Counterexample-Guided Model Synthesis

Mathias Preiner, Aina Niemetz, and Armin Biere

Johannes Kepler University, Linz, Austria

Abstract. In this paper we present a new approach for solving quanti-
fied formulas in Satisfiability Modulo Theories (SMT), with a particular
focus on the theory of fixed-size bit-vectors. We combine counterexample-
guided quantifier instantiation with a syntax-guided synthesis approach,
which allows us to synthesize both Skolem functions and terms for quan-
tifier instantiations. Our approach employs two ground theory solvers to
reason about quantified formulas. It neither relies on quantifier specific
simplifications nor heuristic quantifier instantiation techniques, which
makes it a simple yet effective approach for solving quantified formulas.
We implemented our approach in our SMT solver Boolector and show
in our experiments that our techniques are competitive compared to the
state-of-the-art in solving quantified bit-vectors.

1 Introduction

Many techniques in hardware and software verification rely on quantifiers for
describing properties of programs and circuits, e.g., universal safety properties,
inferring program invariants [1], finding ranking functions [2], and synthesizing
hardware and software [34]. Quantifiers further allow to define theory axioms
to reason about a theory of interest not supported natively by an SMT solver.
The theory of fixed-size bit-vectors provides a natural way of encoding bit-
precise semantics as found in hardware and software. In recent SMT competi-
tions, the division for quantifier-free fixed-size bit-vectors was the most compet-
itive with an increasing number of participants every year. Quantified bit-vector
reasoning, however, even though a highly required feature, is still very challeng-
ing and did not get as much attention as the quantifier-free fragment. The com-
plexity of deciding quantified bit-vector formulas is known to be NExpTime-hard
and solvable in ExpSpace [0]. Its exact complexity, however, is still unknown.
While there exist several SMT solvers that efficiently reason about quantifier-
free bit-vectors, only CVC4 [6], Z3 [7], and Yices [8] support the quantified bit-
vector fragment. The SMT solver CVC4 employs counterexample-guided quan-
tifier instantiation (CEGQI) [9], where a ground theory solver tries to find con-
crete values (counterexamples) for instantiating universal variables by generat-
ing models of the negated input formula. In Z3, an approach called model-based
quantifier instantiation (MBQI) [I0] is combined with a model finding procedure
based on templates [I1]. In contrast to only relying on concrete counterexam-
ples as candidates for quantifier instantiation, MBQI additionally uses symbolic

Supported by Austrian Science Fund (FWF) under NFN Grant S11408-N23 (RiSE).

quantifier instantiation to generalize the counterexample by selecting ground
terms to rule out more spurious models. The SMT solver Yices provides quan-
tifier support limited to exists/forall problems [12] of the form IxVy.P[x,y]|. It
employs two ground solver instances, one for checking the satisfiability of a set of
generalizations and generating candidate solutions for the existential variables
x, and the other for checking if the candidate solution is correct. If the candi-
date model is not correct, a model-based generalization procedure refines the
candidate models.

Recently, a different approach based on binary decision diagrams (BDD)
was proposed in [13]. Experimental results of its prototype implementation Q3B
show that it is competitive with current state-of-the-art SMT solvers. However,
employing BDDs for solving quantified bit-vectors heavily relies on formula sim-
plifications, variable ordering, and approximation techniques to reduce the size
of the BDDs. If these techniques fail to substantially reduce the size of the BDDs
this approach does not scale. Further, in most applications it is necessary to pro-
vide models in case of satisfiable problems. However, it is unclear if a bit-level
BDD-based model can be lifted to produce more succinct word-level models.

In this paper, we combine a variant of CEGQI with a syntax-guided syn-
thesis [14] approach to create a model finding algorithm called counterexample-
guided model synthesis (CEGMS), which iteratively refines a synthesized candi-
date model. Unlike Z3, our approach synthesizes Skolem functions based on a
set of ground instances without the need for specifying function or circuit tem-
plates up-front. Further, we can apply CEGMS to the negation of the formula
in a parallel dual setting to synthesize quantifier instantiations that prove the
unsatisfiability of the original problem. Our approach is a simple yet efficient
technique that does not rely on quantifier specific simplifications, which have
previously been found to be particularly useful [II]. Our experimental evalua-
tion shows that our approach is competitive with the state-of-the-art in solving
quantified bit-vectors. However, even though we implemented it in Boolector, an
SMT solver for the theory of bit-vectors with arrays and uninterpreted functions,
our techniques are not restricted to the theory of quantified bit-vectors.

2 Preliminaries

We assume the usual notions and terminology of first-order logic and primarily
focus on the theory of quantified fized-size bit-vectors. We only consider many-
sorted languages, where bit-vectors of different size are interpreted as bit-vectors
of different sorts.

