 Fragmentation Functions 

The unpolarized fragmentation function to find a hadron h in the decay products of a 
quark of flavor c is (Mueller, 1978; Collins and Soper, 1982) 

D+(z) E c J geik+ - y w+(o 1 $@d-7Yd 1 hX)(hX 1 ?m IO). 
X 

(IV.51) 

We have ignored here the path-ordered exponential of the gluon field that is needed to make 
this a gauge invariant definition. The sum is over all final states containing the chosen 
hadron. 

Definitions for polarized fragmentation functions can be found in Collins, 1993b, Collins, 
Heppelman and Ladinsky, 1994. 
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V e+e- Annihilation 

Among the most basic of the concepts of perturbative QCD is infrared safety. As dis- 
cussed in Section IV, total and jet cross sections in e+e- annihilation are themselves infrared 
safe, without factorization into long- and short-distance components. In this section, we re- 
view explicit low-order results for these quantities. 

V.A Total Cross Section 

The basic squared amplitudes for the total cross section in e+e- annihilation are illus- 
trated in Fig. 14 at one loop, in the cut diagram notation of Appendix B. 

At this level, the ultraviolet (UV) divergences in the self-energies cancel those in the 
vertex corrections. This cancellation is related to the manner in which quantum electrody- 
namics is renormalized: at zero photon momentum, all radiative corrections to the charge 
must vanish. That QCD respects the renormalization conditions of QED was a necessary 
condition for it to be a viable theory of the strong interactions. At a technical level, the 
result follows from [?&o, Q] = 0, with Y-&o the Hamiltonian and 0 the operator for 
electromagnetic charge. 

Because of this cancellation, the one-loop cross section is independent of the scheme that 
we specify to renormalize QCD, and the result is identical in all schemes. Beyond one loop, 
however, it is necessary to specify a renormalization scheme, and results will, in general, 
differ from scheme to scheme. 

The total cross section for e+e- annihilation at center-of-mass energy Q (in the one- 
photon approximation) has now been computed up to three loops with massless quarks in 
an MS renormalization scheme (Surguladze and Samuel, 1991; Gorishny, Kataev and Larin, 
1991). Here is what it looks like: 

4Q2) = go 1 +dQ') --+w 

+&Tq( -22 + 16[(3))] 

+ (z3gy3 [q-p) 
+C;C, (-127 - 572<(3) + 880<(S)) 

+c,c; 
( 

!!g - T<(3) + Y<(5)) 

+CgTnf (-29 + 304(3(3) - 320<(5)) 



(C,QJ2 D 176 
+(NCfQ;@ 3 ( 

-- 

In this expression, ~0 is the parton model total cross section, Eq. (111.47), 

60 = W.2) 

nf is the number of quark flavors and N is the number of colors. The group invariants, Ci, 
C$A, etc., give structure to the otherwise unremitting sequence of integers, fractions and 
“zeta functions” in the three-loop result. For simplicity, we have written, CF = C+(F), etc., 
and from Appendix A, we have CF =4/3, CA=~, T = f, D =40/3 in &CD. c(m) is the 
Riemann zeta function, beloved of mathematicians, 

whose specific values encountered above are 

C(3) = 1.2020569 

C(5) = 1.0369278 . W.4) 

Using these values, the numerical coefficients for SU(3) with five quark flavors are 

o(Q2) = ao(Q2)(1 + : + 1.409 ($)‘- 12.805 (?)3) . W) 

We note that the coefficient -12.805 represents a second try; previously published results 
gave an uncomfortably large incorrect value of about 60. These results are for electron- 
positron annihilation via a virtual photon. In the LEP experiments, a virtual 2 is involved 
and modifications in the formula are required (Larin, van Ritbergen and Vermaseren, 1994). 
Most of the pieces of the modified formula are known, but some order crt terms involving 
heavy quark loops are not yet published. 

V.B e+e- Total Cross Section at One Loop 

The explicit calculations that lead to the O(crf) results are, like the results themselves, 
extremely complicated, and can be carried out only with the aid of computers. The O(cr,) 
corrections, however, already exhibit some of the basic problems of pQCD, and their resolu- 
tion through infrared safety. 

At lowest order, the total cross section is given by the Born diagram, zeroth order in Q,. 
The diagrams that contribute to the total cross section at O(cr,) are of two kinds, those in 
which a gluon appears in the final state (Fig. 14a), and those which represent the interference 
between an amplitude with an O(cr,) virtual loop correction and the zeroth order (Fig. 14b). 
The leptonic and hadronic parts of these diagrams are connected by only a single photon 
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(which we may take in Feynman gauge, with propagator -gaP/Q2), and it is consequently 
natural to write the cross section as a product of leptonic, Lp’“(lcl, J+), and hadronic, HP”(q), 
tensors, 

~tot = qh7 ~2)qJv(q) * P-6) 
Here ICI and k:! are the leptons’ momenta and q = ICI + k2, qpq,, = Q2. We define L to absorb 
the photon propagator, and the overall kinematic normalization of the cross section, l/8Q2, 
where we neglect the lepton mass and average over spins. Similarly we absorb the integral 
over final-state phase space into H. The leptonic part is then given by the Dirac trace 

e2 
L”“h 9 kd = &m’W#d3’27v] 

= &(ki’k; + k;k’; - (Q2/2)g9 . (V-7) 

The calculation of otot is simplified by employing conservation of the electromagnetic 
current, which, as we mentioned above, is respected by QCD, 

q”H,v(q) = H,,q” = 0 . W) 

Now, because H is a symmetric tensor that can only depend on the total momentum q, we 
find that it has the form 

H,iv = (qpqv - Q2g,m)H(QZ) , (V-9) 
with H(Q2) a scalar function that can be found by 

H(Q2) = &Y&v) . 

Combining these results, it is easy to show that 

e2 
(Ttot 6( Q”)” = -kY)Hpv(Q) . 

(V.10) 

(V.11) 

Thus, it is only necessary to compute the contraction of the hadronic tensor with gPV to 
derive the total cross section. 

To compute the hadronic tensor, we write it as the integral over three-particle phase 
space of the squared matrix element for gluon emission, 

-f’Hpv(Q> 
d3pl d3k 1 _ 

4(2n)5 J -- b(k? -PI - k12)1 M(k,p,) 1; . hl lkl 
(V.12) 

Here pl is the quark’s, k the gluon’s, and q - pl - k the antiquark’s momentum, while 
1 M(k,pl) If represents the contribution of Fig. 14a to the squared matrix element. The 
subscript T denotes that this contribution is real, as opposed to those from Fig. 14b,d, 
which involve virtual loops and are therefore complex. In this (spin-averaged) case, IMIF 
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is independent of the direction of pl and of the azimuthal angle k about pl. We may then 
evaluate these angular integrals to give 

-d’“H,w(Q) 

= &/dmdplpl~mdkk /_:du 

X S(Q2 - 2Q. (~1 + k) + 2hlIkl(l - u))l M(k,pl)l; , 

where u is the cosine of the angle between pi and k and Q = 0. 
Next let’s have a look at I M(k, p1) I:, Fig. 14a. Because the fermions are now quarks, it 

includes the product of a Dirac trace times a color trace, given by 

IM(pl, VI: = 2Tr [ TiF)T’“)] g2e2 x Q: 
f 

’ (2~1. k;(2p2 - k) [ fir k-hdr”(d1+ vhPd2Ya(-d2 - $?I 1 

+ (‘Jp ’ ,),nh(d~ + +f%h>%(dl + 8+f%-i?)]] ’ 
1. 

(V.14) 

It is at this point that we see the kind of problems one encounters in a perturbative QCD 
calculation. They are exactly of the sort anticipated in Section IV.A.l. 

There are two denominator factors in Eq. (V.14), corresponding to the propagators for 
the two virtual fermions in each diagram. Consider, for instance, 

PI. k = Ip@l(l - u) . (V.15) 

This factor vanishes at two generic points in phase space 

k = 0 t) kp soft , 
U =: 1 * k collinear to p1 . (V.16) 

It is easy to check that the integral over phase space is divergent in both of these limits: the 
soft limit, where the gluon momentum vanishes, and the collinear limit, where it becomes 
parallel to the quark’s momentum. In these two limits, the k and u integrals become, 
respectively, 

J dk 
-* 

o k 
kP soft , 

J 1 du 
- c-) k collinear to pi . 
l-u 

Not surprisingly, there is yet another region where the integral diverges, for k collinear to 
P2, 

p-2 - k = Ipzllkl(l + u) + O((1 + u)~) . (V.18) 

Thus, soft and collinear divergences are already present at one loop in massless QCD. 
In Section IV.A.l we argued that infrared sensitivity cancels between different final states. 

At this order, there are only two final states to choose from, the quark-antiquark state, and 
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the quark-antiquark-gluon state. It is possible to show that if the integrands for these 
contributions to gtot are combined, all sources of divergence cancel, before any integrals are 
done (Sterman, 1978)., For many purposes, however, it is useful to do the integrals in an 
infmred regularized theory, in which the soft and collinear divergences have been rendered 
finite by some modification of the theory, in much the same spirit as for UV divergences. It is 
important to realize that an infrared regulated theory is not the same as the original theory, 
because infrared regulation changes the long-distance behavior. But, in the limit that the 
regulator is taken away, the infrared-regulated theory should give the same predictions as 
the real theory for infrared safe quantities, which don’t depend on the long-distance behavior 
anyway. 

Actually, it is not so easy to find a completely satisfactory infrared regulator for &CD, 
one that doesn’t affect the short distance behavior at some high order. Interestingly enough, 
dimensional regularization (Appendix C) provides such a regulator. In this case, we (for- 
mally) carry out all integrals in 4 - 2~ dimensions. Divergences appear as poles at vanishing 
regulator scale E (i.e., at four dimensions). There are some subtle points here, especially since 
the same method is also used to regulate UV divergences. Nevertheless, one may apply it 
consistently. Another method, that works well at least to one loop, is to assign a small mass, 
mg, to the gluon (in Feynman gauge, for simplicity). Here infrared and collinear divergences 
appear as logarithms of m,. This method may be dangerous beyond one loop, because a 
gluon mass breaks gauge invariance, but it works well enough at this level. 

Let us quote the results for the two-particle and three-particle cross sections represented 
by Fig. 14. For the two-particle final state, the cross sections are, at one loop 

- f + G 1 
x 4rp2 2c 1 

( H 

Y-r2 

Q2 
-g&+4 ) 

) 
(V.19) 

for gluon-mass and dimensional regularization, respectively. Notice that, although the two 
expressions share some features, they are vastly different, and each depends upon one of 
the unphysical parameters, mg or 6. This is a sign that the long-distance behaviors of the 
regulated theories are different. 

The three-particle final state gives these results at one loop: 

a$mn 1 21n2(Q/m,) - Sln(Q/m,) + i 
7r2 
6 ’ I 

(V.20) 

Comparing the two- and three-particle results for each choice of regularization, we find that 
most of their respective terms cancel, leaving behind exactly the simple O(08) correction of 
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Eq. (V.l). This demonstrates explicitly that the total cross section is independent of long 
distance behavior, at least to this approximation. The explicit calculations of Gorishny, 
Kataev and Larin, 1991, Surguladze and Samuel, 1991 show that it is possible to verify this 
result much more dramatically, based in part on special algorithms for multiloop diagrams 
(Tkachov, 1981; Chertykrin and Tkachov, 1981). 

V.C Energy-Energy Correlation 

The total cross section for e+e- annihilation, being an infrared safe quantity, see Section 
IV.A, can be used to study the short distance behavior of the Standard Model without 
complications from long-distance physics. However, it is by no means the only such quantity. 
By looking at infrared safe quantities that probe the hadronic final states produced in e+e- 
annihilation, we can learn about the structure of the interaction Lagrangian that controls 
the short distance physics. 

We have discussed in Section V.A how certain measurements can involve the final state 
in such a way that the measured quantity is not sensitive to collinear parton branching or 
the emission of soft partons (see Eqs. (IV.7), (IV.10)). There we used as an example the 
thrust distribution da/d7 defined in Eqs. (IV.8), (IV.9). Another frequently used quantity 
is the energy-energy correlation function (Basham, Brown, Ellis and Love, 1979; Brown and 
Ellis, 1981), 

1 dC -- 
UT dcosx’ 

(V.21) 

A convenient way to express the definition of C is to use the general equation (IV.7). If we 
let Z in (IV.7) be dC/d cosx then the functions S, that define the comribution from an n 
particle final state are 

Sla(PL * - - ,pg =~~~6(cosx-cosx.ij), (V.22) 
i=l j=l 

where xij is the angle between particles i and j. Recall that the normalization of the S, 
is such that S, = 1 for all n gives the total cross section. Then since xi Ei = &, the 
normalization for C is 

1 1 - J dcosx - = dC 1 
o;r -1 dcosx * 

(V.23) 

The energy-energy correlation function is infrared safe. To verify that the required con- 
dition (IV.10) is satisfied, consider Sn+i($, . . . , (1 - X)&, Xx). We have 

Sn+l(P?, * * * 7 (1 - vP$ A&) 

= F F EiSEj 
-6( COS X - COS Xij) 

i=l j=l 

+2 5 Ei lXEfi +J1 - WE,1 qcos x _ COS xin) 
i=l 

+ IXEn + (1 - WRl’6( cos 
=Sn(PL...,&. 

x _ cos x nn ) 
(V.24) 
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There are other distributions besides the thrust distribution and the energy-energy cor- 
relation that probe the shape of the hadronic energy distribution. Jet cross sections, to 
which we now turn, fall into this class. Concise descriptions of other, related quantities, 
with calculations and references, may be found in Kunszt, Nason, Marchesini and Webber, 
1989. 

V.D Jets 

In a typical electron-positron annihilation event at LEP or SLC, two, or sometimes three 
or more, sprays of particles are produced. The more energetic of the particles within each 
spray are typically confined to an angular range of a few tenths of a radian. These sprays 
of particles are called jets, and various measurable cross sections to produce jets are studied 
(Sterman and Weinberg, 1977; Sterman, 1978). For instance, one can measure the inclusive 
cross section to make two jets with given energies and angles, plus anything else. Most 
commonly, one measures the cross section for the final state to contain exactly 2,3,4 . . . jets. 

One thinks of a jet as consisting of the decay products of a single off-shell parton, a 
quark or gluon, that was produced in the annihilation by a short-distance process. It is not, 
however, completely straightforward to define precisely how many jets are present in a given 
final state and what their momenta and energies are. The physical problem is that the decay 
products from an energetic parton are not infinitely well collimated, and, in particular, will 
generally include the remnants of some rather soft gluons that are emit ted at large angles. 
Worse, because partons can join as well as divide, and because of quantum interference, a 
given hadron can be a “decay product” of more than one hard parton at once. Thus a jet 
cross section is to some extent an artifact. 

If a jet cross section is an artifact, so be it. One must simply give a careful definition how 
the jet content of the final state is to be measured. Then, one must calculate (perturbatively) 
the cross section to make jets in a given configuration according to this definition, In order 
that the cross section reflect short distance physics, one must arrange the jet definition so 
that the corresponding jet cross sections are infrared safe in the sense of Eq. (IV.10). 

The possibility of calculating and measuring infrared safe jet cross sections was first ex- 
plored in Sterman and Weinberg, 1977. The definition given there involved cones, something 
like the cones often used to define jets in hadron-hadron collisions, as described in Section 
VIII. The definitions used nowadays for electron-positron collisions involve an algorithm for 
successively combining hadrons into jets, using some function of momenta as a measure of 
“jettiness”. (In th e corresponding calculation, one uses the same algorithm to successively 
combine partons into jets.) Here, we shall describe the original example of this class, the 
so-called JADE algorithm (Bethke et al., 1988). Th ere are several variations that are used, 
of which we may mention particularly the Durham algorithm (Catani, Dokshitzer, Olsson, 
Turnok and Webber, 1991)21. A summary may be found in Bethke, Kunszt, Soper and 
Stirling, 1992. 

The successive combination algorithms are iterative. At each stage, two jets from a list of 
jets are combined into one. One begins with a list of jets that are just the observed particles. 

*lNamed for the Durham Workshop on Jet Studies at LEP and HERA, December, 1990, out of which it 
developed. 
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At each stage of the iteration, one considers two jets i and j as candidates for combination 
into a single jet according to the value of a dimensionless “jettiness” variable yij. Pairs with 
small yij are considered to be the most jetlike. For the JADE algorithm, 

Yij = 
2EiEj(l - coseij) 

s 
(V.25) 

The pair i,j with the smallest value of yij is combined first. When two jets are combined the 
four-momentum p” of the new jet is determined by a combination formula. For the JADE 
algorithm, the combination formula is simply 

y=p;+py. (V.26) 

After this joining, there is a new list of jets. The process continues until every remaining 
yij is larger than a preset cutoff, ycUt. In this way, each event is classified as containing two, 
three, four, etc. jets, where the number of jets depends on the cutoff ycut chosen. 

Notice that this algorithm is infrared safe, because it satisfies Eq. (IV.10). A particle 
that has only an infinitesimal energy will not affect the final number of jets, or their four- 
momenta, since it will contribute only an infinitesimal amount to the final four-momentum of 
the jet in which it is included. Similarly, if two particles are nearly collinear, with & M X@’ 
and 6 M (1 - X)p”, then the first step of the algorithm is to combine them into one jet with 
momentum close to fl. 

V.E Calculations 

One can categorize the possible infrared safe quantities in electron-positron annihilation 
as “N-jet like” by considering the functions S,, Eq. (IV.7), that define the measurement. If 
S2 # 0, we say that the quantity is “two-jet like.” If S, = 0 but Ss # 0, we say that the 
quantity is “three-jet like.” With this nomenclature, the total annihilation cross section is 
two-jet like. Quantities such as the cross section to make exactly three jets (for a given ycut) 
or the energy-energy correlation function away from x = 0, r are “three jet-like”. 

As we have seen in Section V.A, the total cross section has been calculated to order at. 
Since this is three orders beyond the Born approximation, the comparison of the prediction 
to data can provide an extraordinarily stringent test of the Standard Model. However, there 
is an experimental limitation of the usefulness of a two-jet like quantity like the total cross 
section as a way to measure cr, or to provide a test of the QCD part of the Standard Model. 
The limitation is that the Born approximation to such a quantity is independent of cr,; QCD 
enters only in the higher order corrections. Thus extraordinary experimental accuracy is 
required in order to measure the QCD contribution precisely. 

With three-jet like quantities, one is measuring something that, in the Born approxima- 
tion, is proportional to 0,. Thus the experimental demands are less stringent. However, the 
theoretical difficulties are greater. Non-perturbative effects are estimated to play a larger 
role than in the completely inclusive total cross section. (See, for example, Bethke, Kunszt, 
Soper and Stirling, 1992.) More importantly, the perturbative calculations are more compli- 
cated. The calculation depends on realizing cancellations of collinear and soft divergences 
between contributions from four parton final states and from three parton final states with 

73 



virtual loop corrections. (The results for the virtual loop graphs are generally taken from 
Ellis, Ross and Terrano, 1981.) There are calculations of individual three-jet like quantities 
at order of in the literature. References may be found in Kunszt, Nason, Marchesini and 
Webber, 1989. There is now also a computer program by Kunszt and Nason (Kunszt, Nason, 
Marchesini and Webber, 1989) that can calculate any infrared finite three-jet quantity at 
order of. Basically, one has only to supply suitable computer code for the functions & and 
Ss that specify the measurement. 
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VI Deeply Inelastic Scattering 

V1.A Use of Perturbative Corrections in DIS 

The use of parton distributions in pQCD is similar to their use in the parton model. The 
basic facts are still: (i) that the IR safe short-distance functions Civi) are independent of the 
external hadron h and (ii) that the distributions 4i/h are “universal”, for instance, the same 
for the structure functions Fr and F2 defined in Eq. (111.19). For convenience, we reproduce 
here the DIS factorization theorems, Eq. (IV.ll) and Eq. (IV.12), 

FiVh)(x, Q”) = 
CJ 

’ 3 Civil (x/E, Q2/ 

i= f,f,G 0 t 
P2, as(P2)) h/h(t, P2) 7 (a = 1,3) 

FjVh)(x, Q2) = c /‘de Civi) 
i=f,f,G ’ 

(x/t, Q2/p2, aa( +i/h(<, p2) (VI.1) 

(where we have set the factorization scale equal to the renormalization scale ,Y), and the 
evolution equation Eq. (IV.19), 

(VI.2) 

With these results in hand, we can make predictions by combining perturbative calculations 
with experimental input. In this section, we discuss how this works in low order corrections. 

Unlike an infrared safe total cross section, the hard-scattering coefficient functions of DIS 
factorization are not simple finite functions of o,. Instead, they must be defined as infrared 
safe “distributions”, generalized functions which give finite answers when convoluted with 
smooth functions. The most familiar example of a distribution is a delta function. Here, we 
introduce the “plus” distribution, denoted 

1 1 d4 
l-x +’ 

whose integral with a smooth function f(x) is defined by 

lldxf(x) [f!@w]+ = ~‘,x”‘x) ;f(;))g(x’ - f(l)~‘dx~ . 

(VI.3) 

(VI.4) 

A plus distribution corresponds to a divergent integral that is regularized by a divergent 
subtraction, in this case f(1) times the integral from 0 to 1. (Note that the second term on 
the right vanishes when z = 0.) Plus distributions are ubiquitous in both hard-scattering 
functions and parton distributions, for all nontrivial factorization theorems in QCD. The 
manner in which they arise in one-loop corrections is discussed in Section V1.D below. 

The three basic quantities in the factorization and evolution theorems above are: the 
coefficient functions Cpi), the evolution kernels Pij, and the parton distributions di/h. Of 
these, the first two are computable as power series in cr, as realistic, infrared-safe quantities. 
The distributions, on the other hand, are directly computable only for $i/j, with both i and j 
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partons, and then only in an infrared-regulated version of the theory. Such unphysical parton 
distributions, however, enable us to isolate the physical coefficient functions and evolution 
kernels. Let us review how this works. 

Combining Theory and Experiment. As an example, consider the relation between the 
structure functions F,(“), V = 7, I+‘*, and the physical parton distributions 4i/h(x, p2). The 
procedure can be summarized as: 

(a) Compute the regulated distributions +i/q and $i/g to some order in perturbation theory. 

(b) Compute F,(‘j), with j = Q, g to the same order. 

(c) Combine the results of (a) and (b) to derive @‘j) to this order. 

(d) Combine CLvj) with experimentally determined F, tVh) to derive the non-perturbative 
$j/h to the same order in perturbation theory by applying the factorization theorem. 

These distributions, in turn, can be combined with hard scattering functions from other 
processes to derive predictions from the theory. Note that the parton distributions and coef- 
ficient functions are factorization-scheme dependent, in the sense described in Section 1V.B. 
The evolution kernels, Pij, however, are scheme-independent in the one-loop approximation. 

