
Fermi National Accelerator Laboratory 

Data Flow Manager for DART 

D. Berg et al 

Fermi National Accelerator Laboratory 
P.O. Box 500, Batavia, Illinois 60510 

April 1994 

Presented at the Conference on Computing in High Energy Physics 94, 
San Francisco, California, April 21-27, 1994 

e Operated by Universities Fbmrch Association Inc. under Contract No. DE-AC02-76CH03000 witi the United States Deparbnent of Energy 



Disclaimer 

This report was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor any agency thereof, nor any of 
their employees, makes any warranty, express or implied, or assumes any legal liability 
or responsibility for the accuracy, completeness, or usefulness of any information, 
apparatus, product, or process disclosed, or represents that its use would not infringe 
privately owned rights. Reference herein to any specific commercial product, process, or 
service by trade name, trademark, manufacturer, or otherwise, does not necessarily 
constitute or imply its endorsement, recommendation, or favoring by the United States 
Government or any agency thereof The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or any agency 
thereof 



Data Flow Manager for DART* 

David Berg, Dennis Black, Dave Slimmer 
Online Systems Department/Computing Division 

Jiirgen Engelfried 
E781 

Physics Department/Research Division 

Vivian O’Dell 
Special Assignments/Computing Division 

Fermi National Accelerator Laboratory 
P.O. Box 500 

Batavia. IL 605 10 

Abstract 

The DART Data Flow Manager (dfm) inte- 
grates a buffer manager with a requester/pro- 
vider model for scheduling work on buffers. 
Buffer lists, representing built events or other 
data, are queued by service requesters to ser- 
vice providers. 

Buffers may be either internal (reside on the 
local node), or external (located elsewhere, 
e.g., dual ported memory). Internal buffers 
are managed locally. Wherever possible, dfm 
moves only addresses of buffers rather than 
buffers themselves. 

1 Introduction 

DART [I], a collaboration of fixed target ex- 
periments, developed a buffer management 
system [2] that will satisfy their varied re- 
quirements [3] with a single coherent facility. 

dfm requester tasks assemble lists of pointers 
to buffers, representing, for example, various 
fragments of an event, and schedule them to 
dfm provider tasks, which perform services 
such as logging events to tape. Each experi- 
ment designs its own requesters and provid- 
ers, building on a framework of dfm 
functions. 

A tool, snapshot, was also developed for de- 

bugging and performance measurement. This 
tool runs as a separate process that spies on 
dfm’s control structures. 

2 Requirements 

The basic requirements for dfm were that: 

l The data flow manager should be almost 
invisible to the experimenter, making the 
use and integration relatively easy. 

l There must be well defined interfaces be- 
tween the data flow manager and other 
data acquisition components, e.g., run 
control, logger, Hoist [4]. 

l The data flow manager must either avoid, 
or be able to detect and gracefully recover 
from, deadlocks, insufficient resources, 
etc. 

l The data flow manager should impose no 
strict real time requirements on Unix 
workstations used as filter farms. The oc- 
casional slow analysis of an event must 
not halt the overall flow. Even if a proces- 
sor completely drops out, data acquisition 
must not halt (though it may slow propor- 
tionately). 

l Similarly, flow control problems with 
back end workstations must not interfere 

* This work is sponsored by DOE contract No. DE-AC02-76CH03000 



with data acquisition. 

l There should be no restrictions on the 
content of buffers. 

l Data buffers should be externally tagged 
with characteristics that can be used to 
control flow, buffer selection and distri- 
bution among sinks, etc. 

l A data buffer may be represented to the 
buffer manager directly, as a collection of 
data to be moved, or indirectly, as the ad- 
dress of the data. 

l Beyond those necessary for fault toler- 
ance, there are no requirements for dy- 
namic re-configuration during a run. 

l In addition to the buffer manager routines 
being used by programs written in C (or 
C++), there must also be FORTRAN 
bindings. 

3 Buffers 

Local buffers are managed as a pool that is 
pre-allocated using a distribution of discrete 
sizes specific to each experiment. A request 
for a buffer is made by size, and satisfied by 
the smallest available buffer meeting the re- 
quirement. 

There are three kinds of buffers. There may 
be any number of buffer classes defined for 
each kind, up to an aggregate of 255 classes. 
Classes are defined by the experiment as 
needed. The three kinds are: 

l external - buffers not managed by dfm. 

l internal - local buffers, including buffer 
lists, managed by dfm. 

l sub&fleer - a local buffer may be divided 
arbitrarily into sub-buffers; each such 
parent buffer defines a separate class. 