Let X' be a signature consisting of a set of function symbols f : ny,...,nx = n
with arity k£ > 0 and a set of bit-vector sorts with size n,nq, ..., ng. For the sake
of simplicity and w.l.o.g., we assume that sort Bool is interpreted as a bit-vector
of size one with constants T (1) and L (0), and represent all predicate symbols
as function symbols with a bit-vector of size one as the sort of the co-domain. We
refer to function symbols occurring in X' as interpreted, and those symbols not
included in X' as uninterpreted. A bit-vector term is either a bit-vector variable

or an application of a bit-vector function of the form f(¢y,...,t;), where f € X
or f &3 andty,...,t; are bit-vector terms. We denote bit-vector term ¢ of size
n as t[, and define its domain as BV|,), which consists of all bit-vector values
of size n. Analogously, we represent a bit-vector value as an integer with its size
as a subscript, e.g., 14 for 0001 or —1p for 1111.

We assume the usual interpreted symbols for the theory of bit-vectors, e.g.,
=[n]» T[n]> *[n]> CONCAL [], <[n], €tC., and will omit the subscript specifying their
bit-vector size if the context allows. We further interpret an ite(c,tg,t1) as an
if-then-else over bit-vector terms, where ite(T,to,t1) = to and ite(L, tg,t1) = t1.

In general, we refer to O-arity function symbols as constant symbols, and
denote them by a, b, and ¢. We use f and g for non-constant function symbols,
P for predicates, x, y and z for variables, and ¢ for arbitrary terms. We use
symbols in bold font, e.g., x, as a shorthand for tuple (z1,...,z), and denote a
formula (resp. term) that may contain variables x as ¢[x] (resp. t[x]). If a formula
(resp. term) does not contain any variables we refer to it as ground formula
(resp. term). We further use ¢[t/z] as a notation for replacing all occurrences of
in ¢ with a term ¢. Similarly, p[t/x] is used as a shorthand for [ty /x1, ..., tr/zk].

Given a quantified formula ¢[x,y] with universal variables x and existential
variables y, Skolemization [15] eliminates all existential variables y by intro-
ducing fresh uninterpreted function symbols with arity > 0 for the existential
variables y. For example, the skolemized form of formula Jy;VxIys.P(y1,X, y2)
is VX.P(fy,, X, fy,(x)), where f,, and f,, are fresh uninterpreted symbols, which
we refer to as Skolem symbols. The subscript denotes the existential variable that
was eliminated by the corresponding Skolem symbol. We write skolemize(p) for
the application of Skolemization to formula ¢, vary(p) for the set of universal
variables in ¢, and sym (@) for the set of Skolem symbols in ¢.

A XY-structure M maps each bit-vector sort of size n to its domain BV,
each function symbol f:ni,...,ny — n € X with arity £ > 0 to a total func-
tion M(f):BVin,),..., BV, — BV[,, and each constant symbol with size n
to an element in BVy,). We use M’ := M{x + v} to denote a X-structure M’
that maps variable x to a value v of the same sort and is otherwise identical
to M. The evaluation M (z[,)) of a variable x},) and M(cp,)) of a constant ¢ in
M is an element in BV[,. The evaluation of an arbitrary term ¢ in M is de-
noted by M[t] and is recursively defined as follows. For a constant ¢ (resp. vari-
able) M([c] = M(c) (resp. M[x] = M(z)). A function symbol f is evaluated
as M[[f(t1,...,tx)] = M(f)(M[t1],- .., M[tx]). A X-structure M is a model of
a formula ¢ if M[p] = T. A formula is satisfiable if and only if it has a model.

3 Overview

In essence, our counterexample-guided model synthesis (CEGMS) approach for
solving quantified bit-vector problems combines a variant of counterexample-
guided quantifier instantiation (CEGQI) [9] with the syntax-guided synthesis
approach in [I4] in order to synthesize Skolem functions. The general workflow
of our approach is depicted in Fig. [I] and introduced as follows.

unsat

Check sat Synthesize
Ground Instances | Model | Candidate Model

Skolem
functions

Check
Candidate Model

unsat

(% —»[Preprocessing

New
ground instance

Counter-
example

CEGMS SAT UNSAT

Fig. 1. Basic workflow of our CEGMS approach.

Given a quantified formula ¢ as input, CEGMS first applies Skolemization as
a preprocessing step and initializes an empty set of ground instances. This empty
set is, in the following, iteratively extended with ground instances of ¢, generated
via CEGQI. In each iteration, CEGMS first checks for a ground conflict by calling
a ground theory solver instance on the set of ground instances. If the solver
returns unsatisfiable, a ground conflict was found and the CEGMS procedure
concludes with UNSAT. If the solver returns satisfiable, it produces a model
for the Skolem symbols, which serves as a base for synthesizing a candidate
model for all Skolem functions. If the candidate model is valid, the CEGMS
procedure concludes with SAT. However, if the candidate model is invalid, the
solver generates a counterexample, which is used to create a new ground instance
of the formula via CEGQIL. The CEGMS procedure terminates, when either a
ground conflict occurs, or a valid candidate model is synthesized.