At O(oy,) the procedure we have just described is particularly straightforward. For in- 
stance, in the electromagnetic case Eq. (IV.11) and Eq. (IV.12) yield, 

$vf@)(,, Q2) = &;,(x, p2) + Civf)(‘) (x7 f$ u,(P)) * (VI.5) 

Here and below, we suppress an overall factor Q; (the fractional charge of the quark) in F’ 
for electromagnetic scattering. 

V1.B One-Loop Corrections in DIS 

MS scheme. In the MS scheme, the distributions are defined by matrix elements as in 
Section IV.D, and are simple at one loop in perturbation theory, although the resulting 
coefficient functions tend to be a bit complicated. They are also convention dependent. 
To compare the following results with the literature it is necessary to check not only the 
definitions of the F,, Eq. (III.lS), but also the explicit factorization formulas Eq. (VI.l). For 
instance the results below for C2 differ from those quoted in Furmanski and Petronzio, 1982 
by a factor x. 

From the procedure just described, the explicit nonzero one-loop coefficient functions for 
DIS are given in the MS factorization scheme by22 

(-$vQ)(‘) = C2(F)t E 1 ( - 
ln (’ ,2’ - i ) +:(9+5x) ) 

I + 

**See Furmanski and Petron&, 1982, Zijlstra and van Neerven, 1992, van Neerven and Zijlstra, 1991, 
Zijlstra and van Neerven, 1991, van Neerven and Zijlstra, 1992, Matsuura, Hamberg and van Neerven, 1990, 
Hamberg, van Neerven and Matsuura, 1991, and Hamberg, 1991. 

76 



p7)(‘) = 
1 - c24x , 

cpw) = @w(‘) 
x 2 - C2(F)(l + x) , 

cp9w = T(F) nfx [(x2 + (1 - x)2) In (e) -1+8x(1 -2) 1 , 
cy9w = kcrG)(l) - T(F) nf [4x(1 - x)1 , (VI.6) 

where nf is the number of quark flavors, C2(F) = 4/3 for N, = 3 and T(F) = l/2 (see 
Appendix A). Similarly, the one-loop kernels are given by (a,/27r)P(j’), with (Altarelli and 
Parisi, 1977; Altarelli, 1982) 

P$(x) = w? (1 +x2) (j-g+ + ;w -41 7 
p;;‘(x) = T(F) [ (1 -x)2 + X2] ) 

P$(x) = T(F) [ (1 -x)2 + x2] ) 

P,‘,“(X) = c2w 
(1 -x)2 + 1 

7 X 

q(x) = 2C2(4 
i 

l-x 
(1 TX,+ + x + x(1 - x) 

I 
+ (+(A) - ;T(F) nf) 6(1 - x) , (VI.7) 

where &(A) = 3 and T(F) = l/2 in QCD (Appendix A). Finally, the MS distributions for 
partons in partons are (with 6 E 2 - n/2) 

4i/jCx7 E) f ;i $ ij 

= --- 

( ) 

c P(‘)(x) , (VI.8) 

where we conventionally choose 
jp = p2e7E-ln4n ) (VI.9) 

with YE Euler’s constant. This choice corresponds to a natural definition for the renormalized 
matrix elements that define the distributions (see Section 1V.D). 

DIS scheme. The DIS scheme is defined to all orders in perturbation theory by 
Eq. (IV.16) 

&Q)(x) = 6(1 - x) 

cp(x) = 6(1 - x) : 

Lg9)(x) - 0 - . (VI.10) 

That is we renormalize the parton densities so that the parton model is exact at 1-1 = Q. 
This gives somewhat more complicated results for one-loop distributions of part,ons in partons 
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(Owens and Tung, 1992), which however, are determined in terms of the MS distribution to 
one loop by 

c$~,~(x, ~~~~~~~~ = [l + CX&)C~~~)(~)] @I +iF’ + a,(~)Cr’)(~) @ $:?/2nf , (VI.ll) 

where @ represents the convolution in Eq. (VI.l). H ere the effect of the gluon distribution in 
F2 is shared evenly by the nf quark flavors (the same number as is used in the beta function 
at this momentum scale, see Section 1I.E). Similarly, a frequently-used (but nonunique) 
definition for the DIS gluon distribution in terms of the MS distributions at order CY, is 

dg,h(X, pys) = [l - a,(/J)c$Vg)(~)] @ 4;:’ - o,(p) c c$vq)(X) @ 4kF’ . (VI.12) 
Q 

These relations holds to order a, for h a parton or a physical hadron. 
Because of the relation Eq. (VI.5), the remaining coefficient functions in the DIS scheme 

are trivially found from those in the %!i!? scheme. The reward for the somewhat complicated 
partonic distributions in the DIS scheme (remember, they are unphysical anyway), is much 
simpler one-loop coefficient functions; in addition to the defining equations, Eq. (VI.10) we 
find (see, for instance, Altarelli, 1982), 

c~wyx) = +2(F) x, (VI.13) 

C~vg)(‘)(x) = -T(F)nf 4x(1 - x) , (VI.14) 

c;vq)(l)(x) = -C2(F) (1 + x) . (VI.15) 

V1.C Two-Loop Corrections 

Recently, DIS coefficient functions have been calculated in DIS and MS schemes by van 
Neerven and coworkers23. This, of course, requires the determination of perturbative parton 
distributions and evolution functions at two loops as well. The full expressions are bulky, 
and we shall not reproduce them here. To give the flavor of the results, however, it may be 
useful to give the two-loop evolution kernel for the nonsinglet distributions (Section IV.B.S), 
Pi”i”‘(5), (Altarelli, 1982): 

qy(x, a,> = !z& g 
( ) - + 

+(z)‘(Ci[-2(E)lnxln(l-x) 

-5(1-x)- (&+2x)lnx-$I+x)ln2x] 

+$pCA[(g) (ln2x-+l-ln&/+~-~) 

23See Zijlstra and van Neerven, 1992, van Neerven and Zijlstra, 1991, Zijlstra and van Neerven, 1991, 
van Neerven and Zijlstra, 1992, MatFuura, Hamberg and van Neerven, 1990, Hamberg, van Neerven and 
Matsuura, 1991, and Hamberg, 1991. 
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+2( 1 + 2) In x + g - gx] 

+$YFT[(g) (lny-$)+i+yx]}+ 

+6(1 - x) J ’ 0 
dxQ,&, as) + ~(a;), (VI.16) 

where 
2 

Qq& a.4 = 
% (>( G 

CF-~C~)CF[2(l+x)lnx+4(1-x) 

73 
ln2x - 4lnxln(l +x) - 4Li2(-2) - 3 . 

(VI.17) 

V1.D Computation of One-Loop DIS Correction 

Typical (cut) Feynman diagrams that contribute to W$f) are shown in Fig. 15. At 
lowest order, they involve either gluon emission, or one-loop radiative corrections. Here we 
will give just enough detail on the gluon emission process to illustrate the physical content of 
factorization. For more details, see Altarelli, Ellis and Martinelli, 1978, Altarelli, Ellis and 
Martinelli, 1979, Kubar-Andre and Paige, 1979, Harada, Kaneko, and Sakai, 1979, Abad 
and Humpert, 1979, and Humpert and van Neerven 1981. 

Since we are interested in structure functions, it is convenient to use the cont’ractions 

-gi“‘Jj7$f,(l, = iF2(7f)(l) _ ; (#f)(l) _ 2xF,(yf)(1)) , 
X 

flp”~t-$f)(l) = !$ (#f)(l) _ 2xF,(7f)(1)) . (VI.18) 

Of these, the first is by far the more demanding to calculate, because the Dirac equation 
may be used to eliminate all but one of the diagrams shown in Fig. 15 for @‘@‘I%‘,,. (We 
should note that when these calculations are carried out using the method of dimensional 
regularization these identities become somewhat more complicated. See Appendix C.) 

Let’s have a look at the real-gluon contribution to -gpyW,,v. It can be computed as if 
the diagrams described the Born approximation for the two-to-two process y* + f --) f + g, 
with g a gluon, - 

- gPvpj7t-&fm = J( ps 1 M7f)(s, t, q2> 12)(1) 3 (VI.19) 

where M is the squared matrix element for this process, normalized according to Eq. (III.lG), 

and averaged over the spin of the initial-state quark. Jps denotes the integral over two- 
particle phase space. The matrix element is described in terms of the usual kinematic 
variables, 

s=(p+q)2, t=(p-k)2, u=(q-k)2, s+t+u=-Q2, 

in terms of which it is given explicitly by (recall, we are suppressing Qf) 

(VI.20) 

(I ,$&f)(s, t, q2) 12);;b, = 4a,% 3 + ; - z) . (VI.21) 
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The phase space integral is particularly simple in the center of mass frame, where it reduces 
to an integral over t = cos6, with 8 the angle between p and k. In this frame, t, u and s 
are given by t = -Q2(l - S> u _ -Q2(l + 0 s Is Q2(l - 4 

2x - 2x x - 
(VI.22) 

As usual, x = Q2/2p. q. Collecting these expressions in Eq. (VI.19), we have 

(-gw yp, = (VI.23) 

As it stands this expression has problems of two kinds, closely related to those found at one 
loop in e+e- annihilation. 

First, the unmodified integral diverges at t = 1, that is, when the gluon is parallel 
to the initial-state quark. This is the familiar collinear divergence, associated with the 
degeneracy of on-shell single-quark and parallel-moving quark-gluon states. It is just the 
sort of contribution that corresponds to the evolution of an isolated quark long before the 
interaction takes place, and should be absorbed into the distribution +f,f. In a careful 
calculation, we would regularize the collinear divergence dimensionally, or by giving the 
quark a mass. We can even cut off the angular integral at some minimum angle: each of 
these choices will only show up in the precise definition of the infrared sensitive part of 4j,/, 
which we are going to discard anyway. We will therefore assume that regularization has been 
carried out, and not modify the explicit expressions below. Thus we may assume that the 
expression for I&+) is well-defined for all x # 1. 

The divergences as x ---t 1 are our second problem. Given that s = Q’(1 - x)/x, they 
are evidently associated with a vanishing mass for the final state, which happens if the 
emitted gluon has either zero momentum (soft divergence), or is collinear to the outgoing 
quark. Divergences of this sort are not candidates for absorption into the parton distribution, 
because they depend on details of the momentum transfer and the final state. On the other 
hand, an unmitigated divergence of this kind cannot be pushed into the hard-scattering 
functions C(Z) either, because a pole at z = 1 in C(L) would lead to a singularity in the 
basic factorization integral, Eq. (VI.l), whenever x = t. If factorization is going to work, 
the x = 1 poles must be canceled. 

As in e+e- annihilation, we look to virtual processes to cancel divergences associated 
with real-gluon emission. There is an important difference, however, in the kinematics of 
DIS and the annihilation processes. The virtual diagrams of Fig. 15 can only contribute at 
z = 1 precisely; in fact, they are proportional to a factor 6(1 - x), which comes from the 
mass-shell delta function 6(b + q12). Th us, as anticipated above, the complete answer will 
be infrared finite as a distribution, rather than as a function. 

Let’s now skip to the answer. It will consist of plus distributions in x, in addition to 
finite terms. Collinear-divergent integrals will remain, which will have to be absorbed in the 
parton distributions. To compare real and virtual-gluon corrections, we will change variables 
from the cosine of < to the transverse momentum of the gluon, kT, relative to the direction 
of the incoming quark. In the center of mass frame, the relation between the two variables 
is 

G = Q2e(l - ,f2) . (VI.24) 
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Leaving the divergent kg integral explicit, the one-loop electromagnetic structure functions 
are 

pw(,) = ~ii”~([~]~+y~) 

+C2(F) g 
1 ( 

In -x - i 
X ) 

+ t(9 + 52) I} , + 
2xp)(l) = &f)(l) - c2(qg2x . (VI.25) 

In the expression for F2, [9+5x]+ is defined by direct analogy to Eq. (VI.4). We see explicitly 
the collinear divergent kT integral, which will be absorbed into 4$i)f according to Eq. (VI.5), 
and the evolution kernel 

1+ x2 [ 1 l-x + 
+ ;a(1 - 2) E Pp(x) ) (VI.26) 

which is of central importance in determining the Q2 dependence of the DIS cross section 
(Section IV.B.3). 

As promised, all x + 1 divergences have canceled in Eq. (VI.25), a necessary condition 
for factorization. Also, we note that F2 and Fi differ by an infrared safe function. This 
means that the same parton distribution ~~~~ will absorb the infrared sensitivity of both 
structure functions. This is another prerequisite for factorization. Thus the calculation of 
DIS structure functions at one loop gives us two highly nontrivial checks of the factorization 
formulas, Eq. (VI.l). 

The explicit forms of one-loop corrections suggest the two standard choices of parton 
distributions, discussed in Section V1.B above, 

&g, Q”)m - dQ2) p"r dk+ , -- 
27~ J -G7w 7 o k; 

4:1:,(x, Q2)m = F(yf)(l)(x, Q, ( Q2)) . 

(VI.27) 

(VI.28) 

The first, “MS”, distribution, Eq. (VI.27), absorbs as little as possible into 4, that is, only 
the collinear divergent term, leaving the remainder to the C=‘s. It is particularly simple 
in dimensional regularization, where the divergent term may be identified as the coefficient 
of a pole like l/(n - 4), with n the “number” of dimensions. Alternatively, in the second, 
“DIP distribution, Eq. (VI.28), we absorb as much as we can in the parton distribution, 
the standard choice being all of FiYf)(x, Qi), at the momentum scale Qi = p;. 

V1.E Review of DIS Experiments 

IKE.1 Historical perspective 

Early work on electron-nuclei scattering led to the discovery of the scaling property of 
the structure functions24. This scaling property demonstrated the existence of point-like 

24For a broader historical perspective, see Cahn and Goldhaber, 1989. 
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constituents-partons-within the proton; these partons are now identified as the quarks 
and gluons. In a sense, DIS experiments of the 1960’s established the sub-structure of the 
proton in the same manner that the Rutherford scattering experiments established the sub- 
structure of the atom in 1911. 

DIS experiments provided the experimental foundation for the parton model, Section 
III, which, for the case of lepton-hadron scattering, can be summarized by the following 
formula: a(eh + .!?X) = &I,, @I (i(& + CX), where &h is the parton distribution function 
(PDF), 6(!a + CX) is the hard scattering cross section, and @ represents convolution in 
momentum fraction. The implicit assumption in the parton model is that the lepton scatters 
incoherently from the parton constituents. The principal achievement of the parton model 
is that we have taken a physical cross section which is difficult to calculate directly, and 
divided it into a term that we can calculate in perturbation theory, B(!a + eX>, and a term 
that we extract from experiment, &,h. 

Obviously, the utility of the parton model relies on our ability to determine &/h, or 
equivalently,25 the structure functions, F;. The basic procedure used is to compute d(Ca + 
!‘X) in perturbation theory, measure a(& + CX) experimentally, and thereby extract &,h. 
Unfortunately, this is easier said than done, as we must unfold the convolution to find &,h. 

Presently, the data from DIS experiments provide the most precise determination of the 
functions &lh. The advantage of the DIS process is apparent when contrasted with a hadron- 
hadron scattering process where the parton model formula would read c = 4 @ 8 QP 4, and 
we would have to unfold two convolutions to extract 4. 

Although an important goal of DIS experiments is the extraction of PDF’s, these ex- 
periments cover a wide range of topics, including the precision measurements of sin8w, 
Cabibbo-Kobayashi-Maskawa matrix elements, quark masses, and branching ratios. We will 
limit the scope of our discussion, however, primarily to the extraction of PDF’s. 

The generic DIS scattering experiment consists of a lepton beam (e, ~1, or Y) incident 
on a nucleon target. In the simplest version of this experiment (totally inclusive DIS), only 
the final state lepton is observed, and the hadron remnants are ignored. For example, the 
SLAC-MIT group (Breidenbach et al., 1969; Bloom et al., 1969) scattered an electron beam 
of energy 7 GeV to 17 GeV from a hydrogen target. The energy of the outgoing electron 
was measured using a large magnetic spectrometer for scattering angles 0 = 6” and 10”. 

In the QCD parton model, we assume that the DIS process occurs via the exchange of 
a virtual boson (I%‘* for charged current reactions, y or 2’ in neutral current events) with 
momentum QP = Icp - Ic’p. The momentum of the exchanged boson defines the energy scale, 
and the momentum fraction is given by Bjorken scaling variable 2: 

Q2 = -q2 = 4&& sin2(0/2) 

X 
Q2 

=m= 
2E&p sin2(0/2) * 

w&% - &) 

(VI.29) 

Therefore, by measuring only the final state lepton energy (Ekt) and angle (0) in the target 
rest frame, we can determine Q2 and x, and thereby extract the structure functions. 

*‘Note to leading order, the structure functions are simply related to the parton distributions. However, 
beyond ldading-order, the relations are more complex. 
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The surprising discovery by the SLAC-MIT group was that the structure functions were 
insensitive to Q2, and only depended on the scaling variable x. In the context of &CD, 
we now know that there is a logarithmic Q2 dependence which spoils the exact scaling. 
Therefore, the goal of modern experiments is to measure the structure functions in terms of 
both Q2 and x. 

VI.E.2 The Experiments 

We shall present a selective survey of the DIS experiments26. The DIS experiments can 
be divided into two categories: charged (e, p) and neutral (v,, Y,,) lepton beams. 

We will consider four neutrino-induced DIS experiments. At CERN, both CDHS (CERN, 
Dortmund, Heidelberg, and Saclay) [CERN-WA-0011 and CHARM (CERN, Hamburg, Am- 
sterdam, Rome, Moscow) [CERN-WA-0181 used a v,,/fl,, beam with an energy 2 260 GeV. 
These experiments were completed in 1984. At Fermilab, CCFR (Chicago, Columbia, Fer- 
milab, Rochester) [FNAL-7701 used a v,/P, beam with an energy 5 600 GeV, and was 
completed in 1988. FMMF (Fermilab, Michigan State, MIT, and University of Florida) 
[FNAL-7331 h a a v,,/ii, beam with an energy < 500 GeV, and was completed in 1988. d 
CDHS and CCFR used massive (about 7g/cc) Fe calorimeters which yielded a larger sta- 
tistical sample. CHARM and FMMF used lighter (about 2g/cc) “fine-grained” calorimeters 
which yielded good pattern recognition, but lower statistics. 

The major charged-lepton-induced DIS experiments include the following. EMC (Eu- 
ropean Muon Collaboration) [CERN-NA-0281 used a /J beam with an energy < 325 GeV, 
and was completed in 1983. NMC (N ew Muon Collaboration) [CERN-NA-0371 used the 
EMC detector to extend the kinematic range to x = [0.005,0.75] and Q2 = [I, 2001 GeV2, 
and was completed in 1989. SMC (Spin Muon Collaboration) [CERN-NA-0471 is a third 
reincarnation of the EMC detector designed to measure the spin-dependent asymmetries of 
longitudinally polarized muons scattering from polarized targets. SMC began operation in 
1991. BCDMS (Bologna, CERN, Dubna, Munich, Saclay) [CERN-NA-0041 used a p beam 
with an energy 100 GeV 2 EP 5 280 GeV, and was completed in 1985. 

Finally, there is a new class of experiments which has only become reality very recently: 
lepton-hadron colliders. The HERA collider at DESY began taking data in 1992, colliding 
26.7 GeV electrons on 820 GeV protons for a fi = 296 GeV. With two experiments called 
Hl and ZEUS this facility will be capable of measuring structure functions in the range 
z 2 10v5 and Q2 5 30,000GeV2. Results from their early runs have been published in 
ZEUS Collaboration, 1993b, Hl Collaboration, 1993 and Hl Collaboration, 1994. These 
results already cover values of x below lo-*. They are especially notable for the rise in F2(x) 
at low x, which is consistent with a variety of theoretical considerations (Gribov, Levin and 
Ryskin, 1983; Levin and Ryskin, 1990; Bassetto, Ciafaloni and Marchesini, 1983; Kuraev, 
Lipatov and Fadin, 1976; Balitskii and Lipatov, 1978). 

26For lack of space we can neither cite all experiments, nor all references. For those experiments discussed, 
the experiment number is given so that the interested reader can find a complete list of publications in the 
following reference. Note that this information is also available on the SPIRES database (Galic e2 al., 1992). 
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VI.E.3 Outstanding Issues in DIS 

The DIS process is by far the most accurate experiment for measuring the quark dis- 
tributions; however, since there is no direct lepton-gluon coupling, the DIS process is only 
sensitive to the gluon distributions at next-to-leading-order. Given the significant role that 
the gluons play in the QCD parton model, it is important to obtain their PDF in a separate 
process, such as direct-photon production. 

DIS experiments are performed with a variety of nuclear targets; however, to compare 
structure functions among experiments, we prefer to convert the nuclear structure functions 
to isoscalar structure functions. This necessary conversion is non-trivial, and can introduce 
significant uncertainties. 

We have sketched the process for extracting the structure functions summed over parton 
flavors; however, realistic extraction of the PDF’s is more complicated. In principle we can 
use proton and neutron scattering data to separately extract the up and down distributions, 
but this is not straightforward. 

A further complication arises when we try to determine the sea-quark distributions. For 
example, the s-quark distribution is determined using the sub-process s + W + c with 
the final state c-quark observed. Unfortunately, this process is sensitive to threshold effects 
arising from the charm quark mass, as well as large non-leading order contributions arising 
from the mixing of the gluon and strange quark distributions. 

New high precision DIS data, as well as improved higher-order theoretical calculations, 
force us to go beyond leading-order perturbation theory. When we carry our calculations 
and data analysis beyond the leading-order of perturbation theory, all the subtleties of the 
renormalization scheme and scale dependence arise. 

V1.F Experimental Status of Parton Distributions 

In this section we review some properties of parton distribution functions (PDE’s) as 
currently determined from experiment. We begin with overall features, and go on to discuss 
the experimental status of scaling violation, evolution and the determination of R~cn. 

VI.F.l General Features 

In neutrino scattering the built-in flavor selection, as described for the parton model in 
Section 2, provides a powerful means of extracting PDF’s. Nevertheless, neutrino experi- 
ments on light targets (H or D) suffer in statistical precision. In the following, we briefly 
review the results of neutrino experiments on hydrogen, and dwell primarily upon the pre- 
cision measurements from neutrino scattering off isoscalar targets. 

(1) Quark Densities from v-H Scattering 
Neutrino measurements of quark densities from a hydrogen target are in agreement 
between the two experiments, CDHS (Abramowicz et al., 1984) and WA21 (BEBC) 
(Jones et al., 1989), at about the 15% level. Figure 16 shows the ratio of quark and 
antiquark components as measured by the two groups. (It should be noted that the 
CDHS data have been adjusted in overall normalization to reflect this group’s recent 
cross section measurement (Berge et al., 1987).) 
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(2) Valence Quark Densities in the Proton 
The present status of separate valence quark components, xuv(x) and x&(x), is sum- 
marized in Fig. 17.a and Fig. 17.b. As noted in Mishra and Sciulli, 1989, while there 
is general agreement on xuv(x) between the muon experiment (EMC) and neutrino 
experiments (WA21, WA25, and CDHS), there is a distinct discrepancy in the shape 
of xdv (x). The precise reason for the discrepancy is not known. It is hoped that the 
recent muon experiment data by the BCDMS and NMC collaborations on hydrogen 
and deuterium might resolve this experimental conflict. 