Associated with each internal buffer is a buff- 
er descriptor consisting of the buffer class 
and buffer use count. The buffer descriptor 
physically precedes the buffer in memory. 

4 Buffer List 

A buffer list is a data structure containing a 
set of buffer locators and control information 
associated with a single event or other unit of 
data. The pointer to this control structure is 

the item that is passed onto message queues 
between requesters and providers. Because 
the buffer list is itself an internal buffer, it has 
an associated buffer descriptor. Furthermore, 
buffer lists may themselves be included as 
buffers in other buffer lists. 

5 Service Requesters and Providers 

Service requesters reserve buffers and build 
or modify buffer lists, which they schedule to 
service providers. One list may be scheduled 
concurrently to many providers. Service pro- 
viders access the lists and buffers; when a ser- 
vice completes, it attempts to return the 
buffer list to the free pool. A single process 
may be a requester, a provider, or a combina- 
tion of both. 

Requesters schedule buffer lists by specify- 
ing a service group. All scheduling is limited 
by a time out period, so if any queue is full, 
the requester will block until there is room, or 
until the time out. 

l broadcast - attempt to post the list to ev- 
ery provider in the service group. 

l round robin - take providers in the service 
group sequentially, and attempt to post 
the list to the next one. If the queue is full, 
skip to the next one. 

l next available - maintain a ready queue of 
providers, and attempt to post the list to 
the first provider on the queue. If the 
ready queue is empty, or the service 



queue is full, block until a provider be- 
comes ready, or until the time out. 

Providers are responsible for acquiring buffer 
lists from their respective queues, and block- 
ing if their queues are empty, or until a time 
out. Providers may specify several optional 
posting requirements, which they may also 
change at any time. If requirements are spec- 
ified, lists are posted only if they meet all re- 
quirements at the time of the request. These 
requirements include: type mask, size limit, 
and frequency modulus 

Buffer use counts are maintained by the dfm 
calls in requesters and providers. They are 
used to track when the buffer is still in use or 
when it can safely be returned to the pool. 
The use count is incremented as a result of re- 
serving, inserting and scheduling; it is decre- 
mented when a requester or provider has 
finished with the buffer. When the use count 
reaches zero, the buffer will be returned to the 
free buffer pool. 

6 Semaphores 

On Unix, dfm uses System V IPC sema- 
phores for both mutual exclusion and syn- 
chronization. Message queues are 
implemented within dfm. 
Mutual exclusion semaphores are used to in- 
sure the integrity of the information stored in 
the control structures, message queues, and 
buffer descriptors, all which are located in 
shared memory segments. Currently, the 
semaphore granularity is at the service group 
and buffer class level. 

Synchronization semaphores are used to sig- 
nal a blocked or waiting process that the sta- 
tus of the queue has changed. Each process 
using dfm in the system requires its own syn- 
chronization semaphore. 

7 Memory 

dfm uses two shared memory segments: con- 
trol and data. At initialization these segments 
are reserved in shared memory or kernel 
memory, depending on the configuration of 
the user’s system. 
The control segment holds all data structures 
and message queues. All internal buffers, in- 

cluding buffer lists, are located in the data 
segment. 

8 Message Queues 

Queues and linked lists are used throughout 
dfm, in several different forms: 

l Each service provider is associated with 
one or more message queues to which 
buffer lists are posted. A limited number 
of lists, and at most one provider, may be 
queued or blocked on each. 

l Each service group has a message queue 
to which ready providers are posted, 
which is used for the next available distri- 
bution mode of scheduling buffer lists. A 
limited number of providers, and any 
number of requesters may be queued or 
blocked on each. 

l Each internal buffer class has a corre- 
sponding free pool or queue and any 
number of requesters may be blocked on 
each. 

9 Summary 

The initial implementation of dfm was for 
VxWorks, a real-time multi-tasking kernel 
for embedded processors; this is currently in 
use for data acquisition by at least one Ferm- 
ilab experiment. An implementation for Unix 
has been developed and is actively being in- 
tegrated into several others. 

References 

[II 

PI 

II31 

[41 

R. Pordes et al., “Fermilab’s DART 
DA System,” these proceedings. 

D. Berg et al., “DART Data Flow 
Manager Design,” Fermilab Comput- 
ing Division document DS-225. 

D. Berg et al., “DART Data Flow Re- 
quirements,” Fermilab Computing Di- 
vision document DS-226. 

Oleynik, Gene, “Integrating UNIX 
Workstations into Existing Online 
Data Acquisition Systems for Fermi- 
lab Experiments,” Proceedings of 
Computing in High Energy Physics, 
1991. 