4 Counterexample-Guided Model Synthesis

The main refinement loop of our CEGMS approach is realized via CEGQI [9],
a technique similar to the generalization by substitution approach described
in [12], where a concrete counterexample to universal variables is used to create a
ground instance of the formula, which then serves as a refinement for the candi-
date model. Similarly, every refinement step of our CEGMS approach produces
a ground instance of the formula by instantiating its universal variables with a
counter example if the synthesized candidate model is not valid. The counterex-
ample corresponds to a concrete assignment to the universal variables for which
the candidate model does not satisfy the formula. Figure [2 introduces the main
algorithm of our CEGMS approach as follows.

1 function CEGMS ()

2 G:=T, x = vary(p)

3 sk = skolemize(preprocess(p)) // apply Skolemization

4 f == symsk(@sk) // Skolem symbols

5 ve = psk[u/X] // ground s, with fresh constants u
6 while true

7 r, Mc = sat(G) // check set of ground instances

8 if r = unsat return unsat // found ground conflict

9 Mg := synthesize(f, G, Ma,¢c) // synthesize candidate model

10 r, Mc = sat(—pa[Ms(f)/f]) // check candidate model

11 if 7 = unsat return sat // candidate model is valid

12 G =G A pg[Mc(u)/u] // new ground instance via CEGQI

Fig. 2. High level view of our CEGMS approach.

Given a quantified bit-vector formula ¢, we represent ¢ as a directed acyclic
graph (DAG), with the Boolean layer expressed by means of AND and NOT.
As a consequence, it is not possible to transform ¢ into negative normal form
(NNF) and we therefore apply quantifier normalization as a preprocessing step
to ensure that a quantifier does not occur in both negated and non-negated form.
For the same reason, an ite-term is eliminated in case that a quantifier occurs
in its condition. Note that if ¢ is not in NNF, it is sufficient to keep track of
the polarities of the quantifiers, i.e., to count the number of negations from the
root of the formula to the resp. quantifier, and flip the quantifier if the number
of negations is odd. If a quantifier occurs negative and positive, the scope of the
quantifier is duplicated, the quantification is flipped, and the negative occurrence
is substituted with the new subgraph. Further note that preprocessing currently
does not include any further simplification techniques such as miniscoping or
destructive equality resolution (DER) [11].

After preprocessing, Skolemization is applied to the normalized formula, and
all universal variables x in @ are instantiated with fresh bit-vector constants
u of the same sort. This yields ground formula ¢¢. Initially, procedure CEGMS
starts with an empty set of ground instances GG, which is iteratively extended
with new ground instances during the refinement loop.

In the first step of the loop, an SMT solver instance checks whether G con-
tains a ground conflict (line 7). If this is the case, procedure CEGMS has found
conflicting quantifier instantiations and concludes with unsatisfiable. Else, the
SMT solver produces model Mg for all Skolem symbols in G, i.e., every Skolem
constant is mapped to a bit-vector value, and every uninterpreted function cor-
responding to a Skolem function is mapped to a partial function mapping bit-
vector values. Model Mg is used as a base for synthesizing a candidate model
Mg that satisfies G. The synthesis of candidate models Mg will be introduced
in more detail in the next section. In order to check if Mg is also a model that
satisfies ¢, we check with an additional SMT solver instance if there exists an
assignment to constants u (corresponding to universal variables x), such that
candidate model Mg does not satisfy formula ¢ (line 10).

If the second SMT solver instance returns unsatisfiable, no such assignment to
constants u exists and consequently, candidate model Mg is indeed a valid model
for the Skolem functions and procedure CEGMS returns with satisfiable. Else,
the SMT solver produces a concrete counterexample for constants u, for which
candidate model Mg does not satisfy formula ¢. This counterexample is used as
a quantifier instantiation to create a new ground instance g; = ¢g[Mc(u)/ul,
which is added to G := G A g; as a refinement (line 12) and considered in the
next iteration for synthesizing a candidate model. These steps are repeated until
either a ground conflict is found or a valid candidate model was synthesized.

Our CEGMS procedure creates in the worst-case an unmanageable number
of ground instances of the formula prior to finding either a ground conflict or
a valid candidate model, infinitely many in case of infinite domains. In the bit-
vector case, however, it produces in the worst-case exponentially many ground
instances in the size of the domain. Since, given a bit-vector formula, there
exist only finitely many such ground instances, procedure CEGMS will always
terminate. Further, if CEGMS concludes with satisfiable, it returns with a model
for the existential variables.