(3) Valence Quark Densities in an Isoscalar Target 
The valence quark density for an isoscalar target (i.e., the average of neutron and pro- 
ton), which is the non-singlet structure function z Fs(x, Q2), is much more accurately 
determined in high statistics neutrino experiments. The CCFR collaboration (Mishra 
et a!., 1992) has presented new measurements on x F~(x, Q2). These are compared 
with the CDHSW data (Berge et al., 1991) in Fig. 18. The Q2-averaged ratio of the 
CDHSW to the CCFR values of xF3 are plotted as a function of x. The figure illus- 
trates that within the systematic error of the overall normalization (M 2.5% - 3%) the 
two measurements of xFs are in agreement. There are, however, differences in the Q2- 
dependence at a given x between the two data sets. This has important ramifications 
for the test of scaling violation in xFa(x, Q2) as discussed below. 

(4) Antiquark Densities in an Isoscalar Target 
The antiquark densities as measured in light targets by three different groups, WA21, 
WA25, and CDHS, are in agreement as shown in Fig. 19 (for details see Mishra and 
Sciulli, 1989). The new high statistics measurement of x?j(x, Q2) measured in the Fe 
target by the CCFR collaboration (Mishra et al., 1992) is shown in Fig. 20. The data 
show that xg(x) # 0 up to x 5 0.40. 

(5 Strange Quark Content of an Isoscalar Nucleon Sea 
Neutrino-induced opposite sign dimuons, p-p+, offer the most promising measurement 
of the strange quark content s(x) [S(X)] of th e nucleon sea. In addition, these events 
permit determination of the electroweak parameters Vcd (the Kobayashi-Maskawa ma- 
trix element: this is the only direct determination of this parameter), and m, (the mass 
parameter of the charm quark: this is precisely the parameter which at present limits 
the precision of sin2 0 w determination in v-N scattering). The CDHS (Abramowicz et 

al., 1982) and CCFR (Lang et al., 1987; Foudas et al., 1990) leading order analyses 
agree in their determination of the fractional strangeness content of the nucleon sea 
(K = 2s/(?l+ a)); th e average of the two measurements is: 

tc = 0.52 f 0.07 (VI.30) 

A noteworthy feature of the CCFR data (see Foudas et al., 1990) is that the measured 
s(x) [S(X)] is somewhat softer than the non-strange sea (obtained from the single muon 
CC events). This is illustrated in Fig. 21. Two new developments are underway: (a) 
CCFR has quadrupled its sample of ,x+P- events by including data from two separate 
runs (FNAL E744 and E770), and by imposing a softer muon momentum cut on the 

85 



second muon (Eel > 4 GeV); (b) It has b een shown that, within the perturbative 
QCD framework, it is necessary to perform the analysis at least to order Q, to achieve 
consistency (Aivazis, Olness and Tung, 1990). It is hoped that these developments 
may help answer the question: is the strange sea dinerent from the non-strange sea? 

VI.F.2 Evolution 

Within the framework of DIS scattering described in Section 4 there are elegant and 
unambiguous QCD predictions that can be verified experimentally. In DIS there is no frag- 
mentation uncertainty since one deals with inclusive final state hadrons; the scale, which 
is the four-momentum transfer Q2, is well defined; the higher order corrections are small 
and the scaling violations are well described by the evolution equations (Altarelli and Parisi, 
1977). Also the measurements yield structure functions at different values of x and Q2, and 
thus afford a system of tests of evolution (Section IV.B.3). 

Among the elegant predictions of perturbative QCD are slopes of structure functions with 
respect to Q2 as a function of x and the absolute magnitude and dependence of R(x, Q2) = 
~L/crr on x and Q2. Below we examine the status of these tests. 

(1) Measurements of R(x, Q2) versus QCD 
The R parameter of deep inelastic scattering is defined as the ratio of the absorption 
cross section of the longitudinally to transversely polarized virtual boson, R(x, Q”) = 
gL/gr, and is related to the structure functions F2, and Fl as: 

Rz”=“2;;Flz FL 

OR 1 2xFl - 
(VI.31) 

where FL is the longitudinal structure function, and the other symbols have their usual 
meaning (Mishra and Sciulli, 1989). Perturbative QCD predicts the magnitude of R 
and its dependence on x and Q2 (due to gluon radiation and quark pair production) 
to be (Altarelli and Martinelli, 1978; Gliick and Reya, 1978): 

R(x, Q2) = as(Q2) x2 1’ f? [tF2(,, Q2) + 4f(l 
27r 2xFl(x,Q2) .t z3 3 

- ~J~G(Z, ~211 , (~1.32) 

where f is the number of flavors if the incident lepton is a neutrino, and the sum of the 
squares of quark charges if the incident lepton is a muon or an electron; G(z, Q2) is the 
gluon structure function. Numerous experiments have measured R(x, Q2) and claimed 
consistency with the theoretical prediction. Nevertheless, from recent measurements 
at SLAC (Dasu et al., 1988; Whitlow et al., 1990) and a simple model for higher 
twist effects, it is argued in Mishra and Sciulli, 1990 that the present cumulative deep 
inelastic scattering data are consistent with but do not demonstrate R = RQCD. Precise 
measurements of R(x, Q2) at sufficiently high Q2 (e.g. Q2 > 10 - 15 (GeV/c)2) in next 
generation deep inelastic experiments (Mishra, 1990a; Guyot et al., 1988) will provide 
a compelling test of perturbative QCD. 

(2) Evolution of Non-singlet Structure Function 
In the DIS scheme, we ctin combine Eqs. (VI.l), (VI.2) and Eq. (VI.10) to find evolution 
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equations for the singlet and nonsinglet functions F..” and FiNSI, 

(VI.33) dFiNS'(x,Q2) = 
dlnQ2 I 

' pnq(z (y )FiW(z Q2) dz , s z 2’ 

dF,(S)(x Q2) 
’ dlnd2 = Z J[ G&i O-‘is’~~, Q2> + pq&, %)&I/N{‘, Q2)] dz z 

(VI.34) 

where the Pij are the usual evolution kernels, given at one loop Eq. (VI.7). Thus in the 
DIS scheme, the non-singlet (NS) evolution of F2 involves only the structure function 
itself, the known splitting function, and o,. The singlet (S) equation is coupled with 
that of the gluons and is hence less directly related to experiment. An analysis of the 
kernels shows, however, that the slope of F2(‘) is expected (at leading order) to pass 
through zero at about z = 0.1, as shown in Fig. 22. 

In a manner similar to Fi”, the evolution equation for zFa can be written in the form 

d lnsFs(z, Q2) 
d lnQ2 = 4Q2Mx, Q2>. (VI.35) 

The term $(x, Q2) involves an integral of z F~(z, Q2) f or 2 > x; the integral is evaluated 
using the known splitting function P,, (which has been calculated to next-to-leading 
order). Thus, the only unknown on the right hand side of the above equation is the 
strong coupling constant: the logarithmic slope of xF3 is proportional to cy, at each x. 

Neutrino experiments on heavy targets can perform this test with the non-singlet 
structure function, zF3. The high statistics CDHSW data (Berge et al., 1991) do not 
agree well with the predicted dependence of the scaling violations on x, although the 
authors state that the discrepancies are within their systematic errors. Previous CCFR 
data lacked the statistical power to offer a conclusive test (Oltman et al., 1992). The 
recent CCFR non-singlet data show an evolution consistent with the pQCD prediction, 
and provides an accurate determination of oy, (Quintas et al., 1993; Quintas, 1992). 

Measurements of the scaling violations are sensitive to miscalibrations of either the 
hadron or muon energies. For example, a 1% miscalibration can cause a 50 MeV 
mismeasurement of AQC~, but hadron and muon errors enter with opposite signs. 
Thus if both hadron and muon energies were in error by the same amount, the error 
in AQ~D would be small. Therefore, while it is important that the hadron and muon 
energy calibrations and resolution functions be well known, it is crucial that the energy 
scales be cross-calibrated to minimize energy uncertainty as a source of error. 

Figure 23 shows that the CCFR data have an evolution of zF3 consistent with the 
pQCD prediction. The pQCD prediction is a next-to-leading order (NLO) calculation 
in the modified minimal subtraction (MS) scheme. A Q2 > 15 (GeV/c)2 cut was 
applied to eliminate the non-perturbative region, and another x < 0.7 cut to remove 
the highest x bin (where resolution corrections are sensitive to Fermi motion). The 
best QCD fits to the data were obtained as illustrated in the figure. 
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(3) Determination of AQCD 

A good visual representation of structure function evolution compares the magnitude 
of the Q2-dependence of the data in each x-bin with the dependence predicted by the 
fit. This is shown by plotting the “slopes” (= dln zFs/d InQ2) as a function of x. 
Figure 24. shows the CCFR data along with the curve through the points predicted by 
the theory. More specifically the values shown in Fig. 24 result from power law fits to 
both data and theory over the Q2 range of the data. The logarithmic slopes of the data 
agree well with the QCD prediction throughout the entire x-range. This observation is 
independent of calibration adjustments within reasonable limits. At low-x values the 
data agree well with predictions independent of the value of &co. 

The value of AQ~D resulting from the fit to xF3 data is 179 f 36 MeV, with a x2 
of 53.5 for 53 degrees of freedom (x 2 = 53.5/53). Varying the Q2 cuts does not 
significantly change AQCD; for Q2 > 10 (GeV/c)2, the best fit gives AQUA = 171 f 32 
MeV (x2 = 66.4/63); and for Q2 > 5 (GeV/c)2, AQCD = 170f31 MeV (x2 = 83.8/80). 

More precise determinations of AQC~ from the non-singlet evolution is obtained by 
substituting F2 for ccF3 at large values of x. The evolution of F2 should conform to 
that of a non-singlet structure function in a region, x > x,,~, so long as x,,t is large 
enough that the effects of antiquarks, gluons, and the longitudinal structure function 
are negligible on its Q2 evolution. The “best” value of A QCD from non-singlet evolution 
is obtained by substituting F2 for xF3 for x > 0.5. (The slopes for F2 in this region 
are also shown in Fig. 27.) This non-singlet fit yields: 

AQ~D = 210 f 28 MeV for Q2 > 15(GeV/c)2. (VI.36) 

Varying the xcUt from 0.5 to 0.4 does not significantly change AQC~; the above substi- 
tution yields, AQCD = 216 f 25 MeV with good fit. Using 2xFl instead of F2 in this 
fit changes A QCD by +1 MeV. 

(4) Evolution of Singlet Structure Function 
We note (for details see Mishra and Sciulli, 1989) that there were some experimental 
conflicts in Fz-evolution: whereas the BCDMS data showed lovely agreement with 
the theory (see Fig. 25 and Fig. 26), the EMC and the CDHSW data on F2-slopes 
were steeper than the prediction (Fig. 27 and Fig. 28). The CCFR data on F2 show 
an evolution consistent with the pQCD. Figures 29 and 30 illustrate this consistency. 
It should be noted, however, that for the F2 evolution the functional form of the x- 
dependence of the gluons must be assumed, and its coefficient must be determined 
from the data. 

We point out that, assuming the QCD evolution is unequivocally verified in the non- 
singlet evolution, the singlet evolution permits the extraction of the gluon structure 
function. In neutrino experiments, the simultaneous evoZution of F2 and x F3 permits 
a very powerful constraint on the gluon degrees of freedom (Oltman et al., 1992). 
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V1.G Status of DIS Sum Rules 

VI.G.l Introduction 

The invariant structure functions which parameterize the deep inelastic scattering cross 
section are related to the densities of quarks constituting the nucleon by the Quark Parton 
Model (QPM)(S ec ion III). Quark Parton Model sum rules are thus consistency conditions t’ 
that relate appropriate integrals of measured quark densities to the total number and charges 
of the constituent quarks. In the following, we review from a phenomenological perspective 
the sum rules and the experimental challenges and tests of certain important sum rules in 
DIS experiments (Sciulli, 1986; Mishra and Sciulli, 1989) 27 Sum rules establish relationships . 
among the total integrated quark and antiquark densities. For simplicity, we consider the 
contributions of the first generation quark densities. (Higher generation quark densities 
generally cancel in the sum rules.) If we denote the total u-quark and d-quark densities by: 

U’ = 
J 0 

l u(x)dx, 

Dp = J 0 
’ d(x)dx , (VI.37) 

it follows from isospin invariance that the total density of the u-quark in the proton must 
be equal to the total density of the d-quark in the neutron: 

U = Up= D, 

D = D, = U, 

u =: i,=:En 

i3 = Dp =un. (VI.38) 

The above simple relationships follow directly from the assigned baryon and isospin quantum 
numbers of the nucleon, and no violation of these relations have been reported to date. 

The experimental challenges in precision tests of QPM sum rule predictions spring from 
two sources: 

(1) Low-x Region: The experiments measure momentum densities of the partons, i.e., 
XQ(X); the sum rules involve integration over the number of quarks. The sums are 
thus obtained by integrating over the measured momentum densities divided by x, 
which weights the low-x region heavily. A good experimental resolution and a good 
understanding of the resolution functions of the measured quantities in the low-x region 
are necessary for accurate tests. 

(2) Relative Normalization: Sum rules involve differences of structure functions or cross- 
sections. The relative normalization between relevant cross-sections, therefore, must 
be accurately measured. Furthermore, as can be seen below, differences often must 
vanish at x = 0, or the sum rule will become divergent. This imposes an additional 
emphasis upon measuring the relative normalization well. 

27For a historical perspective of the DIS experiments, see Sciulli, 1991. 
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VI.G.2 Gross-Llewellyn Smith Sum Rule 

The Gross-Llewellyn Smith (GLS) sum rule is the most accurately tested of sum rules. 
The GLS sum rule predicts that the number of valence quarks in a nucleon, up to finite 
Q2 corrections, is three (Gross and Llewellyn-Smith, 1969; Beg, 1975). It involves an in- 
tegration over the non-singlet neutrino structure function, x F~(x, Q2)/x, which is obtained 
by subtracting the antineutrino differential cross section on an isoscalar target from the 
corresponding neutrino cross section. In the QPM, the GLS sum rule is: 

SGLS = 
/ 

1 xFN 
o +dx=(U-v)+(D-D)=3. 

To verify this result, see Eq. (111.44), recall that Fcvh) = FcW+“) for h = p, n and use isospin 
invariance, Eq. (VI.38). The integrand of the sum rule is the coefficient of 1 - (1 - y)2 in 
the difference of the two differential cross sections. 

The effects of scaling violations modify this sum rule. Perturbative QCD predicts a 
calculable deviation of the GLS sum rule from 3. In next-to-leading order, So,s is given by: 

SGLS = I-m+$+o(Q-4) . 
7r 

(VI.40) 

The QPM relates the parity violating structure function, xF3, to the valence quark density 
of the nucleon, and the sum rule follows. The second term in the equation corresponds to 
the known perturbative QCD correction, while the third term corresponds to an estimate of 
power suppressed (twist-4) contribution to the sum rule (Iijima, 1983). Using perturbative 
QCD with AQ~D = 200 MeV the sum rule therefore predicts Sor,s = 2.66 at Q2 = 3 (GeV/c)2. 
The order a, result may be derived from @*) in Eq. (VI.6). This computation is greatly 
simplified by using the fact that the integral from 0 to 1 of a plus distribution vanishes. 

Due to the l/x weighting in the integrand, the small x region (x < 0.1) is particularly 
important; 90% of the integral comes from the region x 5 0.1. It follows that the most 
important issues to assure small systematic errors are (a) accurate determination of the 
muon direction; and (b) accurate determination of the relative F/v flux. Since x F3 is obtained 
from the difference of u and F cross-sections, small relative normalization errors can become 
magnified by the weighting in the integral. The absolute normalization uses an average of 
v-N cross-section measurements. 

As an example, in the CCFR measurement of S GLs, the values of x F3 are interpolated or 
extrapolated to Q$ = 3 (GeV/c)2, which is approximately the mean Q2 of the data in the x- 
bin which contributes most heavily to the integral. The resulting x F3 is then fit to a function 
of the form f(x) = Axb(l - x)’ (b > 0). The integral of the fit weighted by l/x gives SoLs. 
The estimated systematic error due to fitting on SoLs is f0.040. The dominant systematic 
error of the measurement comes from the uncertainty in determining the absolute level of 
the flux, 2.2%. The other two systematic errors are 1.5% from uncertainties in relative i7 to 
u flux measurement and 1% from uncertainties in muon energy calibration. The reported 
CCFR value for SGLS is (Leung et al., 1993; Leung, 1991): 

SGLS = J 1 xFuN 
ldx = 2.50 f 0.018( stat.) f 0.078( syst.) 

I 2x 
(VI.41) 
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The theoretical prediction of S GLs, for the measured A = 213f 50 MeV from the evolution of 
the non-singlet structure function, is 2.66 f 0.04 (see Eq. (VI.40)). The prediction, assuming 
negligible contributions from higher twist effects, target mass corrections (Mishra, 1990b, 
summarized in Brock, Brown, Corcoran and Montgomery, 1990) and higher order QCD 
corrections, is within 1.8 standard deviations of the measurement. The current status of 
Sor,s measurements is shown in Fig. 31. 

The 3% accuracy of the GLS sum rule at Q2 = 3 GeV2 raises theoretical concerns on 
nonleading contributions, which are discussed in Iijima, 1983 and Shuryak and Vainshtein, 
1981. 

VI.G.3 Adler Sum Rule 

The Adler sum rule predicts the integrated difference between neutrino-neutron and 
neutrino-proton structure functions. Unlike the GLS sum rule, this sum rule is expected 
to be exact for the leading twist term; that is, there are expected to be no perturbative 
corrections with higher powers of a,. This is because its derivation relies on commutators 
of currents. It states (Adler, 1966) 

s* = 

J 
dx = 1. 

0 
(VI.42) 

The vanishing of the one-loop correction to SA follows immediately from the fact that 
C~vq’(x)/x in Eq. (VI.6) is a plus distribution. In terms of the total number of u- and 
d-quarks, the sum rule implies (see Eq. (111.42)): 

SA = 
J 

‘[dn(x) + in - dp(x) - zp(x)] dx 

=: d,+TL -Dp-Up 

= (U-r)-(D-n) (VI.43) 

The prediction follows from the last equation. 
The WA25 (BEBC) collaboration (Allasia et al., 1984; Allasia et aZ., 1985) has used 

neutrino data on a light target to obtain this sum rule. Their measurement, averaged over 
1 < Q2 < 40 (GeV/c)2 and assuming the Callan-Gross relation, yields: 

SA = 1.01 f 0.08 (stat.) f 0.18 (syst.), (VI.44) 

which is consistent with the prediction at the 20% level. Figure 32 presents the WA25 
measurement of SA at various Q2 cuts. It should be pointed out however that the WA25 
collaboration used a value for the total UN cross section which is lower than the current 
consistent value (see Blair et al., 1983, Berge et al., 1987). The central value of the sum rule, 
therefore, should be adjusted: S* = 1.08 f 0.08 f 0.18. 

The Adler sum rule is particularly difficult to test accurately. Obtaining statistically ac- 
curate neutrino data on a light target would require a very intense neutrino beam; good low-x 
resolution, and accurate relative normalization between proton and neutron (deuterium) tar- 
gets impose additional constraints. No new effort is in view to improve upon the present 
20% measurement of SA. 
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VI.G.4 Gottfried Sum Rule 

The Gottfried sum rule is the “Adler sum rule analogue” for charged lepton probes. The 
sum rule involves the difference of F2 measured in proton and neutron targets using a muon 
beam (Gottfried, 1967): 

J 1 SG = ($P - Jg”) 
0 X 

dx = 5 + correction. (VI.45) 

As in the case of the Adler sum rule, it is instructive to express this sum rule in terms of 
contributions (integrals) from individual quark densities (see Eq. (111.31)): 

SG = f [4(u~ + sr,) + CD, + -Li,) - 4(Un + T,,) - (D, + En)] 

= - ;[(U+il)-(D+B)]. (VI.46) 

There are no one-loop corrections from the Wilson coefficients of Eq. (VI.6). If one assumes 
(Mishra and Sciulli, 1989) that the total number of anti-up and anti-down quarks inside a 
proton is the same, i.e., u = D, then the sum rule predicts a value of l/3. 

The corrections to the Gottfried sum rule come both from higher order perturbative 
corrections and from violations of the assumption that g = ‘Is. 

It is the assumption r = n inside the proton that is seriously impugned by the recent 
NMC measurement of S, (NMC, 1991). B e ore discussing the experiment, let us analyze f 
the of contribution of various quark species to SG. 

When written in terms of u- and d-quark contributions, this is the first sum rule where the 
contributions of quark and anti-quark of the same type add - for all other sum rules, Gross- 
Llewellyn Smith, Adler, Bjorken, the contribution of say u-quark and antiquark subtract. 

There is no Q priori reason to believe that the total number of il be the same as d inside 
a proton. That the proton has 2 valence u-quarks, and 1 valence d-quark implies that the 
number of u-ii pairs will be less than the corresponding number of d-d pairs in the nucleon 
sea - the suppression of u-quarks in the sea will be due to the exclusion principle (Field 
and Feynman, 1977). Isospin symmetry does not predict equality. Use of the Adler sum rule 
Eq. (VI.43), h owever, enables So to be cast in the form: 

SG = - ;[(U-u)-(D-D)]+;[(g-B)] 

= ;+;[(u-D)]. 

In addition, there is a small violation of SC = l/3 caused by perturbation theory. If 
?? = D at some initial Qs, then the one-loop Altarelli-Parisi evolution does not alter this. 
The one-loop Wilson coefficient does not give a correction to the sum rule: the calculation is 
the same as for the Adler sum rule. But graphs of order a: generate both a Wilson coefficient 
that corrects the sum rule and an evolution that generates a nonzero value for u = D. Ross 
and Sachrajda, 1979 showed that this effect is numerically small. 