5 Synthesis of Candidate Models

In our CEGMS approach, based on a concrete model Mg we apply synthe-
sis to find general models Mg to accelerate either finding a valid model or a
ground conflict. Consider formula ¢ = Vzy3dz.z =z 4y, its skolemized form
wsk = Vay. f.(z,y) = x + y, some ground instances G = f,(0,0) =0 A f,(0,1)
=1A f,(1,2) = 3, and model Mg = {f.(0,0) — 0, £.(0,1) — 1, f.(1,2) — 3}
that satisfies G. A simple approach for generating a Skolem function for f, would
be to represent model M¢(f.) as a lambda term Azy.ite(x = 0Ay = 0,0, ite(z =
0Ny =1,1,ite(x =1 Ay = 2,3,0))) with base case constant 0, and check if it is
a valid Skolem function for f,. If it is not valid, a counterexample is generated
and a new ground instance is added via CEGQI to refine the set of ground in-
stances GG. However, this approach, in the worst-case, enumerates exponentially
many ground instances until finding a valid candidate model. By introducing a
modified version of a syntax-guided synthesis technique called enumerative learn-
ing [16], CEGMS is able to produce a more succinct and more general lambda
term Azy . x + y, which satisfies the ground instances G and formula gy.
Enumerative learning as in [I6] systematically enumerates expressions that
can be built based on a given syntax and checks whether the generated expression
conforms to a set of concrete test cases. These expressions are generated in
increasing order of a specified complexity metric, such as, e.g., the size of the
expression. The algorithm creates larger expressions by combining smaller ones
of a given size, which is similar to the idea of dynamic programming. Each
generated expression is evaluated on the concrete test cases, which yields a vector
of values also denoted as signature. In order to reduce the number of enumerated
expressions, the algorithm discards expressions with identical signatures, i.e., if
two expressions produce the same signature the one generated first will be stored

1 function enumlearn (f, I, O, T, M)

2 S:=0, E[1] =1, size=0

3 while true

4 size = size + 1 // increase expression size to create

5 for ¢ € enumexps(size, O, E) // enumerate all expressions of size size
6 s:=eval(M,T[t/f]) // compute signature of ¢

7 ifs¢gsS // expression not yet created

8 S = SU{s} // cache signature

9 if checksig(s) return t // t conforms to test cases T'
10 El[size] := El[size] U {t} // store expression ¢

Fig. 3. Simplified version of enumerative learning [16] employed in CEGMS.

and the other one will be discarded. Figure [3] depicts a simplified version of the
enumerative learning algorithm as employed in our CEGMS approach, while a
more detailed description of the original algorithm can be found in [16].

Given a Skolem symbol f, a set of inputs I, a set of operators O, a set of
test cases T', and a model M, algorithm enumlearn attempts to synthesize a
term ¢, such that T'[t/f] evaluates to true under model M. This is done by enu-
merating all terms ¢ that can be built with inputs I and bit-vector operators O.
Enumerating all expressions of a certain size (function enumexps) follows the
original enumerative learning approach [16]. Given an expression size size and a
bit-vector operator o, the size is partitioned into partitions of size k = arity(o),
e.g., (1,3) (3,1) (2,2) for size = 4 and k = 2. Each partition (sq,. .., s;) specifies
the size s; of expression e;, and is used to create expressions of size size with
operator o, i.e., {o(er,...,ex) | (e1,...,ex) € E[s1] X ... X E[sk]}, where E[s;]
corresponds to the set of expressions of size s;. Initially, for size = 1, function
enumexps enumerates inputs only, i.e., F[1] = I.

For each generated term ¢, a signature s is computed from a set of test cases
T with function eval. In the original algorithm [I6], set T' contains concrete ex-
amples of the input/output relation of f, i.e.; it defines a set of output values
of f under some concrete input values. In our case, model M (f) may be used as
a test set T', since it contains a concrete input/output relation on some bit-vector
values. However, we are not looking for a term ¢ with that concrete input/output
value behaviour, but a term t that at least satisfies the set of current ground
instances G. Hence, we use G as our test set and create a signature s by evaluat-
ing every ground instance g; € G[t/ f], resulting in a tuple of Boolean constants,
where the Boolean constant at position ¢ corresponds to the value M[g;] of
ground instance g; € G[t/ f] under current model M. Procedure checksig returns
true if signature s contains only the Boolean constant T, i.e., if every ground
instance g; € G is satisfied.

As a consequence of using G rather than M (f) as a test set T, the expres-
sion enumeration space is even more pruned since computing the signature of f
w.r.t. G yields more identical expressions (and consequently, more expressions
get discarded). Note that the evaluation via function eval does not require ad-

1 function synthesize (f, G, Mq, pa)

2 Ms = Mg, O = ops(pa) // choose operators O w.r.t. formula pg
3 for fef

4 I == inputs(f, vq) // choose inputs for f

5 t := enumlearn(f,I,0,G, Ms) // synthesize term ¢

6 if ¢ null

7 Mg == Mgs{f — t} // update model

8 return Mg

Fig. 4. Synthesis of candidate models in CEGMS.

ditional SMT solver calls, since the value of ground instance g; € G[t/ f] can be
computed via evaluating M [g;].

Algorithm synthesize produces Skolem function candidates for every Skolem
symbol f € f, as depicted in Fig. |4 Initially, a set of bit-vector operators O is
selected, which consists of those operators appearing in formula ¢g. Note that
we do not select all available bit-vector operators of the bit-vector theory in order
to reduce the number of expressions to enumerate. The algorithm then selects a
set of inputs I, consisting of the universal variables on which f depends and the
constant values that occur in formula . Based on inputs I and operators O, a
term ¢ for Skolem symbol f is synthesized and stored in model Mg (lines 4-7).
If algorithm enumlearn is not able to synthesize a term ¢, model M (f) is used
instead. This might happen if function enumlearn hits some predefined limit
such as the maximum number of expressions enumerated.

In each iteration step of function synthesize, model Mg is updated if enum-
learn succeeded in synthesizing a Skolem function. Thus, in the next iterations,
previously synthesized Skolem functions are considered for evaluating candidate
expressions in function enumlearn. This is crucial to guarantee that each syn-
thesized Skolem function still satisfies the ground instances in G. Otherwise, Mg
may not rule out every counterexample generated so far, and thus, validating the
candidate model may result in a counterexample that was already produced in a
previous refinement iteration. As a consequence, our CEGMS procedure would
not terminate even for finite domains since it might get stuck in an infinite
refinement loop while creating already existing ground instances.

The number of inputs and bit-vector operators used as base for algorithm
enumlearn significantly affects the size of the enumeration space. Picking too
many inputs and operators enumerates too many expressions and algorithm
enumlearn will not find a candidate term in a reasonable time, whereas restrict-
ing the number of inputs and operators too much may not yield a candidate
expression at all. In our implementation, we kept it simple and maintain a set of
base operators {ite,~}, which gets extended with additional bit-vector opera-
tors occurring in the original formula. The set of inputs consists of the constant
values occurring in the original formula and the universal variables on which a
Skolem symbol depends. Finding more restrictions on the combination of inputs
and bit-vector operators in order to reduce the size of the enumeration space is
an important issue, but left to future work.

Ezample 1. Consider p :=V2Iy . (r <0 —y=—2)A(z>0—y=ux), and its
skolemized form Vz . (x < 0 — fy(z) = —z) A (x > 0 — f,(z) =), where y and
consequently f,(z) corresponds to the absolute value function abs(z). For syn-
thesizing a candidate model for f,, we first pick the set of inputs I = {z,0}
and the set of operators O := {—, ~, <, ite} based on formula ¢. Note that we
omitted operators > and — since they can be expressed by means of the other
operators. The ground formula and its negation are defined as follows.

oo =w<0—= fy(u) =—-u)A(u>0— f,(u) =u)
g = (<0 A fy(w) £ —u)V (w0 A fy(u) £ u)
For every refinement round i, the table below shows the set of ground in-
stances G, the synthesized candidate model M (f,), formula —og[Ms(fy)/fy]
for checking the candidate model, and a counterexample M for constant u if
the candidate model was not correct.

i|G Ms(fy) —~paMs(fy)/ fy] Mc(u)
1T Az.0 (u<OAN0# —u)V (u>0A0F#u) 1
21 fy(1)=1 Az.x (u<O0Au#—-u)V(u>0Auu) -1

. u < 0Aite(u <0, —u,u —u) V
3| £,(=1) = 1| Az.ite(z < 0, —z, 2) Eu>0Mtegu<0ﬁu7u§iu))]

In the first round, the algorithm starts with ground formula G := T. Since any
model of f, satisfies G, for the sake of simplicity, we pick Az.0 as candidate,
resulting in counterexample v = 1, and refinement pg[1/u] = f,(1) = 1 is added
to G. In the second round, lambda term Az.x is synthesized as candidate model
for f, since it satisfies G := f,(1) = 1. However, this is still not a valid model for
fy and counterexample u = —1 is produced, which yields refinement pg[—1/u] =
fy(—=1) = 1. In the third and last round, Mgs(fy) = Az.ite(z < 0, —z, x) is syn-
thesized and found to be a valid model since ~¢g[Ms(fy)/f,] is unsatisfiable,
and CEGMS concludes with satisfiable.

6 Dual Counterexample-Guided Model Synthesis

Our CEGMS approach is a model finding procedure that enables us to synthesize
Skolem functions for satisfiable problems. However, for the unsatisfiable case we
rely on CEGQI to find quantifier instantiations based on concrete counterex-
amples that produce conflicting ground instances. In practice, CEGQI is often
successful in finding ground conflicts. However, it may happen that way too many
quantifier instantiations have to be enumerated (in the worst-case exponentially
many for finite domains, infinitely many for infinite domains). In order to obtain

better (symbolic) candidates for quantifier instantiation, we exploit the concept
of duality of the input formula and simultaneously apply our CEGMS approach
to the original input and its negation (the dual formula).