If u < i?, then it follows that SG < (l/3). Th’ is was found by the NMC (NMC, 1991). 
Prior to these data, earlier measurement lacked precision in the critical low-x region to 
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provide a conclusive test of the sum rule. The So measurements by the SLAC (Bodek et al., 
1973), EMC (Aubert et al., 1987), and BCDMS (BCDMS Collaboration, 1990a; BCDMS 
Collaboration, 1990b) groups were all consistent with the naive prediction of (l/3) within 
their large errors (typically 20%). The earlier measurements, however, did show consistently 
a central value of SG that was lower than the prediction. The NMC experiment had the 
commensurate statistics and resolution in the low-x region enabling them to measure well 
Z$/Z$ ratio down to small values of x (Allasia et al.. 1990). Using this measured ratio, and 
the world-average of Fz(Deuterium), they obtained Z$ - Z$: 

Z’$ - q = 2Fs(Deuterium) x 
l-m% 
1+5/G’ 

(VI.48) 

The NMC measurement of (q - q) dark-symbols (right-scale), and that of the corre- 
sponding integral, J(g - q)d x, as open-symbols (left-scale) are shown in Fig. 33. as a 
function of x. The “circles” and “triangles” are two distinct methods of obtaining these 
data; their agreement reveals consistency. The lowest measured x-bin was 0.004; and over 
the measured x-region, they reported: 

1 SG I$") = J (qp- dx = 0.227 f 0.007 f 0.014 for 0.004 2 x 5 0.8. 
0 X 

The measured x-dependence, just like that of xF3 in the GLS measurement, is consistent 
with a power-law fit in x. This fit could be extrapolated to the unmeasured region in x 
below 0.004. The corrected sum rule is: 

SG = 0.240 f 0.016 for 0 5 x 5 1. (VI.50) 

This precise measurement of SG is more than five-standard deviations higher than the naive 
prediction of l/3. 

The discrepancy has engendered a lot of interest. Some authors have postulated large 
asymmetry in the nucleon sea (Preparata, Ratcliffe and Soffer, 1991); others have attributed 
the cause of disagreement to extrapolation to the unmeasured region in x (Martin, Stirling 
and Roberts, 1990). Eichten et al., (Eichten, Hinchliffe and Quigg, 1992; Eichten, Hinchliffe 
and Quigg, 1993) h ave interpreted this discrepancy as due to higher-twist effects involving 
the coherent coupling of quarks to pions. That there is an asymmetry in u- versus d-sea in 
the proton is not surprising; perhaps the startling feature is the possible magnitude of the 
asymmetry. 

VI.G.5 Bjorken Sum Rule 

Polarized hard scattering is a rich subject, with many recent developments2s. Here we 
discuss the extra structure functions that exist in polarized deep inelastic scattering. For a 
spin half target, there are two polarized structure functions, gi and gz. QCD predicts that 
g2 is higher twist and therefore gives a small contribution to the cross section. The only 
measurements to date are of gi: for polarized protons at SLAC (Alguard et al., 1979; Baum 

2sReferences to recent work can be found in Collins, Heppelmann and Robinett, 1991 and in Bunce et al., 
1992. See also Hughes and Kuti, 1933. 
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et al., 1983) and by EMC (EMC, 1988; EMC, 1989), and recently for polarized deuterium 
by SMC (Spin Muon Collaboration, 1993). Data on polarized 3He has been obtained by the 
El42 experiment at SLAC (E142, 1993). N ew data on polarized protons has been reported 
by the SMC, 1994. In the near future more data will come from experiments at SLAC and 
from the SMC. 

Consider the scattering of polarized muons (or electrons) off a polarized nucleon, with 
the axis of the polarization being the collision axis. We let a( rt) (a( tl)) be the cross section 
when the target polarization is parallel (antiparallel) to the beam polarization. Then 

d*[dtt) - 4l>l 
dxdy = &(l - d2)g&,Q), (VI.51) 

where we have dropped terms that are suppressed by a power of Q2 in the Bjorken limit. 
The perturbative QCD prediction for gr is 

91(x, Q> = f r: f eg+: - 4;) + ow 7 (VI.52) 

where the O(os) and O(c$) corrections are known (Kodaira et al., 1979; Kodaira, 1980; 
Zijlstra and van Neerven, 1994). Here, 4: (4:) re p resents the number density of partons of 
flavor f that are polarized parallel (antiparallel) to the initial hadron. 

The Bjorken sum rule (Bjorken, 1966; Bjorken, 1970) relates the difference between g1 
for the proton and neutron to the nucleon vector and axial vector couplings gv and gA 

SBj E rp - r; = 
J o1 I934 - 9x41 dx 

= 0.191 f 0.002, (VI.53) 

where I’i denotes the first moment of 91. The Wilson coefficient has been calculated to 
order c$ by Larin and Vermaseren, 1991. The sum rule arises because the first moment 
of a polarized quark density plus the antiquark density is the expectation value of an axial 
current operator: 

Af +#; - qb;+qfi;- #dr. = (n’ldrr+r,~rl;v)/(2P+). 

The Bjorken sum rule is a firm prediction of &CD, since it rests on established pertur- 
bative methods and on isospin invariance. It has been tested at low accuracy by Spin Muon 
Collaboration, 1993. With the aid of the EMC result (EMC, 1988; EMC, 1989) 

I’l;(EMC) = 0.114 f O.O12(stat.) f O.O26(syst.), (VI.55) 

the SMC deuterium data give 

Iy(SMC)= -0.08 f O.O4(stat.) f O.O$(syst.), (VI.56) 
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so that 
Suj(SMC) = 0.20 f O.O5(stat.) f O.OFj(syst.), (VI.57) 

in agreement with the theoretical prediction Eq. (VI.53) 
Ellis and Jaffe (Ellis and Jaffe, 1974) derived sum rules for & and gr separately. Their 

critical assumption was that the strange quarks in the nucleon are unpolarized, so that in 
the notation of Eq. (VI.54) As = 0. This hypothesis is plausible but it is by no means a 
prediction of &CD. In addition, the derivation used flavor SU(3) symmetry to relate the 
nonsinglet matrix elements in the operator product expansion to semi-leptonic decay rates 
of strange baryons; this is less accurate than isospin invariance. Modern values then predict 
(EMC, 1988; EMC, 1989) 

I’;(EJ) = 0.189 f 0.005, I’;(EJ) = -0.002 f 0.005. (VI.58) 

The EMC and SMC results, as shown in Fig. 34, violate the Ellis-Jaffe sum rules. For 
the proton moment, the latest SMC value (SMC, 1994) is I’: = 0.136 f 0.011 f 0.011. For 
the neutron, Spin Muon Collaboration, 1993 reports I’; = -0.08 f 0.04 f 0.04, while E142, 
1993 reports l?; = -0.022 f 0.011. 

An analysis of the data available in mid-1993 was made by Ellis and Karliner, 1993. Since 
some of the data is at rather low Q*, they included an estimate of higher-twist correction by 
Balitsky, Braun and Koleshichenko, 1990, with the result that 

Au = +0.80 f 0.04, Ad = -0.46 f 0.04, As = -0.13 f 0.04. (VI.59) 

Taken at face value, these numbers imply that the strange sea quarks have substantial 
polarization and that the quarks carry a small fraction of the spin of the proton (since 
Au + Ad + As = 0.22 f 0.10). 

It is possible to evade this conclusion: for example, one may question the direct identi- 
fication of the Af’s in Eq. (VI.59) with spin fractions carried by quarks in a quark model 
wave function (Efremov and Teryaev, 1988; Carlitz, Collins and Mueller, 1988; Altarelli and 
Ross, 1988). Then there could be a large spin asymmetry in the gluons. In any event, if 
the violation of the Ellis-Jaffe sum rule continues to be confirmed, then it implies some sur- 
prising features of the nucleon wave function and of the associated nonperturbative physics. 
There is interesting work still to be done (Collins, Heppelmann and Robinett, 1991; Bunce et 

al., 1992; Hughes and Kuti, 1983), particularly in a flavor separation of the spin dependent 
parton densities. 
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VII Electroweak-Induced Hard Hadron-Hadron Cross 
Sect ions 

The factorization program is fully realized in hadron-hadron cross sections. The under- 
lying hard scattering may be initiated by electroweak interactions, as in Drell-Yan or direct 
photon production, or may be pure QCD processes, as in jet and heavy-quark production. 
In this section, we discuss hard scattering corrections in the simplest electroweak processes. 

VI1.A Hard-Scattering Corrections in the Drell-Yan Cross Sec- 
tion 

The Drell-Yan process was introduced in Section 1II.D. We will present the one-loop 
correction, noting that the inclusive Drell-Yan cross section is probably the only realistic 
hadronic cross section that is simple enough to present in detail. For definiteness, we limit 
ourselves to the purely electromagnetic process. 

The basic factorization theorem for the unpolarized cross section was introduced in Sec- 
t,ion IV.C.l and illustrated in Fig. 12. Since the electromagnetic production of lepton pairs 
by a virtual photon only involves lowest order QED, the angular dependence in 8 and 4 
can be calculated later. Although Eq. (IV.38) holds for the double differential cross section, 
the generalization is straightforward, and here we only consider the corrections to the single 
differential cross section da/dQ* written in the form 

da@, Q*> 
dQ2 =C/,' drlailQ~ildz S(T/~A~B - z> 

a,b 

x 4a/A(??A 7 P)Hab ( zy aa( dbbjB(qB, cl> 7 (VII.1) 

where the parton-parton cross section Hab is evaluated at the scaled variable z = Q*/~A~Bs, 
with fi is the center of mass energy of the hadron-hadron system . The theoretical justifi- 
cation for this result is analyzed in Collins, Soper and Sterman, 1989. 

The hard scattering cross section Hab has a perturbative expansion in a, of the form 

Hab = (H$) + 3 ff:;) + - * *) . 
7r 

(VII.2) 

In lowest order of perturbation theory, the only channel allowed is q + ij + y*, where q 
labels a quark with charge QQ and the photon is virtual. H(O) is therefore given by the 
parton-model (Born) cross section. At higher order we proceed as in Section V1.A for DIS. 
The hard-scattering cross section is independent of the nature of the external hadrons, so 
we can compute it from Eq. (VII.l) by considering a particular case: namely we apply 
Eq. (VII.l) to the parton-parton reaction. Then the functions 4(q) measure the parton 
content of the external partons. In this case, the quantity on the left-hand-side is an n- 
dimensional scattering cross section which contains poles as E --f 0. As in DIS, perturbative 
expansions for the distributions &/j enable us to solve for the hard scattering functions H. 

In O(CX,) we have to consider both the virtual corrections to this basic vertex diagram 
and the gluon bremsstrahlung reaction q + 4; -+ y* + g. In addition there are new channels 
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q+g -+ q+y* and q+g + ij+r*. The latter reactions are very interesting from the 
experimental point of view, because they make the cross section sensitive to the gluon density 
in the hadron. 

VII.A.l O(a,) Corrections to the Drell-Yan Reaction 

The calculation of one-loop corrections proceeds much as for DIS. The cut graphs are 
shown in Fig. 35. We recognize that they are the crossed versions of the diagrams for deeply 
inelastic scattering. 

If we regularize the ultraviolet and infrared divergences by working in n dimensions, then 
all pole terms cancel, apart from the collinear poles due to gluon radiation parallel to the 
directions of the incoming quark and antiquark. As in the DIS cross section, Section VI.D, 
this is the cancellation of final state interactions, which is necessary for the factorization 
theorem Eq. (VII.l) to hold. The remaining collinear divergences can be absorbed into the 
perturbative parton distributions, leaving behind the hard-scattering function. To make 
this explicit, we expand (VII.1) with external partons a and b, to order Q,, using $$(x) = 
6$(1 - x) (Eq. (IV.14)). We find 
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da (‘I 
gypa6 (7, Q2, 4 + ~-$‘;(T, Q2, E) = 

a 

H$)(T, Q2, E) + :&:)(T Q2, 4 
dwf($,(m, +::)(q Q2, E) . (VII.3) 

Thus, to extract the one-loop hard scattering, we need the (regulated) one-loop cross section 
and the (regulated) one-loop parton distributions, given in Section V1.B for the MS and DIS 
schemes. Actually, because Hz) ’ 
Eq. (111.62)) 

is nonzero only for quark-antiquark scattering, with (see 

l@(z) = Q;$b(l - z) , (VII.4) 

we only need 4;: = &\ and +f,L = $!$L at this level. A s usual, we denote the number of 
colors by N. 

The explicit quark-antiquark cross section at one loop is given by 

Q4 
( > - ~ -$$),Q2,4 = Q;$ (s)(F)’ 

x{ - (i - w)Pg + w$yx)} ) 
where (with c(2) = r2/6, see Eq. (V.3)) 

W”-‘(X) QP = S(1 - 4CF[W - 41 
X2 

+CF[42)1(2)-2(l+X)ln(l-z)-(II+ I)ln2]. - 

(VII.5) 

(VII.6) 

Pii) is the one-loop evolution kernel (splitting function) given in Eq. (VI.7), and we define 

x&(z) = [‘““;(‘;“], . (VII.7) 

Note that we take E s 2 - n/2. Other conventions, of course, change the formulas somewhat. 
The other partonic reaction Q + g + y + Q, which starts at O(a,), gives 

a, da 0) ( > - ~ w 
Q!? 

hQ2,4 = Q&(T)($)’ 

x{ - ;(; - YE)P$) + zu~~‘(X)}) (VII.8) 
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with 

w$)(x) = C,[(l - 2x + 2x2) In (I :x)2 + i(3 + 2x - 3x2)] , (VII.9) 

where again Pii) is the one-loop splitting function. 
The determination of the one-loop hard scattering functions is now a simple matter. For 

“m’ distributions (Eqs. (VI.8) and (VI.9), for instance), we use 

@a/b(x,E) = habb(l - x> - ~ 2T a/b %qx) + O(af), (VII.10) 

in which the residues of the pole terms are the splitting functions. Substituting Eq. (VII.10) 
into the general expanded formula Eq. (VII.3), and comparing the results with Eqs. (VII.5) 
and (VII.8), we find simply, 

fpy) (1) = “qij , 
fgl) = wig’ . 

(VII.11) 

(VII.12) 

For the DIS scheme, the parton distributions, Eqs. (VI.ll) and (VI.12), are a bit more 
complicated, because they have picked up various infrared safe corrections from the one- 
loop deeply inelastic scattering cross section. The principles are the same, however, and 
we find in this scheme (Altarelli, Ellis and Martinelli, 1978; Altarelli, Ellis and Martinelli, 
1979; Kubar-AndrC and Paige, 1979; Harada, Kaneko, and Sakai, 1979; Abad and Humpert, 
1979; Humpert and van Neerven 1981), 

&{(I + z”)D&) + 30, + (T + 1)6(1- 2) - 6 - 4~) , 

Both Eqs. (VII.12) and (VII.13) provide absolute predictions for the Drell-Yan cross 
section, when combined with parton distributions in Eq. (VII.l). It is important, of course, 
to use distributions that have been determined in the corresponding scheme, usually from 
deeply inelastic scattering (see Section III). As a practical matter, the hard scattering 
corrections at one loop turn out to be substantial; sometimes as large as the zeroth order 
(parton model) cross section. This is the theoretical side of the “K-factor” problem for Drell- 
Yan (see below). In Section VI1.C we shall see that the experimental situation is consistent 
with large perturbative corrections relative to the parton model. Considerable progress 
has been made in understanding the origin of large corrections for values of r = Q2/s not 
too small (Sterman, 1987; Appell, Mackenzie and Sterman, 1988; Catani and Trentadue, 
1991; Contopanagos and Sterman, 1993), (P arisi, 1980; Curci and Greco, 1980; Magnea and 
Sterman, 1990), but it is fair to say that the problem is not yet solved . 

VI1.B Drell-Yan at Two Loops 

Along with DIS, the inclusive Drell-Yan cross section has been fully analyzed at two 
loops in a series of papers by van Neerven and his collaborators, in both the DIS scheme 
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and the MS scheme (Zijlstra and van Neerven, 1991; Zijlstra and van Neerven, 1992; van 
Neerven and Zijlstra, 1991; van Neerven and Zijlstra, 1992; Matsuura, van der Marck and 
van Neerven, 1989; Matsuura, Hamberg and van Neerven, 1990; Hamberg, van Neerven and 
Matsuura, 1991; Matsuura, 1989; Hamberg, 1991). The full results for the hard-scattering 
functions at two loops are quite lengthy; but it is perhaps useful to exhibit here the full 
plus and delta-function distributions, as they occur in the quark-antiquark two-loop hard 
scattering function: 

H(‘)‘S+V(z) = (z)2b(1 - 2) wl 

x{ CA&[ [ y-24<(3)]ln (9) -illn2($) 

-?~(2)~ + yc(2) + 28C(3) - 9 18 - 32[(2) ] In2 

+ [ 24c(2) + 1765(3) - 93 ] In + ;c(2)2 - 70<(2) - 60[(3) + y 1 

- yD2(z) + [ y - 32<(2) ] D&) + [ X<(3) 

+ [ 1921>2( z) + 96Di( r) - (128 + 645(2))Do( z) ] In (g) 

+128%(z) - (128{(2) + 256)2)&) + 256C(3)Do(z)] 

+nfcf? iz)O( z) In2 ($) + [ ?fDl(r) - $fDf~(z)] In ($) 

+~/02(z) - +3,(2) + (g! - ~@)PoW ] ’ (VII.14) 

To these results are added various smooth functions of the variable z. We may note that 
it is only in quark-antiquark scattering that distributions occur that are singular at z = 1. 
Note that there are plus distributions up to Ds(z). 

VI1.C Drell-Yan Cross Sections: Experimental Review 

The production of dileptons in high energy collisions has been a staple of all hadron 
machines in the world for more than two decades. Lepton pairs in hadronic collisions were 
first observed at Brookhaven by Lederman and his group (see Christenson et al., 1973 and 
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Lederman and Pope, 1971). See Fig. 36 for the invariant mass spectrum of this original 
experiment. This early experiment was conceived as a scheme for searching for the carrier 
of the charged weak process, the intermediate vector boson (IVB). This technique has con- 
tributed greatly to the high energy physics landscape, including: the discovery of two new 
quarks (more below), as a source of information on parton distributions of the nucleon, as 
the essentially sole arbiter of parton distributions of mesons, and as a benchmark for a host 
of naive parton model predictions as well as sophisticated QCD calculations. 

VII.C.l Massive Photon Production 

The parton-model picture of the Drell Yan reaction has been described above in Section 
1II.D. In the collision of, say, two protons, a quark from one proton seeks out and annihilates 
with an antiquark from the other proton to form a single, off-shell photon which subsequently 
converts into the observable lepton pairs. The term “Drell-Yan” has been extended to include 
the production of any spin-l virtual particle produced by electroweak interactions. 

GeneruE experimental techniques. The choice of experimental technique depends on the 
physics and the beam configuration. Because of the low cross section, and of the desirability 
for high rate studies of a continuum cross section, fixed target experiments at the highest 
available energies or colliding beam experiments utilizing the highest possible luminosities 
are advantageous. At Brookhaven, the original fixed target experiment with incident nucleon 
and pion beams was utilized to produce dimuon pairs. At Fermilab, Brookhaven, and CERN, 
such experiments were carried out for many years, only recently culminating with E605 at 
Fermilab. It was with electron pairs, however, that the Brookhaven experiment discovered 
the J/$ in a follow-up to the original dimuon approach. Electrons were used with this 
double-arm spectrometer because of better mass resolution (a few percent). For a review of 
this experiment, see Ting 1977. 

Simultaneous with the early fixed target experiments, the CERN ISR mounted experi- 
ments using the collision of two proton beams in the center of mass. Presently, the tradition 
of high energy colliding hadron beams is active with the final analysis of the CERN SPS 
facility and with the ongoing Fermilab Tevatron program, both proton-antiproton colliding 
beam machines. This tradition should be continued into the anticipated proton colliding 
beam facilities such as the LHC. 

Because of the high intensities necessary, most fixed target experiments have concen- 
trated on muon final states. The production of background leptons from decays and of the 
“punchthrough” of interaction and beam-related particles can be suppressed through the 
utilization of heavy hadron absorbers directly downstream from the target. Muons traverse 
such dumps with ease and may be momentum analyzed in a magnetic spectrometer, while 
electrons would be totally invisible. The negative feature of such an approach is that the 
momentum resolution for muons is degraded through multiple scattering (by about 15%). 
Large air-core, rather than iron, magnets have been used to suppress this degradation. Col- 
liding beam experiments are much cleaner in this regard and have concentrated on the better 
resolution obtainable with electromagnetic calorimetry. Consequently, early IVB production 
experiments, and the early ISR experiments were able to concentrate on electron final states, 
and key universality tests were performed in the early days. At the highest energies, and 
in the forward direction, where backgrounds from decays are severe, electron measurements 
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are still superior, as generally iron toroids are utilized for muon analysis in these regions. In 
either approach, mass resolution is important in order to distinguish the continuum from the 
resonant dilepton states or, as is the case with the IVB experiments, to precisely measure 
the mass of the decaying particle. 

Significant results. Among the notable achievements utilizing this technique of looking 
at dilepton final states are the discovery of new quark species, determination of parton 
distributions, and the measurement of the normalization of the cross section. 

New quarks. Production of dileptons have served well as the indicator for the qq resonant 
states - the ‘onia’ of charm and beauty, in particular. Most recently, the technique was 
extended to the highest energies and resulted in the discovery of the bottom quark resonant 
state, Y. Of course, the original discovery, at both SPEAR and Brookhaven, of the J/q 
was nearly scooped by the original Drell-Yan Brookhaven experiment which missed the 
interpretation of a shoulder in the invariant mass spectrum (Fig. 36). This story is one of 
the famous tales of high energy physics. 

Parton distributions. The earliest utility of continuum dilepton production was as an 
important test of the parton model and, with the acceptance of the parton model, determi- 
nation of the momentum distributions of the partons participating in the collision, especially 
the quark “sea”. 

NucEeon distributions. With incident proton beams, the parton distributions of the proton 
can be extracted in a manner not dissimilar from the procedure in deeply inelastic scattering. 
Through the comparison of incident proton and antiproton beams, NA3 at CERN was able 
to extract both the valence and sea quark momentum content. 

By parameterizing a scaling set of valence and sea distributions by shape parameters, 

u(x) = Ax*(l - x)p” 
d(x) = 0.57u(x) 

SC4 = C(1 - x)B’ 

NA3 found (see Grosso-Pilcher and Shochet, 1986) the results in table VII.l. For comparison, 
the CDHS results from neutrino scattering are also shown as are the results of E288 from 
Fermilab, which made DIS-inspired parameterizations of the valence distributions. 

CDHS NA3 E288 
a 0.51f0.07 0.60f0.08 
,Ov 2.38f0.09 3.59f0.14 
PB 8.0f0.7 9.03f0.30 7.62f0.08 

Table VII.l. Representative shape parameters for parton distributions (Rutherfoord, 1979). 
Pion distributions. With incident pion beams and assumptions about the nucleon parton 

distributions, NA3 also fit for the parton distributions of quarks inside a pion. Again, they 
parameterized the distributions with a form 

V(x) = Avx”(l - x)~ 

SW = As( 1 - x)~* . 
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They found cr =0.41f0.04 and /?=0.95&0.05. More up-to-date fits to parton distributions 
also employ Drell-Yan data (see Section IX). 