Given a quantified formula ¢ and its negation, the dual formula —y, e.g.,
¢ = Vx3y.Plzr,y] and —¢ = IxVy.-P[z,y]. If —p is satisfiable, then there
exists a model M(x) to its existential variables x such that ¢[M(x)/x,y] is
unsatisfiable. That is, a model in the dual formula —¢ can be used as a quantifier
instantiation in the original formula ¢ to immediately produce a ground conflict.
Similarly, if = is unsatisfiable, then there exists no quantifier instantiation in
@ such that ¢ is unsatisfiable. As a consequence, if we apply CEGMS to the
dual formula and it is able to synthesize a valid candidate model, we obtain
a quantifier instantiation that immediately produces a ground conflict in the
original formula. Else, if our CEGMS procedure concludes with unsatisfiable on
the dual formula, there exists no model to its existential variables and therefore,
the original formula is satisfiable.

Dual CEGMS enables us to simultaneously search for models and quantifier
instantiations, which is particularly useful in a parallel setting. Further, apply-
ing synthesis to produce quantifier instantiations via the dual formula allows
us to create terms that are not necessarily ground instances of the original for-
mula. This is particularly useful in cases where heuristic quantifier instantiation
techniques based on E-matching [17] or model-based quantifier instantiation [10]
struggle due to the fact that they typically select terms as candidates for quan-
tifier instantiation that occur in some set of ground terms of the input formula,
as illustrated by the following example.

Ezxample 2. Consider the unsatisfiable formula ¢ = Vz . axc+bxc # x *x ¢,
where x = a + b produces a ground conflict. Unfortunately, a + b is not a ground
instance of ¢ and is consequently not selected as a candidate by current state-
of-the-art heuristic quantifier instantiation techniques. However, if we apply
CEGMS to the dual formula Vabc3z . a x ¢+ b* ¢ = = * ¢, we obtain A\xyz.x +y
as a model for Skolem symbol f,(a,b, c), which corresponds to the term a + b if
instantiated with (a, b, ¢). Selecting a + b as a term for instantiating variable x in
the original formula results in a conflicting ground instance, which immediately
allows us to determine unsatisfiability.

Note that if CEGMS concludes unsatisfiable on the dual formula, we cur-
rently do not produce a model for the original formula. Generating a model
would require further reasoning, e.g., proof reasoning, on the conflicting ground
instances of the dual formula and is left to future work.

Further, dual CEGMS currently only utilizes the final result of applying
CEGMS to the dual formula. Exchanging intermediate results (synthesized can-
didate models) between the original and the dual formula in order to prune the
search is an interesting direction for future work.

In the context of quantified Boolean formulas (QBF), the duality of the
given input has been previously successfully exploited to prune and consequently
speed up the search in circuit-based QBF solvers [I§]. In the context of SMT, in

10

previous work we applied the concept of duality to optimize lemmas on demand
approach for the theory of arrays in Boolector [19].

7 Experiments

We implemented our CEGMS technique and its dual version in our SMT solver
Boolector [20], which supports the theory of bit-vectors combined with arrays
and uninterpreted functions. We evaluated our approach on two sets of bench-
marks (5029 in total). Set BV (191) contains all BV benchmarks of SMT-
LIB [21I], whereas set BVrnira (4838) consists of all LIA, LRA, NIA, NRA
benchmarks of SMT-LIB [2]] translated into bit-vector problems by substituting
every integer or real with a bit-vector of size 32, and every arithmetic operator
with its signed bit-vector equivalent.

We evaluated four configurations of Boolectofl} (1) Btor, the CEGMS ver-
sion without synthesis, (2) Btor+s, the CEGMS version with synthesis enabled,
(3) Btor+d, the dual CEGMS version without synthesis, (4) Btor+ds, the
dual CEGMS version with synthesis enabled. We compared our approach to
the current development versions of the state-of-the-art SMT solvers CVC4E| [6]
and Ziﬂ [7], and the BDD-based approach implemented as a prototype called
Q3BE| [13]. The tool Q3B runs two processes with different approximation strate-
gies in a parallel portfolio setting, where one process applies over-approximation
and the other under-approximation. The dual CEGMS approach implemented in
Boolector is realized with two parallel threads within the solver, one for the orig-
inal formula and the other for the dual formula. Both threads do not exchange
any information and run in a parallel portfolio setting.

All experiments were performed on a cluster with 30 nodes of 2.83GHz Intel
Core 2 Quad machines with 8GB of memory using Ubuntu 14.04.5 LTS. We set
the limits for each solver/benchmark pair to 7GB of memory and 1200 seconds
of CPU time (not wall clock time). In case of a timeout, memory out, or an
error, a penalty of 1200 seconds was added to the total CPU time.

Figure [5]illustrates the effect of our model synthesis approach by comparing
configurations Btor and Btor+s on the BV and BVyNxra benchmark sets. On
the BV benchmark set, Btor+s solves 22 more instances (21 satisfiable, 1 un-
satisfiable) compared to Btor. The gain in the number of satisfiable instances
is due to the fact that CEGMS is primarily a model finding procedure, which
allows to find symbolic models instead of enumerating a possibly large number
of bit-vector values, which seems to be crucial on these instances.

On set BV NirA, however, Btor+s does not improve the overall number of
solved instances, even though it solves two satisfiable instances more than Btor.
Note that benchmark set BVynira contains only a small number of satisfiable

! Boolector commit 4f7837876cf9c28f42649b368eaffaf03c7e1357
2 CVC4 commit d19a95344fdelealff7d784b2c4fc6d09f459899

3 73 commit 186afe7d10d4f0e5acf40f9b1f16alflc2d1706¢

4 3B commit 68301686d36850ba782c4d0f9d58f8¢c4357¢1461

11

Btor+s CPU time [s]

100 1000

10

0.1

0.01

o sat
A unsat
+ timeout
A

D>
B R>

© cmammoo ol 00000

0.01

10

Btor CPU time [s]

100

1000

Btor+s CPU time [s]

100 1000

10

0.1

0.01

d o sat A C-Y
A unsat N A
+ timeout o

_ o, A B

A
A A .
p A
d
7 o
°
o
A
T T T T T T
0.01 0.1 1 10 100 1000

Btor CPU time [s]

Fig. 5. Comparison of Boolector with model synthesis enabled (Btor+s) and disabled

(Btor) on the BV and BVinira benchmarks.

CPU time [s]

Btor+ds

100 1000

10

0.1

0.01

° sat
A unsat
+ timeout
°
8
° N
8
8
°
A N
A
A
T T T T T T
0.01 0.1 1 10 100 1000

Btor+d CPU time [s]

CPU time [s]

Btor+ds

100 1000

10

0.1

0.01

BVLNIRA
o sat A Do &
A unsat . o 8 2
. - 3 §
+ timeout) . ° A
o
4 [
° 0,
)
oA ° A
P)
4 o
A o
A N
oo
o
4 o
a
A a
4 > a
RS
A
- A o
T T T T T T
0.01 0.1 1 10 100 1000

Btor+d CPU time [s]

Fig. 6. Comparison of dual CEGMS with model synthesis enabled (Btor+ds) and
disabled (Btor+d) on the BV and BV nira benchmarks.

BV (191) BVinira (4838)
solved sat unsat time [s] uniq | solved sat unsat time [s] uniq
Btor 142 51 91 59529 O 4527 465 4062 389123 3
Btor+s 164 72 92 32996 O 4526 467 4059 390661 1
Btor+d 162 67 95 35877 O 4572 518 4054 342412 4
Btor+ds | 172 77 95 24163 0 4704 517 4187 187411 135

Table 1. Results for all configurations on the BV and BVinmra benchmarks.

benchmarks (at most 12% = 575 benchmarksED, where configuration Btor al-
ready solves 465 instances without enabling model synthesis. For the remaining
satisfiable instances, the enumeration space may still be too large to synthesize
a model in reasonable time and may require more pruning by introducing more
syntactical restrictions for algorithm enumlearn as discussed in Sect.

Figure [6] shows the effect of model synthesis on the dual configurations
Btor+d and Btor+ds on benchmark sets BV and BVnira. On the BV bench-
mark set, configuration Btor+ds is able to solve 10 more instances of which all
are satisfiable. On the BV nira benchmark set, compared to Btor+d, configu-
ration Btor+ds is able to solve 132 more instances of which all are unsatisfiable.
The significant increase is due to the successful synthesis of quantifier instanti-
ations (133 cases).

Table [1] summarizes the results of all four configurations on both bench-
mark sets. Configuration Btor+ds clearly outperforms all other configurations
w.r.t. the number of solved instances and runtime on both benchmark sets. Out
of all 77 (517) satisfiable instances in set BV (BVNira) solved by Btor+ds, 32
(321) were solved by finding a ground conflict in the dual CEGMS approach.
In case of configuration Btor+d, out of 67 (518) solved satisfiable instances, 44
(306) were solved by finding a ground conflict in the dual formula. As an inter-
esting observation, 16 (53) of these instances were not solved by Btor. Note,
however, that Btor+d is not able to construct a model for these instances due
to the current limitations of our dual CEGMS approach as described in Sect. [6]