Scaling. The parton model suggests that the cross section for lepton pairs of invariant 
mass Q should scale as a function of the variable, fi = Q/fi. Fig. 37, repreoduced from 
Grosso-Pilcher and Shochet, 1986, shows a variety of data, over a moderate range of fi. 
The scaling behavior is reasonably demonstrated. The cross section below the Z mass at fi 
= 630 GeV is determined to be d = 405f51f84 pb by UA2 (Alitti et aE., 1992a). This is in 
rough agreement with O(oi) calculations. CDF has also measured the integral cross section 
for electron pairs below the 2 mass (see Abe et aE., 1991a). 

The K-factor. The fact that the normalization of the cross section in the parton model 
is off by substatial factors is consistent with theoretical results (see Section VII.A.l). Ta- 
ble VII.2 shows a variety of experiments and their measured “K-factor” - the correction 
required of the naive theory to match the data. 

Group Beam/target cm Energy K 
E288 p/Ft 27.4 1.7 
E439 P/W 27.4 1.6f0.3 
CHFMNP P/P 44,63 1.6f0.2 
AABCSY P/P 44,63 1.7 
NA3 p/Ft 27.4 3.1f0.5f0.3 
E537 P/W 15.3 2.45f0.12f0.20 
NA3 

(p~~~~” 

16.8 2.3f0.4 
NA3 16.8 2.49f0.37 

22.9 2.22f0.33 
E326 71/w 20.6 2.70f0.08f0.40 
NAlO dW 19.1 2.8fO.l 
Goliath r/Be 16.8J8.1 2.5 
Omega r/w 8.7 2.6f0.5 

Table VII.2. K Factors for dilepton experiments (Grosso-Pilcher and Shochet, 1986). 
As can be seen, the discrepancy is typically large, a factor of 2 or more. As we have seen 
above, however, even the lowest-order correction is quite large, at least in the DIS scheme, 
where K - 1 + 2~,/3 m 1.6 for QI, N 0.3, appropriate for pair masses of a few GeV. 
Clearly, concerns about the usefulness of the perturbation series were understandable, until 
it was discovered that, for the dominant vertex corrections, the series exponentiates for all 
orders. The series is then expressible as K + e2raa/3 = 1.8 (Altarelli, Ellis and Martinelli, 
1979; Parisi, 1980). That the major part of the discrepancy is explained in this fashion 
is comforting, but the problem is not fully solved. Nevertheless, considerable theoretical 
progress has been made recently to organize the full set of relevant corrections (Sterman, 
1987; Appell, Mackenzie and Sterman, 1988; Catani and Trentadue, 1991; Contopanagos and 
Sterman, 1993). Other sources of the discrepancy have also been proposed. The contribu- 
tions of very low x regions, below the accessible data used for the parameterizations, could 
be important since much of the cross section could still be “hidden” in that region. Also, 
corrections for Fermi motion in the heavy targets and the pion parton distribution shapes 
can be invoked. Most important, probably, is the uncertainty in the normalization of the 
data, which could be in the tens of percent. 
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VII.C.2 W and 2 Production 

While one of the original motivations for using dilepton final states was a search for 
the intermediate vector boson (IVB) of the conventional weak interaction, it was many 
years before its discovery was realized. Now, the production of both W and Z bosons 
forms an important part of the experimental program of all of the highest-energy colliders. 
The language used is that of the original Drell-Yan prescription, with only electroweak 
modifications. 

The importance of W and Z production is many-faceted. Primarily, the precise determi- 
nation the W mass is of utmost importance in the program of global electroweak parameter 
determination. The production of IVB plus hadronic jets serves as an important laboratory 
for QCD measurements. The analysis of the V-A asymmetry in W decays is a sensitive 
measure of parton density functions. Finally, the observation of W’s is among the clues for 
the uncovering of the top quark (Abe et al, 1994). 

GeneraE experimental techniques. The three major detectors which have or will have 
impact on the physics issues listed above are UA2 at CERN, CDF and DO at Fermilab. 
The UA2 and DO detectors feature precision calorimetry and no magnetic field measurement 
capability, save for muons. CDF, on the other hand, has a central superconducting solenoidal 
field which aids in electron identification (by comparing the calorimeter and momentum 
determination for the same presumed electrons) and allows for muon momentum analysis 
without iron, except as a filter. 

In most cases, precision mass determination experiments are done in the electron channel. 
Only CDF, with its solenoidal field momentum determination for muons, is able to perform 
a precise mass measurement, using muons uncompromised by multiple scattering errors 
inherent in iron toroids. For UA2 and DO, only precision electromagnetic calorimetry is 
available. 

UA2 has completed its runs, while CDF and DO are in the course of a long period of 
experimentation at the Tevatron. The total data accumulated by UA2 was 13pb-’ and by 
CDF up to the fall of 1992, about 5pb-‘. While it played the leading part in the initial IVB 
discovery, UAl did not have a significant role in the precision mass measurements. 

Recent determinations from these experiments include (Abe et aZ., 1990b; Abe et al, 
1991b; Alitti et al, 1990; Alitti et al., 199213; Zhu, 1993): 

CDF w&> = 79.91 f 0.35 f 0.24 f 0.19GeV 
mw(p) = 79.90 f 0.53 f 0.32 f 0.08GeV 

UA2 mw(e) = 80.35 f 0.33 f 0.17 f 0.81GeV 
DO w4P> = 79.86 f 0.16 f 0.20 f 0.31GeV 

Here, the first error is statistical, the second is systematic, and the third is the energy scale 
uncertainty. For UA2, the quantity measured is the ratio of the W mass to that of the Z mass, 
thereby canceling the scale uncertainly. They find m(W)/m(Z) = 0.8813 f0.00336f 0.0019. 
They extract m(w) by scaling with the LEP value of m(2) = 91.175 f 0.021 GeV. The 
systematic errors for both experiments are really statistically limited by the paucity of Z 
events. 

Running of cr,. The UA2 collaboration has expended considerable effort in a determina- 
tion of the strong coupling, (Y,. They determine, in a comparison of W + 1 jet to W + 2 jet 
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events, cy, = 0.123 f 0.018 f 0.017 (A nsari et al, 1988; Alitti et al., 1991b). Here, the first 
error is statistical, the second is experimental systematic (including parton distributions). 
This result is very dependent on Monte Carlo simulation and an independent determination 
of the parton densities required by the Monte Carlo. The relatively small value of cy, ob- 
served at these high momentum scales is evidence that the coupling is indeed asymptotically 
free (Section II.D.2). 

VI1.D Direct Photons: Theory 

In this section an overview of some of the relevant theoretical issues for direct photon 
production will be presented. A more detailed review can be found in Owens, 1987. As 
noted previously (Section III.E), a calculation of direct photon production starts with the two 
0( ocr,) subprocesses gq + yq (Compton) and qij + yg (annihilation). For large values of XT, 
these two subprocesses provide the dominant contribution to direct photon production. The 
interplay between the two contributions can be studied by comparing cross sections obtained 
with particle and antiparticle beams. For example, the Compton subprocess dominates in 
pp collisions for large XT, since the antiquark distributions are small in this region. However, 
the annihilation term can be significant in pF collisions, since the ii and 2 distributions 
in the antiproton are the same as the u and d distributions in the proton. Both of these 
subprocesses result in final states which consist of a high-pT photon balanced approximately 
by a recoiling jet on the opposite side of the event. There will be very little hadronic activity 
in the immediate region of the photon. 

For typical fixed target experiments XT is in the range of 0.2 to 0.6 and the above two 
subprocesses provide the dominant mechanism for direct photon production. However, in 
colliding beam experiments it is possible to get to smaller values of XT. For example, at 
fi = 1800 GeV, pT = 18 GeV corresponds to x T = 0.02. Here one can encounter sizable 
contributions from bremsstrahlung processes. In this class of processes, a quark- or gluon- 
initiated jet in the final state radiates a photon in the process of hadronization. This gives 
rise to events with substantial hadronic activity in the general region of the produced photon. 
In the framework under discussion here, one can take this contribution into account by using 
photon fragmentation functions. These give the probability density for a quark or gluon to 
produce a photon which takes a fraction z of the parent parton’s momentum. The simplest 
form for these functions follows from a simple QED calculation which yields 

+&7 Q2> = ei2a z[l + (1 - z)“] ln(Q2/A2), 

and 
+/,(z, Q”) = 0. (VII.16) 

Here Q represents a scale which is characteristic of the transverse momentum of the photon 
with respect to the parent quark, which will typically be on the order of PT. The quantity 
A serves as an infrared cutoff - in typical leading-logarithm calculations it is usually set 
equal to the value chosen for the QCD scale parameter RQ~D which appears in o, and in 
the scale-violating distribution functions. It is possible to calculate QCD corrections to 
the fragmentation functions in Eqs. (VII.15) and (VII.16) that result from gluon radiation 
by quarks and gluons and from the production of qij pairs from gluons. These may be 
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found by using modified forms of the evolution equations for the scale dependence of the 
parton distribution functions. A more detailed discussion of this procedure, together with 
parameterizations of the resulting functions, can be found in Owens, 1987. In addition to 
these calculable parts, there is also the possibility of nonperturbative contributions to the 
photon fragmentation functions. Generally, this type of term is thought to give rise to 
relatively soft photons, since their production would occur late in the parton shower and 
would represent a long distance effect. Vector meson dominance is often used to model this 
component. 

The bremsstrahlung contribution can be calculated using the general factorized cross 
section Eq. (111.76) with all possible two-body quark-quark, quark-gluon, and gluon-gluon 
subprocesses convoluted with appropriate distribution and fragmentation functions. Notice 
that the fragmentation function in Eq. (VII.15) increases logarithmically with the scale Q. 
This feature remains true for the QCD-corrected functions, as well. Thus, the fragmentation 
functions are formally of order o/o,. 
are of order of (such as qq 

When convoluted with subprocess cross sections which 
+ qq, etc.,) one obtains a result which is of order CIICL~. 

The bremsstrahlung contribution falls off more rapidly in XT than do the other lowest 
order contributions. Part of this is due to the extra convolution in z and part is due to 
what is called the trigger bius eflect. The distribution functions tend to fall off faster with 
increasing momentum fraction than do the fragmentation functions. Thus, the most efficient 
way of getting a high-pT photon is to shift towards lower x in the distribution functions and 
higher z in the fragmentation function. This tends to force the photon to have z near one, 
where the fragmentation function is smaller relative to its value in the low-z region. Hence, 
the bremsstrahlung contribution is largest in the region of small XT values typically explored 
at colliders. Often this contribution is suppressed by the use of isolation cuts, which are 
required as part of the trigger in order to efficiently identify photons. The effects of such 
cuts can be modeled by modifying the fragmentation functions. When higher-order effects 
are included in the calculation some care must be used to define the isolation cuts in a 
way which can be simulated in the theoretical calculation. These points are discussed, for 
example, in Baer, Ohnemus and Owens, 1990 and Berger and Qiu, 1991. 

Two calculations of O(oc$) have been presented in the literature and corresponding 
computer programs have been widely distributed. In Aurenche, Douiri, Baier, Fontannaz 
and Schiff, 1984, the inclusive invariant cross section was calculated and the integrations over 
the unobserved partons were done analytically. This results in a relatively fast program, but 
one which can only calculate a small number of observables. In Baer, Ohnemus and Owens, 
1990, a Monte-Carlo algorithm was used for the required integrations, resulting in a program 
which could be used for a greater number of observables, but at the cost of a larger amount 
of computer time. 

One of the reasons for the high degree of interest in direct photon production is that 
the gluon distribution enters it in lowest order. In deeply inelastic scattering the gluon 
distribution contributes to the structure functions only in the next-to-leading order and to 
the slope of the Q2 dependence in leading order. Accordingly, deeply inelastic data are 
sensitive to the gluon distribution only in the region of relatively small values of x, where 
the gluon contribution is comparable to that from the quarks. However, the direct photon 
data are sensitive to the gluon distribution at larger values of x and the inclusion of such 
data into global fits can provide complementary information (Owens and Tung, 1992). Such 
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fits have been done by a number of groups (Aurenche, Baier, Fontannaz, Owens and Werlen, 
1989; Harriman, Martin, Roberts and Stirling, 1990; Botts et al., 1993). The resulting gluon 
distributions are thus constrained both at low and high values of x. 

A process closely related to single photon production is the production of photon pairs. 
It forms a background to a possible Higgs boson signal in the intermediate mass range 
which covers masses from about 80 to 160 GeV. A next-to-leading order Monte Carlo based 
program has been presented in Bailey, Ohnemus and Owens, 1992, and the program has 
been made available. The Monte Carlo nature of the program enables one to simulate the 
effects of various cuts. Thus, predictions can be compared to current data and one can also 
study strategies for Higgs searches and detector optimization. See Bailey and Owens, 1993 
for an example and additional details. Additional discussion and references to earlier work 
are contained in Owens, 1987 and Bailey, Ohnemus and Owens, 1992. 

VI1.E Direct Photon Production: Experiment 

Direct photon production provides an excellent arena both for precision tests of QCD 
and for measurements of gluon distribution functions. In this section, we concentrate on the 
backgrounds to direct photon production and the experimental techniques used to extract 
the signal. There are several reviews to which the reader is referred that examine these 
subjects in more detail (Ferbel and Molzon, 1984; Owens, 1987; Huston, 1990; Aurenche and 
Whalley, 1989). 

The 4-vector of a photon can, in general, be reconstructed with greater precision than 
the 4-vector of a jet. The direct photon is one particle, whose position and energy can 
be well measured in an electromagnetic calorimeter, while a jet consists of a number of 
particles spread out over a fairly wide area of phase space. Jet energy is deposited in both 
electromagnetic and hadronic calorimeters. In addition, there is an ambiguity at some level 
as to which particles belong to the jet and which particles belong to the underlying event. 

On the other hand, the rate for direct photon production is greatly reduced from that 
for jet production, because to lowest order direct photon production is proportional to oo, 

2 while jet production is proportional to as. As a result, the y/jet ratio is typically on the 
order of a few times 10m4. 

Direct photon measurements suffer from potentially large backgrounds, primarily from 
those rare jets in which a large fraction of the momentum of the jet is carried by a single r”, 
and one of the two photons of the r” decay is not detected. Since the r/jet ratio is on the 
order of 10s4, and the jet rate is suppressed by a factor of several hundred if the requirement 
is made that a 7r” take 80% or more of the jet’s momentum, the y/r0 ratio is typically on 
the order of a few percent or a few tens of percent. The value of this ratio depends on the 
kinematic region and, as will be seen later, it also depends crucially on the imposition of an 
isolation cut. The y/r0 ratio is the most critical number in a direct photon measurement. 
If this ratio is too small, then a measurement will not be possible, or at least will be very 
difficult. (Backgrounds can come from other sources such as q + yy, w --$ 7r”y, etc. decays, 
but the bulk (typically >SO%) of the background originates from ~~‘5.) 

There are a number of measurement strategies that are possible, each designed to mini- 
mize the backgrounds from these meson decays. 

Reconstruction. This technique involves simply measuring the positions and energies of 
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the two photons and requiring the resultant mass to be consistent with that of the 7r” or 
7 within experimental resolution. In practice, this technique is applicable mainly for fixed 
target experiments, due to the requirements of a large separation from the interaction point to 
the calorimeter and/or fine lateral sampling. Losses are inevitable, even if the reconstruction 
technique is possible. Consider the energy asymmetry distribution for the two photons from 
a r” from Fermilab experiment E706 shown in Fig. 38 (Alverson et al., 1992). For perfect 
detection, this distribution would be flat from 0 to 1. (A = ,6’ 1 cosO* 1 where 8* is the decay 
angle in the x0 rest frame; since the 7r” has spin 0, the decay distribution should be flat in 
cos 8* .) Experimental measurements show a “rolloff of this distribution at high asymmetry, 
either because the soft photon is outside the acceptance of the calorimeter or because its 
energy is too soft to be measured. There can also be a similar “rollofl” at low asymmetry 
due to the coalescence of the two photons in the calorimeter, which is not present in this 
plot. These losses of x0’s and q’s can cause a significant background to direct photons; 
however, this background can be reliably calculated, given the experimental knowledge of 
the ~~(7) cross sections and asymmetry distributions. In Fig. 39 is shown the y/r0 ratio 
measured in Experiment E706 at Fermilab, along with the calculated background. The 
background-subtracted y/r0 ratio is seen to be in excellent agreement with the leading log 
QCD prediction. Note the rise in the Y/Z-’ ratio as transverse momentum increases. This is 
due to the running of cr, and the effect of the x0 fragmentation function. 

Conversion. The percentage of electromagnetic showers (due to direct photon candidates) 
that convert in the material between the interaction point and the calorimeter (typically l-2 
radiation lengths) can be measured. Showers originating from 7r” or q decays will have a 
conversion fraction larger than that of showers from direct photons. A calculation of the 
amount of material traversed by the photons and the observed conversion percentage allows 
an extraction of the direct photon fraction in the data sample. This technique works best if 
the direct photon fraction of the sample is at least of the same order as the 7r” background. 
Fig. 40 shows the measured conversion probability, in a preshower detector, for isolated direct 
photon candidates in UA2 (Alitti et al., 1992c). Also shown are the expected conversion rates 
if the data sample consisted solely of TO’S or solely of direct photons. Note that the data are 
closer to the photon expectation than to the no expectation, indicating that the y/r0 ratio 
is larger than 1. 

Profiles. Even if the two photons cannot be resolved, a measurement of the lateral and/or 
longitudinal profile of the electromagnetic shower may allow a discrimination between direct 
photons and r”‘s. Showers originating from TO’S appear broader due to the opening angle 
of the two photons. This technique loses effectiveness as the ?r” energy increases, since the 

o opening angle decreases as l/E,. The longitudinal development of direct photon and r” 
showers will also differ as the average energy of a 71’ photon is half that of the direct photon. 
Since the longitudinal development of an electromagnetic shower varies only logarithmically 
with the photon energy, the differences may be subtle. As for conversion, this technique 
works best if the y/r0 ratio is fairly large. 

Isolation. This technique requires that the photon candidate be “unaccompanied” inside 
a cone of a certain radius R(R = dw); typically R = 0.5 - 1.0) centered on the 
photon direction, with q the pseudorapidity and 4 the azimuthal angle. Unaccompanied 
means that the amount of additional energy inside the cone is less than a certain fraction of 
the photon’s energy or less than some fixed scale. The application of isolation discriminates 
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strongly against ~~ events, since a 7r” is usually accompanied by additional particles from 
the fragmentation of the jet. Direct photons from the leading order processes are unaffected, 
since the photon is isolated. Photons originating from bremsstrahlung processes are also 
strongly discriminated against, again because of the presence of a nearby jet. The effect 
of an isolation cut on the direct photon signal can be calculated in a nonleading order 
calculation, of the type described in Section 36 above. Isolation cuts are used for all collider 
direct photon measurements. Application of an isolation cut at the colliders can increase 
the y/r0 ratio from the order of a few percent to on the order of 1 or greater. A leading 
log prediction for the y/?r” ratio for the UA2 kinematic region is shown in Fig. 41 (Bailey 
and Owens, 1993). Note that the inclusive y/r0 ratio is very small (a few percent at low 
transverse momentum) but the imposition of an isolation cut dramatically increases this 
ratio. 

A large amount of data has been taken by many experiments using all of the techniques 
discussed above (Ferbel and Molzon, 1984). Good agreement is found with the predictions 
of perturbative QCD, with the possible exception of the low xt(= pt/fi) data of CDF and 
UA2. Some of this direct photon data has been utilized in parton distribution fits (Aurenche 
et al., 1989; Harriman, Martin, Roberts and Stirling, 1990; Sutton, Martin, Roberts and 
Stirling, 1992; Tung, 1993; Botts et al., 1993) to measure, or at least constrain, the gluon 
distribution function in both protons and pions. The fixed target data are sensitive to gluon 
momenta fractions between 0.2 and 0.6, while the collider inclusive photon data probe the 
region from approximately 0.01-0.25. 

More information about the direct photon event is possible if the jet opposite to the 
direct photon is also measured. The co&* distribution for y + jet events from CDF is shown 
in Fig. 42 The angular distribution is flatter than the distribution for two jet production, due 
to the absence of t-channel gluon exchange diagrams at leading order. Measurement of both 
the photon and the jet completely determines the kinematics of the events, in particular the 
momentum fractions of the incoming partons. This should be useful for parton distribution 
fits, especially for determining the gluon distribution at very small x N (10e3 - 10V4) at 
CDF and DO. 
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VIII QCD-induced Hard Hadron-Hadron Cross Sec- 
t ions 

VII1.A Jet Production in Hadron Collisions 

In this section, we combine ideas developed in previous sections. First, in Section VILA, 
we learned that the cross section to make muon pairs in hadron collisions is determined by 
both short-distance physics and long-distance physics, but that the long-distance effects can 
be isolated in factors that tell the probabilities to find partons in each of the two incoming 
hadrons. The remaining factor, H in Eq. (VII.l), contains only short distance physics. One 
can interpret H as the cross section for the incoming partons to make a muon pair plus 
anything else. The “anything else” here is important: we sum over all final states of the 
hadronic system. Second, in Section IV.A, we saw that in electron-positron annihilation it is 
possible to define cross sections in which certain characteristics of the hadronic final state are 
specified without thereby introducing new sensitivity to long-distance physics. In particular, 
we could define infrared finite jet cross sections. 

Combining these ideas, we expect that one can specify jet cross sections in hadron colli- 
sions such that the theoretical formula for the cross section is factored into parton distribu- 
tion functions that contain long distance physics associated with the initial states and a hard 
scattering cross section that contains only short-distance physics. The general form of such 
a cross section, analogous to Eq. (IV.7) f or electron-positron annihilation, can be written in 
the style of Kunszt and Soper, 1992 as 

(VIII. 1) 

x drll ha--- J J drl,dp, 
ds [n] 

drll dpl - . - drln dpn 
SW. *. ,ptt>. 

(VIII.2) 

Here [A, [B are the momentum fractions of the incoming partons and rl; is the rapidity 
of outgoing parton i, while p; is its transverse momentum. The parton cross sections 
d+]/drll dpl- - . dqn dp, contain delta functions for overall four-momentum conservation. 
The effect of these delta functions is that the total transverse momentum of the outgoing 
partons vanishes, while CA and <B are determined by conservation of longitudinal momentum 
and energy. The “hat” on d6[n] indicates that infrared sensitivity arising from the initial 
state is factored into the parton distributions, as in the Drell-Yan cross section, Eq. (VII.l). 

The functions S, specify the measurement to be made on the hadronic final state. In order 
that this measurement not introduce any sensitivity to long-distance physics (in addition 
to the initial-state infrared sensitivity contained in the parton distribution functions), the 
measurement functions should be “infrared-safe.” That is, they should satisfy equations 
analogous to (IV.lO), 

and 

Sn+lK * - 4 -4Pt,wz =sdPL,P9, (VIII.3) 

sn+l(&7 - * * 7P5 M> = Sn+l(PL * * * 4, w3) = SnM,. * - 43, (VIII.4) 
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for 0 2 A < 1. The first equation says that two collinear partons can be replaced by a 
single parton and that a zero-momentum parton can simply be eliminated without affecting 
the measurement. The second equation says that partons that are collinear with one of the 
beam momenta do not affect the measurement. 

VIII.A.l Cone definition 

Measurements of jet cross sections in hadron collisions in recent years have concentrated 
on a cone definition of jets (following the spirit of the original jet paper (Sterman and 
Weinberg, 1977) and of the early calculations of jet cross sections for hadron physics (Ellis, 
Furman, Haber and Hinchliffe, 1980; Furman, 1982)). Th e main features of the algorithm 
are specified in an agreement reached at the 1990 Snowmass Workshop (Huth et al., 1990). 
The idea was that this definition could provide a standard jet cross section for the purpose 
of comparing results between different experiments - without restricting the development of 
improved definitions in the future. 

In the definition, one wants to maintain the invariance appropriate for hadron colliders 
under azimuthal rotations and longitudinal Lorentz boosts. Thus one describes the particles 
i using the absolute values &“,I of their transverse momenta, their azimuthal angles 4i, and 
their rapidities rl;. (We treat all particles as being massless, so that the rapidities and the 
pseudo-rapidities are not distinguished). 

The main feature of the cone definition is that a jet consists of particles whose momentum 
vectors lie in an 7,~cone. The cone consists of the interior of a circle of radius R in the 
(~,4) plane, centered on a cone axis (qc, 4~). Thus particle i is in the jet if 

(Vi - 77C)2 + ($4 - 4b>2 < R2* (VIII.5) 

A standard value for the cone radius is R = 0.7. Next, one defines the total transverse 
energy ET of the jet and a jet axis (q,r,4J) according to 

ET = c PT,i 7 
i&zone 

$J = j& c pT,i #i * (VIII.6) 
i&zone 

Finally, the jet axis must coincide with the cone axis. If it does not on a first attempt, one 
simply iterates until stability is achieved. 

This definition is quite simple and natural. However it can happen that two jet cones 
produced by the definition overlap. Thus a further specification (which is not contained in 
the Snowmass agreement) is needed. Typically, one merges jets with a very large overlap 
and splits particles between jets that have a smaller overlap. The reader is referred to the 
experimental papers for the details. 

VIII.A.2 Calculations 

As with electron-positron collisions, one can characterize an infrared safe cross section 
as “N-jet like” if the functions S, are zero for n < N and non-zero for n 2 N. Cross 
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sections that are a-jet like in this sense can currently be calculated at the one loop level 
using a computer program described in Ellis, Kunszt and Soper, 1989, Ellis, Kunszt and 
Soper, 1990, Ellis, Kunszt and Soper, 1992 and Kunszt and Soper, 1992. The program 
takes account of the cancellations of soft and collinear singularities between graphs with 
three parton final states and graphs with two parton final states but a virtual loop. The 
virtual loop graphs are taken from the calculation of Ellis and Sexton, 1986. An independent 
program that can calculate some 2-jet like cross sections at one loop order is described in 
Aversa, Greco, Chiappetta and Guillet, 1990 and Aversa, Greco, Chiappetta and Guillet, 
1991. 

The extension of the above ideas to include W or 2 plus n jets was initiated by Berends, 
Giele and Kuijf, 1989. (See also Berends, Kuijf, Tausk and Giele, 1991.) At present the 
tree amplitudes for the reaction p + p + W, 2 + n jets, where n 5 4 are available in the 
program VECBOS. However the jets are massless partons, which are not allowed to be soft or 
collinear. Using sophisticated techniques from string theory (Bern and Kosower, 1991; Bern 
and Kosower, 1992) the one-loop corrections to W or 2 plus one jet production have recently 
been calculated (Giele, Glover and Kosower, 1992). This program is especially important for 
top-quark analysis (Abe et al, 1994), since mt > Mw implies that the top quark can decay 
into a W plus lighter mass quarks. The background for detecting the t-quark therefore 
involves knowledge of the reaction p + p + W, Z + n jets. Without a one-loop calculation, 
the scales in these cross sections are not well determined. 

VIII.A.3 Rapidity gaps in jet cross sections 

It is important to emphasize that the jet cross sections described above do not give very 
much information on what is often referred to as the “underlying event”, including relatively 
soft particles emitted between the jets in rapidity, but not naturally associated with either 
jet in a cone definition. An important example of this sort is the cross section for events that 
involve little or no radiation between the two jets in a rapidity plot. The cross section for 
such “rapidity-gap” events would not satisfy Eq. (VIILS), because events with one or more 
soft particles in the central region would not be counted (i.e., &+I(. . . ,p,, 0) # &(. . . ,p,)). 
The usual factorization theorem therefore does not apply to such cross sections (Collins, 
Frankfurt and Strikman, 1993), and the formalism we have developed so far requires new 
input or analysis to supply a prediction for them. 

At the same time, it has been known for some time that rapidity-gap events are rea- 
sonably common at small and moderate momentum transfers, best described as “diffractive 
scattering” (Bonino et al., 1988; Brandt et al., 1992) at very high energy. In fact, some 
very general considerations (Dokshitzer, Khoze and Troyan, 1987; Bjorken, 1992) allow us 
to suggest that such events have an observable cross section even at quite large momentum 
transfer, and might afford important insight into QCD dynamics. 

Both perturbative analysis and experiment agree that rapidity-gap events cannot cannot 
dominate the cross section, because of soft “bremsstrahlung” radiation associated with the 
scattering of charged particles in both QED and QCD. In &CD, the tendency to radiate is 
even greater than in QED, because the mere exchange of c&r between two quarks, even 
without the exchange of momentum (i.e., soft gluon exchange), produces bremsstrahlung. 
Such a phenomenon is completely lacking in QED, where the photon has no charge. 
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Now in QCD beyond the lowest order, we can exchange not only single gluons, which carry 
color, but also color-singlet combinations of gluons. Therefore, at any momentum transfer, 
we might expect to see two components to the scattering, one associated with non-zero color 
exchange (“non-singlet”), and one with no exchange of color (“singlet”). In fact, explicit 
calculations show that when t/s + 0, the former involves much more soft gluon radiation 
than the latter (Sotiropoulos and Sterman, 1994), an effect related to the “reggeization” of 
single-gluon exchange in QCD (Frankfurt and Sherman, 1976; Lo and Cheng, 1976; Kuraev, 
Lipatov and Fadin, 1976). 

Now consider the scattering of two quarks at substantial momentum transfer, but much 
higher energy. Single-gluon exchange would be associated with copious emission of soft 
gluons, and a “filled” rapidity gap, while singlet-exchange (beginning at two gluons) would 
require much less radiation (by analogy with QED). Th e search for such events has now borne 
fruit (see below), although it is still too early to confidently attribute these observations to 
the mechansim described here. 

VII1.B Jets in Hadron-hadron Collisions: Experiment 

Experimental evidence for the existence of jets at hadron colliders was first observed by 
using a single high-P, particle to both trigger on and identify jets. This, however, results in 
a very biased experimental sample, and it was first realized at the ISR at fi = 62.3 GeV 
(Ellis and Stroynowski,l977) that one has to trigger in a more inclusive way, i.e. on the 
total amount of energy in a certain region of the detector. Cross sections were measured 
with an inclusive trigger, and two-jet back-to-back structure (in the transverse plane to the 
beam) was observed (Angelis et al., 1984). In addition, it was shown that the transverse 
momentum of particles relative to the jet axis is limited to about 500 MeV/c, independent 
of the momentum parallel to the jet axis. The first studies with a cone-based algorithm 
concluded that an opening angle of 40 degrees=0.7 rad includes nearly 100% of the jet 
energy, a value which is identical to currently used values at much higher energies. With 
the increase in the center of mass energy at the CERN Sp$ collider to 540 GeV, the 
UAl and UA2 experiments showed unambiguously the existence of jets in hadron-hadron 
collisions (Dilella, 1985; Banner et al., 198313). They also enabled the measurement of the 
jet cross section over a large region of transverse energy, out to 170 GeV (Arnison et al., 
1983b; Arnison et al., 1983c; Arnison et al., 1986; Bagnaia, et al., 1984). Fig. 43 shows the 
UAl and ISR jet cross section as measured initially in the central rapidity region (y < 1.0). 

In Fig. 43, the experimental points are compared to (at that time) known parton dis- 
tributions. The rather good agreement between theory (see also Horgan and Jacob 1981) 
and experiment, in a quantity that varies over five orders of magnitude, was considered a 
major success for the predictive power of QCD. Note that the error on the experimental cross 
sections is of order 100% and that the experiments defined jets in different ways: at the ISR 
a cone size of 30 degrees was used, whereas UAl was the first to propose and use a fixed 
cone size algorithm, with a cone size of R = 0.7. This value of the cone size has now become 
the default value, a specific example of a definition of jets as described in the “Snowmass 
agreement” (Huth et al., 1990). Over the years, the accuracy of collider experiments has 
improved and now the most accurate cross sections are available from UA2 (fi = 630 GeV) 
and CDF and DO (fi = 1800 GeV) at Fermilab. These experiments use a fixed cone size 
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algorithm to define jets, and compute Et of the jet as the sum Ci Et+ where i runs over all 
calorimeter cells inside the jet cone. We will discuss the experiments separately. 

The final UA2 jet inclusive cross section (Alitti et al., 1991a) measured with an upgraded 
detector with extended rapidity coverage, is shown in Fig. 44. Here the jet was defined by 
using a fixed cone algorithm and a cone size R = 1.3. The basic assumption is that this cone 
size is large enough so that a final state parton, including all its radiation and fragmentation, 
is described and its energy contained within the cone. 

Corrections for energy flowing out of the cone and entering the cone from the underlying 
event (= remnants due to the fragmentation of the incoming hadrons and to color con- 
servation) are estimated using the simulation program HERWIG. The experimental errors 
obtained have several sources. The overall scale error on the cross section is 32%, in addi- 
tion to the statistical accuracy of each data point. The overall scale error of 32% includes 
the uncertainties due to absolute energy scale (ll%), luminosity (5%), model dependence of 
acceptance corrections (25%), analysis parameters and jet algorithm (15%). The underlying 
event creates an uncertainty of 0.9 GeV on the Et scale, resulting in an additional error of 
typically 10% at 60 GeV and 5% at 130 GeV in the cross section. The obtained experimental 
cross sections are compared to LO predictions based on EHLQ (Eichten, Quigg, Hinchliffe 
and Lane, 1984) parton distributions. The agreement between theory and experiment is very 
good in the central rapidity region. To illustrate this in Fig. 45 the ratio of experiment to 
theory is given for the central rapidity region, and indeed, for several different recent parton 
distributions the agreement is remarkable. The UA2 collaboration also chose to do a LO 
comparison only and their results have not been compared to a NLO prediction. In fact, 
it would not be a trivial task to compare these experimental results to NLO predictions. 
In order to do so, one would want to reanalyze the data without the corrections for energy 
flowing into/out of the cone and use a smaller cone size. 

The CDF experiment has measured the jet cross section at the Tevatron proton- antipro- 
ton collider at fi = 1800 GeV. Their analysis of early runs is typical of Tevatron jet results. 
In contrast to UA2, the CDF cross section has been treated much more like a NLO quantity 
and has been measured as a function of the jet cone size. To define a jet, a fixed cone size 
algorithm (R = 0.7) was used, along with other details of the “Snowmass agreement” (Huth 
et al., 1990) and Eq. (VIII.6) was used to derive the jet quantities Et, VJ and 4~. The only 
deviation from the prescriptions of Huth et aZ., 1990 is that Et was calculated by adding the 
energy of calorimeter cells in the cone and then converting to Et by using the rapidity of 
the jet, instead of using the scalar sum of the Et of each cell. The data include a correction 
for the energy inside the jet cone due to the underlying event, but no corrections for energy 
flowing in or out of the cone. The underlying event transverse energy correction is 1.2 f 0.3 
GeV per unit area in 77, $I space. Jets which are close in direction have to be merged and 
large transverse size jets have to be split according to some algorithm. The algorithm used 
is similar to the one used at the parton level in the NLO calculation of the cross section. 
For a more detailed discussion of the criteria used we refer to Abe et al., 1992b. The exper- 
imental data (Abe et al., 1992a). are shown in Fig. 46, and they cover the rapidity region 
0.1 < 7~ < 0.7. The overall systematic uncertainty in the measured cross section is: 60% 
(mainly due to energy resolution and unsmearing uncertainties) for Et < 80 GeV and 22% 
(dominated by knowledge of absolute energy scale) for Et > 80 GeV. Also shown in Fig. 46 is 
the absolute NLO theoretical prediction for the same cone size using the parton distributions 
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of Harriman, Martin, Roberts and Stirling, 1990 and Martin, Roberts and Stirling 1988. The 
agreement between theory and experiment is remarkably good. Fig. 47 shows the ratio of 
the measured cross section and theory prediction (NLO) for different parton distributions. 
All parton distributions (HMRSB,MT-B and MT-S) agree very well with the data, except 
for HMRSE, which is inconsistent with the shape of the measured cross section. CDF has 
also measured the dependence of the cross section on the jet cone size used. This dependence 
is predicted in the NLO parton level calculation of the cross section and it is informative 
to compare the parton level prediction with the measured behavior at the calorimeter jet 
level. In Fig. 47 the experimental cross section at Et- -100 GeV is determined for cone sizes 
0.4, 0.7 and 1.0 and compared to the theoretical prediction for different choices of the scale 
used. Although there is some scale dependence in the theoretical prediction, the parton 
level prediction and calorimetric jet level measurement qualitatively show the same cone size 
dependence for the jet cross section. 

The agreement between theory and experiment, as illustrated above, has generally im- 
proved, as luminosity has built up for CDF and DO at the Tevatron (Kuhlmann, 1994). 
For example, studies of jet cross sections over a range in rapidity show strong evidence for 
single-gluon exchange as the dominant source of very high-energy dijet events. In addi- 
tion, however, a small but intruiging set of events show that an admixture of “color-singlet” 
exchange, which in p&CD begins at two gluons, may also play an important role (see Sec- 
tion VIII.A.3 above). These are the rapidity gap events (Abachi et al., 1994; Kuhlmann, 
1994), originally seen at UA8 (Bonino et al., 1988; Brandt et al., 1992), and recently detected 
as well in deeply inelastic scattering by the ZEUS detector at HERA (ZEUS, 1993a). 

Further results on rapidity gaps can be expected from the Tevatron and HERA, hopefully 
shedding light on whether the color-singlet exchange mechanism for their generation is indeed 
the correct one. In addition, closer examination of jet cross sections and their comparison 
with theory will help elucidate the interplay of soft and hard physics in &CD. Studies along 
these lines will include: (1) jet cross sections at large rapidity, (2) cone size dependence 
(Flaugher et al., 1992) and (3) comparison of cone algorithms with the successive combination 
jet algorithms of LEP (see Section V.D). 

VII1.C QCD Corrections: Heavy Quarks 

Another important area of research in pQCD is the study of heavy-quark production. 
Precisely what is understood by the term heavy quark depends on the circumstances. How- 
ever there is general agreement that u, d and s are light-mass quarks while c, b and t are 
heavy-mass quarks. The obvious evidence for heavy (confined) quarks is the existence of 
colorless spin-l vector meson states such as the J/$ and Y, which are produced copiously 
in electron-positron collisions. These physical particles contain charmed and bottom quarks 
and have well-defined masses and lifetimes. Within the context of pQCD there must be 
quantities which we can designate as heavy quark masses na4 with values approximately 
one-half those of the vector meson masses. Then m, M 1.5 GeV/c2 and rnb % 4.75 GeV/c2 
have a phenomenological significance even though they cannot be identified as on-mass-shell 
objects like electrons or hadrons. When mass effects are important, for example just above 
the “threshold” for pair production, we cannot ignore terms of order m/G in a partonic 
reaction. Quark masses have already been discussed in Section 1I.E. 
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The heavy quarks referred to above carry color and do not have the proper quantum 
numbers to make colorless hadrons. When they are produced in partonic collisions vacuum 
perturbations produce light quark-antiquark pairs over the time scale AEAt x h. The heavy 
quark then combines with a light quark to form a physical hadron with well-defined mass, 
which subsequently decays into a multitude of final states with well defined branching ratios. 
The production of the heavy quark is only the first stage of a complicated process, which 
involves both pQCD and confinement. Here we assume that heavy quarks are produced from 
light quarks in the hadrons (extrinsic production). The presence of a heavy quark component 
in the hardon wave function (intrinsic production) is discussed in Brodsky, Hoyer, Mueller 
and Tang, 1992. 

The theoretical description of heavy quark production and decay is usually split into 
several parts. One first calculates the heavy quark production cross section in the parton 
model, at a scale set approximately by the heavy quark mass, including higher order correc- 
tions if possible. Then the heavy quark becomes an on-mass-shell meson or baryon by the 
non-perturbative process of finding the appropriate light quark in the sea of quark-antiquark 
pairs in the vacuum. There is a phenomenological description of this part (fragmentation 
function). The heavy hadron then decays into light-mass hadrons (on their mass shells) and 
the branching ratios can be measured experimentally. The final decay involves the transition 
of the heavy quark into a light quark according to weak or electromagnetic interactions. The 
strong corrections to the last process can again be calculated by pQCD provided there is 
a heavy scale to make the running coupling constant small. If we limit ourselves here to 
a discussion of the production of heavy quarks then there should be a kinematical region 
where the mass m and the other invariants, such as &, pt, etc., are roughly of the same 
magnitude and significantly larger than &co. Under such circumstances the scale param- 
eter is the heavy quark mass, so we measure a cross section at a coupling constant whose 
scale is m, using light-mass partonic structure functions at a scale m. Differential distribu- 
tions are calculable when pt x m and scale M = (ps + m 2 ) ‘i2. Outside these ranges there 
will be large logarithms in ratios of invariants which can be controlled by an analysis of the 
renormalization group equation. The real proof of these claims is the comparison between 
the theoretical predictions and the experimental results. 

Here we assume that the heavy quarks are detected (via their decays). At higher values 
of fi where m/fi < 1, the heavy quarks become effectively massless, and must be incor- 
porated into the parton distributions. The transition between these regions is still under 
investigation. 

Heavy flavor production has been experimentally studied at electron-positron (Ali et al., 
1990) hadron-hadron (Guillet, Nason and Plothow-Besch, 1990; Reya, Zerwas, Hollik, Khoze, 
Phillips, Berends, Rein and Zunft, 1990; Ali, Barreiro, de Troconiz, Schuler and van der Bij, 
1990) and lepton-hadron (Carboni et al., 1990; Witherall et al., 1988; Ah, Ingelman, Schuler, 
Barreiro, Garcia, de Troconiz, Eichler and Kunszt, 1988; Schuler, 1988) facilities. For review 
articles we refer to Ellis and Kernan, 1990, Ellis and Stirling 1990, Smith and Tung, 1993. 

We will now write down some Born reactions and discuss the general properties of the 
heavy-quark cross sections. For this we need the lowest order matrix elements for heavy 
quark production in the reactions Q + (r + Q + Q , y + g + Q + Q , g + g + Q + Q. The 
differential and total cross sections for the reaction e+ + e- + JJ+ + p-, when mediated by 
a single virtual photon, were given previously. One can use the perturbation theory rules in 
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Sect. II.4 to show that the corresponding results for the reaction Q + Q + Q + Q where q(q) 
are light (massless) quarks and Q(Q) are heavy quarks with mass m are 

g d2c7 = 8 47ra2 t2 + u2 
[ 

1 2m2 

dtrdur 3 s2 d++(s+tl+ul), 
and 

4s, m2> = $Gj(s + 2m2)P. (VIII.8) 

We use the notation tl = t - 
p = (1 - 4m2/s)‘12 

m2, ui = u - m2 where s, t and u are the standard invariants, 
is the center-of-mass velocity and cy, = g2/(4;rr). The results include a 

summation over final spins and colors and an average over initial spins and colors. 
Next consider the reaction y + g t Q + Q, then the differential cross section is 

(VIII.7) 

s 
2 d2a 
- = ~~,,w&B~jd(s + tl + ul), dtidur 

where 

B QED = 

(VIII.9) 

(VIII.10) 

is the same factor that appears in the QED result (i.e., in the square of the amplitude for 
the reaction y + y --f p+ + p-). Note that we have summed over final spins and colors and 
averaged over initial polarizations and colors. The total cross section is 

u(s, m2) = In (z) - (1 + F)@}. (VIII.ll) 

Now consider the reaction g+g - + Q+Q. In this case the color structure is more complicated 
and the differential scattering amplitude takes the form 

2 d2a 
Sdtldzll= 

${3(1- 9) - f}[$ + F + S(l - $]6(s + t1 + Ui)) (VIII.12) 

again summed and averaged over initial polarizations and colors. Finally the total cross 
section is 

u(s, m2) = ${ (1 + 
4m2 m4 
T+F)ln(+$)-(7+y)f}. (VIII.13) 

The above results should be folded with the appropriate distribution functions to calculate 
physical cross sections and inclusive distributions in the Born approximation. 2g 

The evaluation of higher order corrections in pQCD is an involved issue which has been 
the subject of much theoretical investigation. The calculations fall into different classes. First 

2QThe calculations of the partonic cross sections given here were first reported by Witten, 1976, Gliick, 
Owens and Reya, 1978, Babcock, Sivers and Wolfram, 1978, Jones and Wyld, 1978, Georgi,Glashow 
Machacek and Nanopoulos,l978, Babcock and Sivers, 1978, Shifman, Vainstein and Zakharov, 1978 Corn: 
bridge, 1979, Gliick and Reya, 1979, Hagiwara and Yoshino, 1979, Leveille and Weiler, 1979, Mattiae, 
1981, Shifman, Vainshtein and Zakharov, 1988 and Olness, Meng and Soper, 1992. 
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of all there are fixed order NLO QCD calculations of inclusive cross sections and distributions, 
for example by Ellis and Kunszt, 1988, Nason, Dawson and Ellis,1988, Beenakker, Kuijf, van 
Neerven and Smith, 1989, Ellis and Nason, 1989, Nason, Dawson and Ellis,1989, Beenakker, 
van Neerven, Meng, Schuler and Smith, 1991, Smith and van Neerven, 1992, and Laenen, 
Riemersma, Smith and van Neerven, 1993a, Laenen, Riemersma, Smith and van Neerven, 
1993b, Laenen, Riemersma, Smith and van Neerven, 1993c. These calculations regularize 
all singularities by extending the space-time to n-dimensions so can only yield information 
on a few inclusive distributions. Next there are applications of these calculations by various 
groups, of which we mention Gliick, 1987, Altarelli, Diemoz, Martinelli and Nason, 1988, 
Gliick, Godbole and Reya, 1988, Meng, Schuler, Smith and van Neerven, 1990, Berger, 
Meng and Tung, 1992, Berger and Meng, 1992, and Riemersma, Smith and van Neerven, 
1992. Then there are comparisons with Monte Carlo packages, by Kuebel, Pundurs, Yuan, 
Berger and Paige, 1991 and by Marchesini and Webber, 1990. There are also papers on the 
resummation of the dominant logarithms in the threshold region by Laenen, Smith and van 
Neerven, 1992, and the region of large energy by Ellis and Ross, 1990, Collins and Ellis, 
1991, Catani, Ciafaloni and Hauptmann, 1990, Catani, Ciafaloni and Hautmann, 1992 and 
Catani, Ciafaloni and Hauptmann, 1990. In addition there are papers on fully exclusive 
calculations where the cancellation of the singularities are incorporated within the Monte 
Carlo program by van der Bij and van Oldenborgh, 1991, Mangano, Nason and Ridolphi, 
1992. Finally there are papers on joining different approaches by Aivazis, Olness and Tung, 
1990, and Aivazis, Olness and Tung, 1993. Non perturbative effects near threshold are 
studied in Fadin, Khoze and SjSstrand, 1990. 

All the theoretical inputs, such as the running coupling constant, the reduced cross section 
6ij(s, m2, Q2) and the parton distribution functions Fip(~, Q”) are scheme dependent. 

First we have to choose the renormalization scheme. Since the cross section is a renormal- 
ization group invariant we can limit ourselves to mass and coupling constant renormalization. 
Usually mass renormalization is performed in the on-mass-shell renormalization scheme. 

Let us discuss the influence of heavy quarks on the running coupling cr,. For instance the 
running coupling constant should be continuous across heavy quark production thresholds, 
so it depends on nf. If we define the two-loop corrected o, in the MS scheme then 

1 dQ2, nf> = bf 14Q”,~“> 1 - [ b’f In ln( Q2/A2) 

bf In( Q2/A2) 1 ’ 
where bf and b; are given by (see Eq. (11.48)) 

- b, 33 153 - = 2nf 19nf 

127r 7 b; = 
2~(33 - 2nf) ’ 

(VIII.14) 

(VIII.15) 

We use this form for top-quark production with A = A5 and nf = 5. For bottom and charm 
production we need Q, for four and three flavors respectively. So that there is continuity 
across the b and c thresholds we define, following Altarelli, Diemoz, Martinelli and Nason, 
1988, 

ad,s(Q*> = ~(&*,5) 

Q,:(Q*> = a,‘(Q*,4) +a;‘(m;,5) - a,‘(m;,4) 
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%:;(Q2) = &Q*, 3) + cql( 7n:, 4) + a,+& 5) 

-~,+?zp, 4) - cr,‘(?n;, 3) (VIII.16) 

so that 

dQ*> = ~s,s(Q*)e( Q2 - d) + a,,~(Q~)@(m; - Q2)e(Q2 - mf) 

+“s,3(Q2)@(Q2 - m:) . (VIII.17) 

This result may also be used in the calculation of the lowest order Born approximation even 
though it is not imperative to do so. 

The best data for a test of pQCD heavy quark production are on b-production in pji 
collisions. c-production is not so clean, because its mass is not heavy enough and cy,(mz) 
is large. The relevant experimental data are presented in Abe et al., 1990a, Sinervo et al., 
1990, Abe et aE., 1992a, Mangano and Nason, 1992, Albajar et al., 1988, Albajar et al., 
1990, McMahon, 1990, Albajar et al., 1991. Data from the SppS and Fermilab Tevatron 
on inclusive b-quark production are shown in Fig. 49 together with the results of a pQCD 
calculation through order cup, (provided by R. Meng using the O(c$) exact calculations in 
Beenakker, van Neerven, Meng, Schuler and Smith, 1991. The lower energy data are fit quite 
well. The higher energy data are above the theoretical predictions so we probably need to 
include some part of the O(o:) contribution. 
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IX Global Analysis of Parton Distributions 

Factorization theorems in perturbative QCD give a justification for and improvement of 
parton model predictions. In the “&CD improved” parton model, physically observed cross 
sections involving hadrons can be written as convolutions of perturbatively calculable par- 
tonic hard parts with parton distributions, which summarize uncalculable non-perturbative 
effects (Owens and Tung, 1992) (see Section IV above). 

1X.A Evolution of Parton Distributions 

The parton distributions are often presented as functions of z and pf; and are customarily 
interpreted as the probability densities to find a parton within a hadron, with its momentum 
fraction between x and x + dx. Below we denote the factorization scale by pf. Although 
perturbative QCD cannot predict the absolute normalization of these parton distributions, 
their evolution with the factorization scale can be calculated (Section IV.B.3). More pre- 
cisely, the scale dependence is governed by a set of coupled integro-differential evolution 
equations, valid to all orders in cr, (Gribov and Lipatov, 1972a; Altarelli and Parisi, 1977) 

where t = ln($/A”), and the subscript q denotes quark flavors. The kernels, Pii( have the 
physical interpretation as probability densities for obtaining a parton of type i from one of 
type j with a fraction z of the parent parton’s momentum. At the leading order (LO), the Pij 
are given in Eq. (VI.7) above. The Next-to-leading-order (NLO) (or 2-100~) expressions for 
P,j(z) were calculated by several groups 3o Up until recently, there had been an unresolved . 
minor discrepancy for Pgs(r) between results obtained in different gauges. This has now 
been clarified (Hamberg and van Neerven, 1992). 

This set of equations can be solved exactly in moment space (Reya, 1981; Altarelli, 1982), 
once a set of input distributions is specified at an initial value ~0. One can then invert 
the moments to get the x and pi-dependent parton distributions. However, this method 
requires the knowledge of initial parton distributions at all values of x from 0 to 1, and no 
experimental measurements at fixed pf can reach all the way to x = 0. In current global 
analysis of parton distributions, one solves this set of equations numerically. Note that one 
needs input distributions only for x greater than or equal to the smallest momentum fraction 
at which parton distributions are desired. 

1X.B Global Analysis 

The global analysis of parton distributions involves making use of experimental data 
from many physical processes, and the use of the parton evolution equations to extract a 

30Floratos 7 Ross and Sachrajda, 1977, Floratos, Lacaze and Kounnas, 1981a, Floratos, Lacaze and Koun- 
nas, 1981b, Gonzalez-Arroyo et al., 1979, Gonzalez-Arroyo and Lopez, 1979, Curci, Furmanski and Petronzio, 
1980, Furmanski and Petronzio, 1980, Herrod and Wada, 1980 and Herrod et al., 1981 
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set of universal parton distributions which best fit the existing data. These distributions 
can then be used in predicting all other physical observables at energy scales far beyond 
those presently achievable. Herein lies the wide-ranging usefulness of the QCD improved 
parton model. Beyond this, however, the very possibility of a global fit tests the internal 
consistency of our fundamental theoretical picture of hard scattering, based on factorization 
and the universality of parton distributions. 

A typical procedure for the global analysis involves following necessary steps: 

1. Develop a program to numerically solve the evolution equations - a set of coupled 
integro-differential equations; 

2. Make a choice on experimental data sets, such that the data can give the best con- 
straints on the parton distributions; 

3. Select the factorization scheme - the “DIS” or the “MS” scheme, and make a consis- 
tent set of choices on factorization scale for all the processes; 

4. Choose the parametric form for the input parton distributions at ~0, and then evolve 
the distributions to any other values of pf; 

5. Use the evolved distributions to calculate x2 between theory and data, and choose an 
algorithm to minimize the x2 by adjusting the parameterizations of the input distri- 
butions; 

6. Parameterize the final parton distributions at discrete values of x and pf by some 
analytical functions. 

In all high energy data, deeply inelastic scattering of leptons on nucleon and nuclear 
targets remains the primary source of information on parton distributions, because of its 
high-statistics. Such data is known to be mostly sensitive to certain combinations of quark 
distributions. Drell-Yan lepton-pair production, and direct photons at large transverse mo- 
menta provide important complementary information on anti-quark and gluon distributions. 
Most data used in obtaining recent parton distributions are at fixed target energies. Collider 
results have not reached the accuracy necessary to be included into global fits. But, they 
will eventually offer a significant opportunity to probe the small-x region (say x < 10m3). 

Parton distributions defined in different factorization schemes are different. Commonly 
used factorization schemes in the literature are “DIS” and “m’ schemes. In principle, 
parton distributions obtained in one scheme can be directly transformed into the other 
scheme. However, the transformation is not reliable in certain kinematic regions where 
the perturbation series expansion has abnormal behavior (Owens and Tung, 1992). It is 
preferable to perform independent analyses in these schemes. 

The truncation of the perturbation series invariably leads to renormalization and factor- 
ization scale dependence for QCD predictions. Consequently, parton distributions obtained 
from the global analysis will depend on the choice of the scales. If significant scale de- 
pendence is found to exist in a particular kinematic region for some processes, then the 
usefulness of such data is limited, until new theoretical techniques are developed to reduce 
that dependence. 
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There is considerable freedom in choosing the parametric form of the input parton dis- 
tributions at scale ~0. The parameterization must be general enough to accommodate all 
the possible z and quark-flavor dependence; but it should not contain so many parameters 
that the fitting procedure becomes very much under-determined. In practice, for each flavor 
it is common to use a functional form 

4(x, po) = AOxA1 (1 - x)“‘P(x) (1X.2) 

where P(x) is a smooth function. In above expression, x A1 dominates the small x feature 
and (1 - X)~Z determines the large x behavior. 

When calculating the x2 for a given fit, both statistical and systematic errors should 
be taken into account. The most expedient, and hence the most often used, method is to 
combine these errors in quadrature (Morfin and Tung, 1991). H owever, real systematic errors 
are correlated; they must eventually be incorporated in that way when the analysis reaches 
a truly quantitative stage. 

After minimizing the x2 (e.g., using the MINUIT package of CERN library), the resultant 
parton distributions can be presented in two ways. One way is just to give the relevant QCD 
parameters and the parameterization of input parton distributions at scale ~0. The user 
can then produce the parton distributions at another value of pf by using this information 
as input to a reliable QCD evolution program. The other, more commonly used, is to 
approximate the outcome of a global fit over (x, pf) by a set of parameterized functions. 
Such parameterization varies widely between the available distributions sets, ranging from 
a simple interpolation formula over a large three-dimensional array (x,pf, and flavor), to 
Chebeschev polynomial expansions, to simple pf-dependent parameterizations of the form 
of the above equation with an appropriately chosen smooth function P(x). It was found 
that a logarithmic factor of the form logA3(1/x) is particularly effective in rendering the 
pf-dependence of the coefficient functions Ai smooth for the QCD evolved distributions, 

Although, in principle, the form of the parameterization is arbitrary so long as the ap- 
proximated distributions still fit the data, extrapolation of the distributions out of the fitting 
region (e.g., into the small x region) will give very different predictions. It has been demon- 
strated that good fits to data can be obtained with the coefficient Al (which controls the 
small x behavior) varying, say, from -0.5 to 0.2. Such uncertainty should be regarded as 
evidence of our lack of knowledge of the uncharted region. It is not meaningful to take the 
extrapolation of any particular set of parton distributions as “predictions”. This uncertainty 
can be reduced either by new experimental measurements or by theoretical advances which 
allow true predictions extending to small x along the same way the usual evolution equation 
does for the pf variable. 

1X.C Survey of Recent Parton Distributions 

The first generation parton distribution sets, based on leading order evolution and data 
of the early 1980’s, have been widely used in calculations of high energy processes (Duke 
and Owens, 1984; Eichten, Quigg, Hinchliffe and Lane, 1984; Gliick et al., 1982). However, 
since then experimental data have been dramatically improved (and substantially changed, 
in some cases), and these distributions are no longer able to fit the new data. 
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The second generation global analyses, based on next-to-leading order evolution and 
more recent data, have been carried out by several groups in recent years. Some of the 
groups perform specialized analyses focusing on some specific issue or process, such as the 
gluon distributions and direct photon production (Aurenche, Baier, Fontannaz, Owens and 
Werlen, 1989), neutrino scattering (Diemoz et al., 1988), etc.; and others study a wide range 
of processes (Martin, Roberts and Stirling 1988; Martin et al., 1989; Harriman, Martin, 
Roberts and Stirling, 1990; Kwiecinski et al., 1990; Morfin and Tung, 1991). These analyses 
differ considerably on various issues, such as the range of data used, the way experimental 
errors are treated, the choice of schemes, assumptions on the input distributions, and so on. 

A compilation of currently available parton distribution sets, both old and new, have been 
made at CERN and it has been distributed as a program package PDFLIB (Plothow-Besch, 
1991). Because most of the older distributions are seriously inconsistent with current data, 
and because of the differences mentioned above, indiscriminate use of all the distributions 
in this collection can lead to meaningless results. 

For example, it is important to only compare correct corresponding objects. Thus, the 
LO, NLO-DIS, and NLO-n/is distributions are different objects, and should not be compared 
or mixed. When calculating physical quantities (such as cross sections or structure functions), 
LO, NLO-DIS, and NLO-MS distributions must be convoluted with the corresponding LO, 
NLO-DIS, and NLO-MS hard scattering parts in order to yield meaningful predictions. 

We are about to enter yet another era of precision in QCD global analysis. Recently 
released NMC data (Amaudruz et aI., 1992) on FT/Fl, F2p - F,“, and FITd using a muon 
beam and CCFR data (Mishra et al., 1992; Leung et al., 1993; Quintas et al., 1993) on F{i 
using (anti-) neutrinos should have a significant impact on QCD global analyses because of 
their extended kinematic coverage (particularly at small x), their high statistics and minimal 
systematic errors. The precision of the current generation of DIS experiments (including the 
previously published SLAC, BCDMS, and CDHSW data) now far exceeds the size of next- 
to-leading order QCD contributions to these processes; thus they probe the full complexity 
of QCD mixing effects between quarks and gluons in a properly conducted QCD analysis. At 
the same time, data being accumulated at the Fermilab Tevatron on many hadron collider 
processes (such as W-, Z-production, lepton pair production, direct-photon production, jet 
production, and heavy flavor production) are beginning to be quantitative enough to pro- 
vide complementary information and constraints on parton distributions. Finally, the HERA 
electron-proton collider (Hl Collaboration, 1993; Hl Collaboration, 1994; ZEUS Collabora- 
tion, 1993b) are now providing direct measurements of structure functions at very small 

The new DIS data have been incorporated in two recent global analysis efforts (Martin et 
al., 1993; Botts et al., 1993). The most notable result from each of the new global analyses is 
the apparent extraordinary quantitative agreement of the NLO-QCD parton framework with 
the very high statistics DIS experiments over the entire kinematic range covered, and the 
consistency of this framework with all available experiments on lepton pair and direct photon 
production as well. The parton distributions are determined with much more precision than 
before. 

On the other hand, these analyses also are calling into question, for the first time, the 
ultimate consistency of the existing theoretical framework with all existing experimental 
measurements! (This can be regarded as testimony to the progress made in both theory 
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and experiment - considering the fact that contradictions come with precision, and they 
are a necessary condition for discovering overlooked shortcomings and/or harbingers of new 
physics.) When all available total inclusive DIS data and their associated errors are taken 
seriously in the latest analysis, the CTEQ Collaboration (Botts et al., 1993) found a good 
global fit only if the strange quark has a much softer distribution than the non-strange ones 
and rises above the latter in the small x region below z = 0.1. This result is unexpected, and 
it also appears to be in conflict with the dedicated measurement of s(x) done with dimuon 
final states in neutrino scattering (Rabinowitz et al., 1993). (The latter is not available 
in a form that can be included in any of the existing global analyses.) Thus, either there 
are unknown theoretical flaws in the next-to-leading order QCD analysis or some of the 
experimental data sets need to be re-examined both in their measured values and in the 
assessed systematic errors. In the MRS analysis (Martin et uZ., 1993), the strange quark 
content of the nucleon is assumed to be consistent with the dimuon result; reasonable fits 
are obtained only by letting the normalization of the data sets vary freely, unconstrained 
by the stated experimental errors, and by increasing some experimental errors attributed to 
other sources. 

The emergence of the apparent contradictions has already spurred vigorous efforts by 
both theorists and experimentalists to rigorously examine the existing assumptions and to 
institute new improvements in their respective analyses. These efforts, aided by data from 
the hadron collider experiments and from HERA, herald an exciting new era in global QCD 
analysis. We expect, on the one hand, vigorous study of small-z behavior, and on the 
other hand, much more stringent tests of the pQCD framework from the many overlapping 
lepton-hadron and hadron-hadron processes which can now by studied quantitatively. 
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A Color Matrix Identities and Invariants 

Only a few identities are necessary for the calculations described in the text. In general, 
for representation R, SU(N) g enerators can be picked to satisfy 

Tr [ TAR)T,(R) ] = T( R)6,b ) (A4 
with T(R) a number characteristic of the representation. Also of special interest is the 
representation-dependent invariant, Cz(R), defined by 

NZ-1 

c (T,‘Rq2 = C2(R)I, (A4 
a=1 

with I the identity matrix. 
We encounter only two representations here, the N-dimensional “defining” representa- 

tion, F, and the N2 - l-dimensional adjoint representation, A. The generators TiF’ are a 
complete set of N x N traceless hermitian matrices, while the generators TiA) are defined 
by the SU(N) structure constants Cab (Eq. (11.5)) as 

(TtA)), = -iCab= . a (A.31 

For these two representations, the relevant constants are 

T(F) 
T(A) 

Another useful identity, special 
simple products of the generators, 

T,(F)TjF) = 

1 N2 - 1 = - 
2 ‘dF) = 2N 

=N C2(A) = N . (A-4) 

to the defining representation, enables us to work with 

i[iCahTLF) + da~]T,(‘) + ibaJ , (A-5) 

with I the 3x3 identity, and the dab real. Unlike the previous equations, this and the 
following equation apply only to SU(3). A numerical value that occurs in the three-loop 
correction to the total e+e- annihilation cross section is 

D=t3d&40/3. 
abc 

(A-6) 
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B Cut Diagram Notation 

A convenient technique for organizing calculations of IMI 2 in cross sections is through 
cut diagrams, which combine contributions to M and M* into a single diagram for 1 M I2 
with slightly modified Feynman rules. 

The form of cut diagrams is derived in Fig. 50, for the annihilation of a fermion pair of 
momenta Jcr and Ic2 into a set of n final state lines, of which only a fermion with momentum 
pl and an antifermion of momentum p, are exhibited. 

The underlying identity for these manipulations is 

[q-p yP’2 . . . a+ . . . yy5 . . .)w’]* 

= ~'(...y"y~...cr"P...y~?y~l)zo ) 
W) 

where w and w’ are any two Dirac spinors. 
Fig. 50a shows a typical fermion propagator and vertex in M and M*. Fig. 50b shows 

the application of Eq. (B.l) to Fig. 50a. The diagram in M* has been flipped over, all arrows 
on fermion lines have been reversed, and all momenta have been reversed in sign. This leaves 
the sign of momenta in fermion propagators the same, as shown. Color sums can be reversed 
in the same manner as spinor sums, because the color generators are hermitian. 

Fig. 5Oc exhibits the cut diagram notation, in which the contribution of any final state is 
a modified forward scattering diagram. The final-state lines are indicated by a vertical line 
(the “cut”). Cut lines are represented in the integral corresponding to the cut diagram by 
factors 

($i +%)p++(Pf - $> 1 P-2) 

for fermions or antifermions, after a spin sum. For polarized fermions or for vectors, the 
usual spin projections replace (J$ + mi). The Feynman rules for M are the normal ones, and 
those for &? differ only in the sign of eqdicit factors of i at vertices and in propagators. The 
three-gluon vertex also changes sign in fi, because of the reversal of momenta. 

126 



C Dimensional Regularization 

In Section II, our description of renormalization was a bit abstract, depending as it does 
on the substitution, Eq. (11.25). For many purposes, it is useful to introduce an intermediate 
step in this replacement, in which the divergent integral is regulated, that is, modified to 
become a finite integral. This will involve the introduction of a new, unphysical, parameter. 
The replacement in Eq. (11.25) will then appear as a “subtraction”, in which the regulated 
integral is combined with a term that cancels its dependence on the regularization parameter. 
At present, far and away the most popular regularization scheme is dimensional regulariza- 
tion, primarily because of its calculational simplicity. It is difficult to follow much of the 
theoretical literature of pQCD without at least a passing acquaintance with dimensional 
regularization. 

Most of the essential features are contained in the scalar one-loop self-energy, Fig. 1.2, 

Gc2)(p, n) = ip2-“/2 
J 

f$ (k2 
1 

- m2 + if) ((p - k)* - m2 + ie) ’ W) 

where n is the number of dimensions, initially taken as an integer, n = 1,2,. . . . For n 2 4, 
the integral is UV divergent as k + 00. The factor p4-n, with 1-1 an arbitrary mass is 
included to give keep G t2) dimensionless for all n. To simplify further, let us do the integral 
in “Euclidean” space, where k2 = ki + k2. The process of relating Euclidean to Minkowski 
integrals (Wick rotation) is independent of the regularization process, and for our purposes 
consists of multiplying by a factor i. 

For n 2 4, G(*)(p, n) is ill-defined, but for n < 4 it is finite. The idea of dimensional 
regularization is to extend G to an analytic function of n for all Re(n) < 4, and then to use 
analytic continuation to extend it to the rest of the complex n plane. When we recall that 
analytic continuation is a unique process, we begin to see the power of the method. 

So, how are we to extend G to noninteger, let alone complex, values of n? Actually, it is 
quite a simple process: more general integrals require more care, but the basic steps are the 
same for every Feynman diagram, 

6) First comes a technical step, called Feynman parameterization, which is a trick to 
rewrite the product of denominators as a single denominator, 

Gt2)(p, n) = ip’-” J $$ 1’ dx [ k2 - 2xp. k + xp2 - m2 Iv2 . (C.2) 

(ii) Next, we complete the square in the single denominator, e = k - xp, to get 

Gc2)(p, n) = ip4-” dx [ e2 + x( 1 - x)p2 - m* ]-2 . 

Notice that the shift of integration variable is perfectly permissible for n 
the integral is convergent. 

(C.3) 

< 4, where 

(iii) In this form, we can trivially change variables to polar coordinates, and do 
angular integrals 

the (trivial) 

wn> l Gc2)(p, n) = i~4-n~ 1 dx Jm 
d4’P’ 

0 [P 4 x(1 - x)p2 - mq2 * 
(C.4) 
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(iv) At this stage, the n-dependence is segregated into the angular volume, R(n), while the 
divergence at n = 4 is entirely in the radial e integral. These two quantities are quite 
easy to promote from integer to complex n. 

So, we are left with two integrals to extend to the complex “n-plane”. Consider first the 
angular integral. We are already familiar with one- and two-dimensional angular integrals, 

O(2) = J 02r dB1 

= 2r, (C.5) 
Q(3) = 

/ 0 
r d&sin(&) R(2). 

= 4r. (C-6) 

For integer n dimensions we easily find the following recursion relation: 

n(m) = J 0 
* d0sin”-2(B,)0(m - l), 

= v/2)r ((n - wq, _ 1) 
WG) 

7 (C-7) 

where I’(r) is the Euler Gamma function defined by the integral representation 

I’(r) z ~~dxx*-‘e-” , W) 

for Re z > 0. 
The recursion relation Eq. (C.7) is trivially solved by use of Eq. (C.5) as an initial 

condition. We find 
2n”J2 

fw = r(n/2)’ (C.9) 

We can use this result to give a meaning to the integral Eq. (C.4) for all values of n, and 
not just positive integers. But let us first list a few basic properties of the Gamma function, 
which appears in the results of typical integrals like Eq. (C.4). It is defined by Eq. (C.8) for 
Re z > 0, and by analytic continuation for all other values of Z. A little algebra shows that 
for integer 2 2 1 

r(z) = (2 - I)!. (C.10) 

The Gamma function obeys the recursion relation 

JT4 qZ - 1) = - 
(z - 1) * 

(C.11) 

Since l?(z) is analytic for all z with positive real parts, it is easy to deduce that it is analytic 
for all Z, except at negative integers, where it has simple poles. It is precisely this last 
property that makes dimensional regularization such a convenient technique. 

Now let us return to our basic one-loop integral, Eq. (C.3). The remaining, radial integral 
in Eq. (C.4) can be analytically continued from a finite integral for n real and less than 4, to 
a complex integral by using yet another integral representation involving gamma functions, 

J wJ)W 
0 O” dyy”-‘(y + l)--* = r(W + *> . (C.12) 

128 



(This combination of Gamma functions is often called a “beta function”, not be be confused 
with the beta function introduced in connection with renormalization.) Combining these 
results, we find 

Gt2)(p, n) = (~T~~~2 r(2 - n/2)(p’)Q-2 

= (4:)2 2 -‘,,2 + 1n(P2/c12) + * ’ ’ 
. 1 I 

- 

In this way, the superficially divergent integral becomes the sum of a momentum-independent 
pole term, plus momentum-dependent finite parts. Minimal subtraction (MS) schemes con- 
sist of subtracting the pole terms only in dimensional regularization. The renormalization 
scale enters automatically by modifying the Lagrange density, as described below. 

DimensionalEy continued field theory. Let us now discuss how dimensional regularization 
is introduced in &CD. As its name implies, dimensional regularization involves treating the 
number of spacetime dimensions as a parameter, n. The unregulated theory, of course, is 
defined at n = 4. It is often convenient to parameterize the regularization in terms of the 
“small” quantity 

E = 2 - n/2. (C.14) 

The rules that we will need to implement dimensional regularization may be summarized as 

(i) For QCD, the regulated theory is defined by a Lagrangian of the form Eq. (II.2), but 
with all couplings, g, replaced as 

9 + 9/f 7 (C.15) 

with E given by Eq. (2.15), and with p an arbitrary mass scale, which we will refer to 
as the renormalization scale. 

(ii) Vector indices run from 1,. . . n and we make the replacements 

gz- ($ ’ 4=p$l$ +n = &I;, 
pl 

(C.16) 

in all momentum integrals (loop and phase space). We will see below what we mean 
explicitly by d”k. 

(iii) There are n Dirac matrices yp, /J = 1, . . . n, and the standard anticommutation relations 

{yp,yv}+ = 2gpv, p = 1,. . .n, (C.17) 

are satisfied by all n of them. Fortunately, however, it is not necessary to make the 
number of spinor components n-dependent. Thus we may retain Dirac trace identities 
such as 

Tr[ljld2d&J] = 4[ (PI * p2)(p3 * p4) + (PI * p4)(p2 * p3) - (pl 6 p3)(p2 . p4) 1, (C.18) 

which depend on the yp being 4 x 4 matrices. We should emphasize that Eq. (C.18) 
may be taken as a rule, because the true c-dependence due to the trace will not affect 
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D Kinematics and Cross Sections 

In this appendix31 we discuss the kinematics and formulas in frequently-encountered 
cross sections. Upper case letters will be used to designate incoming and outgoing hadrons, 
h, as A + B + C + X , etc. Lower case letters will be used when referring to the hadron 
constituents which are undergoing the hard scattering. 

The cross sections below are described for the most part in the language of the parton 
model, Section III, with hard scattering functions &, (see Eq. (IV.38)) approximated by 
Born cross sections. They serve as well, however, for leading-power pQCD, when factor- 
ization scale dependence is introduced into the distribution and fragmentation functions. 
At lowest order (LO), the hard scattering function reduces to the Born cross section, using 
a~,( Q2), with Q2 an appropriate momentum transfer squared. 

Let A and B be initial state hadrons and C an observed final state hadron, with four 
VectorsPA , PB , and pc, respectively. For these momenta, Mandelstam variables are defined 
as 

S= (PA+Pd2, t=(PA-Pd2, and u=(Pe-Pd2. 

With this definition, 

(D.1) 

s-l-t-4-u =P?~+P~~+P~+(PA+PB-Pc)~. (D-2) 

The variable s is the squared center-of-mass energy while t and u are the squares of the 
four-momentum transfers from particles A and B to particle C. A similar set of variables 
describes the partonic scattering, a + b + c+d, identified by ‘hats’, as i. Thus, by Eq. (D.2), 
the Mandelstam variables for massless two-body elastic scattering satisfy the constraint 
i+i+ii=o. 

A number of additional variables will be encountered in discussions of large transverse 
momentum processes. These describe momentum components which are transverse or lon- 
gitudinal with respect to the beam direction. These are denoted by pT and pe, respectively. 
Reference will be made to the their scaled counterparts 

XT=2PT/fi, Xp=2Pe/fi. (D-3) 

With these definitions the kinematically allowed ranges of XT and ZF are (0,l) and (-l,l), 
respectively, if the masses of the hadrons are neglected. Another useful variable which is 
often used is the rapidity, y, which is defined as 

Y 
E +pe =- :1, - 

( > E-pe ’ 
PO 

This expression, when evaluated for a massless particle, has a much simpler form. In this 
case, 

y=lncoti, (D.5) 
where 8 is the center-of-mass scattering angle. This form, called the pseudorapidity when 
applied to physical particles, is convenient experimentally, since one needs to know only 

31This appendix closely follows a similar discussion in Owens, 1987 
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physical answers at n = 4, not because Eq. (C.18) is really correct in n dimensions. 
On the other hand, the anticommutation relations, along with gpP = n lead to the 
following easy-to-prove, n-dependent identities for Dirac matrices, 

YPdY” = (2 - n)d 

Yldld2YP = 4Pl. P2 - 24d2 

YPljldd3YP = -a$36261 + Wd21j3* (C.19) 

The basic one-loop integrals may now be evaluated in terms of Eqs. (C.9) and (C.12) 
straightforwardly. For instance, consider the Minkowski space integral 

Un) = J [p _ ;:+ &]a ’ 

+2 
where P = .fe2- e . Wick rotation, f?a + i&,, gives 

de P-l& 
IaCn> = (-l)ai J flE2 +nM2 _ iEla 9 

= (-1)3in(n; 1) lm [[yy$~r:,. 

= (-1yinn/2 (~2 _ ie)n/2-3 r(srys;/2) , 

where we have used Eqs. (C.9) and (C.12). Similarly, we have 

Ifv(n) = 
J dnC[$2 _ zv+ ie]a 

(C.20) 

(C.21) 

(C.22) 

These forms are all that is necessary to derive the results of Eqs. (V.19) and (V.20). 
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to integrate over pd using the four-dimensional delta function. In addition, with massless 
partons it is convenient to make the replacement 

6(pi) -+ 6(i + i + 6) (massless partons) . (D.13) 

This results in 

E$(AB + jet + X) = c / dxadxb~a,A(Xa)~b/8(Xb) 
abed 

x i$(ub 4 cd)6(s^ + i + fi) , (D-14) 

where the differential cross section for the two-body parton scattering subprocesses is denoted 
bY 

$(ub + cd) = &r&c pf(ab + cd)12 - (D.15) 

The argument of the delta function in Eq. (D.14) can be expressed in terms of x, and xb 
using the results given above. The xb integration may then be done, giving the final result 

E$(AB + jet + X) = c lLim dXa~a/A(Xa)$b/B(Xb) 
abed 0 

2 
X- 

77 2x, 
(D.16) 

where 
x,xTe-Y 

xb = 2X, - xTeY ’ 
(D.17) 

and 
min xTeY 

x, = 
2 - xTe-’ ’ 

(D.18) 

Eq. (D.16) is also applicable for the calculation of the direct photon inclusive invariant cross 
section resulting from the subprocesses @ + yg and gq + yq. 

Next, in order to calculate single particle inclusive invariant cross sections, the fragmen- 
tation function Dcjc(z,) (Section III.C.2) must be included. This function, when multiplied 
by dz, gives the probability for obtaining a hadron C from parton c with the hadron carrying 
a fraction z, of the parton’s momentum. Using d3p/E = zz(d3p,/EC) the resulting expression 
is 

Ed3o 
-&AB+C+X) = c/ dXadXbdZ=~a/A(Xa)~b/BoDC/c(Zc) 

abed 

+ cd)+ + t^ + ii) . (D.19) 

As in the previous case, the argument of the delta function may be expressed in terms of 
the parton kinematic variables and the z, integration may then be done. The final form for 
the cross section is 

Ed3a 1 1 

&CAB -4+X) = 
w .pain dxa dXb~a/A(Xa>~b/B(Xb)Dh/c(Z,) 
abed = J en 

X $$(ab + cd), 
c 

(D.20) 
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0. For many high energy processes the dependence on the particle masses is negligible and 
therefore the rapidity and pseudorapidity become equivalent. 

In the derivations which follow it will often be necessary to work directly with the four- 
vectors of the interacting partons. Suppose that parton a carries a fraction x, of hadron 
A’s longitudinal momentum and that a similar definition for xb exists for parton b. Then in 
the overall hadron-hadron center-of-mass system the four-vectors for a and b can, assuming 
massless partons and neglecting any parton transverse momenta, be written as 

PE= ~(l,O,O,l) and $ = y (1,0,0,-l), (D-6) 

where the positive z axis is taken to be along the direction of the incident hadron A. If the 
scattered parton c has transverse momentum pr and rapidity yi, then its four-vector is just 

ti =pT(coshyl,l,O,sinhyl). P.7) 

With these results it is easy to evaluate the Mandelstam variables at the parton level: 

g= x,xbs, i = -X,pT&-“, and 6 = -xbprfieyl . (D.8) 

For the case of two-body scattering, the partonic Mandelstam variables can also be written 
in terms of the four-vector of the recoiling parton d, in the event that correlations are being 
studied. Let 

& = pr(COShy2, -l,O,sinhyz). (D.9) 

Then i and 6 may also be written as 

t^= -x@r&eb and c = -XapT&-y2 . (D.lO) 

Starting with two-body scattering at the parton level the partial cross section for the 
inclusive production of two partons can be written as (Section III.A), 

. 

da(AB + cd) = & C (a(l/A(Xa)dXa~b,B(Xb)dXb C JM(ab + Cd)12 
ab 

(2K)464(Pa + Pb - PC - Pd) (2;;& (2;;~;E - 
c d 

(D.11) 

Note that unpolarized parton distributions, as defined in Section IV.D, say, include a sum 
over colors and spins. These quantum numbers are therefore averaged in the initial state 
of the partonic cross section, and these averages are implicit in Cab in Eq. (D.ll). At the 
level of two-body scattering one associates a jet with each of the outgoing partons (Section 
III.C.3). However, when more complicated final states are taken into account, e.g., 2 + 3 
processes, the jet must be carefully defined using energy and angular size resolutions, or a 
“JADE’ algorithm, etc. (Sections V.D and VII1.B). 

In order to convert Eq. (D.ll) into the invariant cross section for inclusive single jet 
production it is easiest to use 

d3Pd - = d4Pd %‘:), 2& 
(D.12) 
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where now 

XT - XT 
%, = -e y + -ey , 

2xb 2xa 

min = x,x’+-’ 
xb 22, - xTeY ’ 

min = xTeY 
xa 2 - xTeAy ’ 

(D.21) 

Eq. (D.20) is also applicable for the calculation of the single photon inclusive invariant cross 
section (Sections 1II.E and VIID), when the photon results from the fragmentation from 
one of the scattered partons. In this case one must replace &lc by D-,1,. 

The above equations for the invariant cross sections include a summation over all of the 
possible two-body parton scattering subprocesses. In addition, the summation implies a 
symmetrization under t^ and 6 interchange, i.e., interchange of the beam and target. Note 
that for the case of three quark flavors there are 127 terms contributing to the inclusive 
single particle cross section. 

The partial cross section in Eq. (D.ll) can also be used as a starting point for a two-jet 
inclusive cross section. At lowest order, the transverse momentum components of the delta 
function insure that the jets are produced with equal and opposite transverse momenta. 
The dijet cross section can then be written in terms of the rapidities of the two jets and the 
transverse momentum, pi, possessed by each: 

dyl:;dp;(AB 
--f jetI + jet2 + X) 

= dxadxb~a/A(~a>~b/B(~b) 2 di =(ab + 12) 

xb(xaz + xb fi @ -prcoshyi -pTcoshy2) 

fi x6(x,2 - xb ’ -pTSinhyl -pTsinh&, 
2 

(D.22) 

The two delta functions in this expression are the energy and longitudinal parts of the 
original four-dimensional delta function appearing in Eq. (D.ll). Together, they allow the 
integrations on both x, and xb to be carried out. The resulting two-jet cross section is 

dylddy~dp$ (AB 3 jet1 + jet2 + x) = c r.d.,A(xa)xb~b~a(Xb)~(ub + 12) , 
ab 

(D.23) 

where 
xa = $$eY’ + ey2), xb = $iZ(e-” + evy2). (D.24) 

Another variable which is often used in studies of jet production is the dijet invariant 
mass, A$;. This is easily shown to be given by 

kffj = 2& [l + cosh( yi - YS)] 7 (D.25) 
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if the masses of the individual jets are neglected. The mass distribution is then given by 

da Mj j da 
dyldy2dMjj = 1 + coshbl - ~2) dydydp; - 

(D.26) 

The dijet cross section in Eq. (D.23) has no integrations remaining to be done. That 
is, knowledge of the four-vectors of the two jets has completely determined the kinematics 
of the parton scattering process. Thus, it is possible to use Eq. (D.23), or an equivalent 
expression, to determine the parton-parton scattering angular distribution, averaged over 
all of the participating subprocesses. Let 6* be the parton-parton center- of-mass scattering 
angle. Then, Eq. (D.23) can be rewritten as 

da 

dXadXbd COS O* = y c 6ala(za)da/8(Xb)$(ab + 12)) 
ab 

(D.27) 

where x, and zb have the values given in Eq. (D.26). 
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Figure 1: Perturbation theory rules for QCD. 
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Figure 2: An ultraviolet divergent one-loop scalar diagram. 

Figure 3: The lowest-order potential in QED. 
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Figure 4: Field theory corrections to the potential in QED. 

Figure 5: Nonabelian correction to the QCD potential. 
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Figure 6: Schematic parton model picture for DIS. 
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Figure 7: Deeply Inelastic Scattering. 
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Figure 8: (a) Parton model scattering. (b) Interference graph. 
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Figure 9: Born diagram. 
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Figure 10: Born diagrams for e+e- annihilation. 
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Figure 11: Inclusive single hadron productiou in e+e- annihilation. 
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Figure 12: Factorization theorem for Drell-Yan cross section. 
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Figure 13: Factorization theorem for single particle production in hadron-ha&on collisions. 
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Figure 14: One-loop corrections to the e+e- annihilation cross section. 
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Figure 15: Low order diagrams for DIS. 
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Figure 16: Ratios (Mishra and Sciulli, 1989) of the WA21 (BEBC) (Jones et al., 1989) and 

CDHS (Abramowicz et aE., 1984) data for quarks (crosses) and antiquarks (solid circles). 
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Figure 17: Valence quark densities (Mishra and Sciulli, 1989) in a proton: (a) xu,, (b) zd, 

as a function of x. The data are from EMC (Aubert et al., 1987), WA21 (Jones et al., 1989), 

WA25 (Allasia et al., 1984; Allasia et al., 1984), and CDHS (Abramowicz et al., 1984). The 

solid curve is the parameterization of Morfin and Tung, 1991. 
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Figure 18: The ratio of xF3 from CDHSW (Berge et aZ., 1991) to xF3 from CCFR (Mishra 

et al., 1992), with Q2 > 1 GeV2, as a function of z with statistical errors only. 
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Figure 19: The antiquark component (Mishra and Sciulli, 1989) of the proton as measured 

by three neutrino experiments. The three sets of data are by WA21 (Jones et al., 1989), 

WA25 (Allasia et aZ., 1984; Allasia et al., 1985), and CDHS (Abramowicz et al, 1984). The 

solid curve is the parameterization of Morfin and Tung, 1991. 
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Figure 21: The strange sea component of the nucleon measured (Foudas et al., 1990) by 

analyzing the CCFR vP- and ti,-induced opposite sign dimuons. The s(z) and S(Z) are com- 

pared to the non-strange g(z) obtained from ordinary single muon events. To illustrate the 

“shape-difference”, the total q(x) are normalized to the respective strange sea distribution. 
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Figure 22: The logarithmic slopes of xF3 for the CDHSW (Berge et al., 1991) and CCFR 

(Quintas et al., 1993) data, with (a) Q2 > 1 GeV2, and (b) Q2 > 5 GeV2. Only statistical 

errors are shown. The curves for Q2 > 5 GeV2 are QCD predictions for various values of 

AQCD. 
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Figure 23: The xF3 data from CCFR (Quintas et al., 1993), and the best NLO QCD fit. 

Cuts of Q2 > 5 GeV2 and x < 0.7 were applied for a next-to-leading order fit including 

target mass corrections. 
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are shown in circles. The curve is a prediction from perturbative QCD with target mass 
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Figure 25: The BCDMS (BCDMS Collaboration, 1987a; BCDMS Collaboration, 1987b) 

measurement of the logarithmic derivative of F2 with respect to Q2, dLog&/dLogQ2, as a 

function of x with hydrogen (solid symbols) and carbon (open symbols). The best NLO 

QCD non-singlet fits to these data are also shown. It is assumed that for x > 0.25 the F2 

data essentially evolve as non-singlets. The figure is from (Mishra and Sciulli, 1989). 
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Figure 26: The singlet evolution of the BCDMS (BCDMS Collaboration, 1987a; BCDMS 

Collaboration, 1987b) measurement of F2 in a hydrogen target. The effect of gluons, promi- 

nent at low x, is shown by the hatched region between the singlet (solid), and non-singlet 

(dotted) QCD fits. The figure is from (Mishra and Sciulli, 1989). 
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Figure 27: The EMC measurement of the logarithmic derivative of Fg with respect to Q2, 

dLogFz/dLogQ2, as a function of x with iron target. The NLO QCD curve with typical 

value of f&D as analyzed by the BCDMS collaboration (BCDMS Collaboration, 198713) is 

also shown. 
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Figure 28: The CDHSW measurement (Berge et aE., 1991) of the logarithmic derivative of 

F2 with respect to Q2, ‘dLogF2/dLogQ2, as a function of x with an iron target. The NLO 

QCD curve with typical value of AQcD as analyzed by the BCDMS collaboration (BCDMS 

Collaboration, 1987b)is also shown. 
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Figure 29: The F2 data of CCFR (Quintas et al., 1993) and the best NLO QCD fit. Cuts of 

Q2 > 5 (GeV/c)2 and x < 0.7 were applied for a next-to-leading order fit including target 

mass corrections. 

180 



0.2 

0.1 

0.0 

% 
Fz 

z 
-0.1 

\ 
d 
c 
% 

-0.2 

-0.3 

-0.4 

CCFR: Singlet Slopes 

I - * “I” . ‘I”’ ’ 

q F, Data 

- F, NLO QCD-Fit 

0 0.2 0.4 0.6 0.8 

X 

Figure 30: The slopes of F2 (= dLogF2/dLogQ2) for the CCFR data (Quintas et aZ., 1993) 

are shown (squares). The curve is a prediction from perturbative &CD. 
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Figure 31: The world status of GLS sum rule measurement, as summarized by the CCFR 

collaboration (Leung et pl., 1993). The other data are from CDHS (CDHS, 1979), CHARM 

(CHARM, 1983), CCFRR (CCFRR, 1984), WA25 (All asia et aE., 1984; Allasia et al., 1985), 

and CCFR-NBB (Oitman et al., 1992) 
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Figure 32: The WA25 measurement (Allasia et al., 1985) of the Adler sum rule with various 

Q2 cuts. 
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Figure 33: The NMC measurement (NMC, 1991) of I$’ - r;rt - dark symbols and the right 

scale, as a function of x, and that of the integral S(Z$ - I$)dx - open symbols and left 

scale, leading to the Gottfried sum rule. The “ circles” and “triangles” represent two different 

methods of extraction. 
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Figure 34: The EMC measurement (EMC, 1988) of the spin structure function of proton 

g(x) - squares and right scale, and that of the integral J&(x)dx - diamonds and left 

scale as a function of 2. 
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Figure 35: Cut diagrams for O(c~l~) corrections to the Drell-Yan cross section. 
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Figure 36: Dimuon spectra from early BNL experiment (Lederman and Pope, 1971) 
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Figure 37: Scaling behavior of pion-nucleon Drell-Yan cross section 
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Figure 38: Photon energy asymmetry distribution in TO decay (Alverson et al. 1992) 
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Figure 39: y/‘/r0 ratio in E706 (Alverson et al. 1992) 
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Figure 40: Measured preshower conversion probability (Alitti et al. 1993) 
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Figure 41: Leading log predictions for r/r0 ratios with various isolation cuts (Bailey and 

Owens, 1993) 
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Figure 44: The inclusive 
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Figure 45: The ratio of experimental to theoretical (based on EHLQ) jet cross section at 

77 < 0.85 in the UA2 experiment (black dots). The curves represent calculations for different 

pax-ton distributions, relative to the EHLQ distributions 
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Figure 46: The inclusive jet cross section measured by CDF for a cone size R=0.7 averaged 

over the pseudorapidity interval 0.1 < q < 0.7. The curve represents the prediction of a 

NLO calculation using the HMRSB parton distributions. The errors shown represent the 

statistical and Ei dependent systematic errors. The overall normalization uncertainty is also 

indicated separately. 
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Figure 47: The CDF inclusive jet cross section compared to theory as the ratio (data - 

theory)/ theory. The dashed lines indicate the systematic uncertainty in the data, while the 

error bars include Et dependence. The reference parton distribution used is HMRSB and 

predictions using other sets are also shown. 
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Figure 48: The cone size dependence of the jet cross section as measured by CDF (data 

points) at Et = 100 GeV. Statistical errors only are plotted on the data points. An overall 

systematic uncertainty is indicated separately. The curves represent NLO predictions based 

on the MRSB (Martin, Roberts and Stirling, 1988) parton distributions for different choices 

of the renormalization scale. 
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Figure 49: QCD fit to b-quark production data. 
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Figure 50: Cut diagram identities 
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