On the BV benchmark set, model synthesis significantly reduces the number
of refinement iterations. Out of 142 commonly solved instances, Btor+s required
165 refinement iterations, whereas Btor required 664 refinements. On the 4522
commonly solved instances of the BVynira benchmark set, Btor+s requires
5249 refinement iterations, whereas Btor requires 5174 refinements. The differ-
ence in the number of refinement iterations is due to the fact that enabling model
synthesis may produce different counterexamples that requires the CEGMS pro-
cedure to sometimes create more refinements. However, as noted earlier, enabling

5 Boolector, CVC4, Q3B, and Z3 combined solved 4263 unsatisfiable and 533 satisfi-
able instances, leaving only 42 instances unsolved

13

BV BViNirRA

1200
1200

-l ° Btorts 300008 — ° Btor+s
A Btor+ds [‘ 4 Btor+ds
cvca cvca
Q3B ‘ ‘ Q3B
z3 z3

1000
I
1000
I

800
I

800
L
e ‘

600
L
CPU time [s]
600
Il

CPU time [s]
400
Il

200
I
200
I

|
1
4
1
]
;
!
I
)

100 120 140 160 180 4000 4200 4400 4600 4800

solved instances # solved instances

Fig. 7. Cactus plot of the runtime of all solvers on benchmark sets BV and BVLNirA.

model synthesis on set BV nira does not improve the overall number of solved
instances in the non-dual case.

We analyzed the terms produced by model synthesis for both Btor+s and
Btor+ds on both benchmark sets. On the BV benchmark set, mainly terms of
the form Ax.c and Ax.z; with a bit-vector value ¢ and x; € x have been synthe-
sized. On the BV nira benchmarks, additional terms of the form Ax. (x; op z;),
Ax. (¢ op x;), Ax.~(c*x;)) and Ax. (x; + (¢ + ~x;)) with a bit-vector operator
op were synthesized. On these benchmarks, more complex terms did not occur.

Figure [7] depicts two cactus plots over the runtime of our best configuration
Btor+ds and the solvers CVC4, Q3B, and Z3 on the benchmark sets BV and
BVinira- On both benchmark sets, configuration Btor+ds solves the second
highest number of benchmarks after Q3B (BV) and Z3 (BVinira). On both
benchmark sets, a majority of the benchmarks seem to be trivial since they were
solved by all solvers within one second.

Table 2] summarizes the results of all solvers on both benchmark sets. On
the BV benchmark set, Q3B solves with 187 instances the highest number of
benchmarks, followed by Btor+ds with a total of 172 solved instances. Out
of all 19 benchmarks unsolved by Btor+ds, 9 benchmarks are solved by Q3B
and CVC4 through simplifications only. We expect Boolector to also benefit
from introducing quantifier specific simplification techniques, which is left to
future work. On the BVinra set, Z3 solves the most instances (4732) and
Btor+ds again comes in second with 4704 solved instances. In terms of satisfiable
instances, however, Btor+ds solves the highest number of instances (517). In
terms of unsatisfiable instances, Z3 clearly has an advantage due to its heuristic
quantifier instantiation techniques and solves 69 instances more than Btor+ds,
out of which 66 were solved within 3 seconds. The BDD-based approach of Q3B
does not scale as well on the BV nira set as on the BV set benchmark set and is

14

BV (191) BVLNIRA (4838)
solved sat unsat time [s] uniq | solved sat unsat time [s] uniq
Btor+ds 172 77 95 24163 2 4704 517 4187 187411 19

CVC4 145 64 81 57652 O 4362 339 4023 580402
Q3B 187 93 94 9086 9 4367 327 4040 581252
Z3 161 69 92 36593 O 4732 476 4256 130405 11

Table 2. Results for all solvers on the BV and BVynira benchmarks with a CPU time
limit of 1200 seconds (not wall clock time).

even outperformed by Btor+s. Note that most of the benchmarks in BVynira
involve more bit-vector arithmetic than the benchmarks in set BV.

Finally, considering Btor+ds, a wall clock time limit of 1200 seconds in-
creases the number of solved instances of set BVynxiga by 11 (and by 6 for
Q3B). On set BV, the number of solved instances does not increase.

8 Conclusion

We presented CEGMS, a new approach for handling quantifiers in SMT, which
combines CEGQI with syntax-guided synthesis to synthesize Skolem functions.
Further, by exploiting the duality of the input formula dual CEGMS enables us
to synthesize terms for quantifier instantiation. We implemented CEGMS in our
SMT solver Boolector. Our experimental results show that our technique is com-
petitive with the state-of-the-art in solving quantified bit-vectors even though
Boolector does not yet employ any quantifier specific simplification techniques.
Such techniques, e.g., miniscoping or DER were found particularly useful in Z3.
CEGMS employs two ground theory solvers to reason about arbitrarily quan-
tified formulas. It is a simple yet effective technique, and there is still a lot of
room for improvement. Model reconstruction from unsatisfiable dual formulas,
symbolic quantifier instantiation by generalizing concrete counterexamples, and
the combination of quantified bit-vectors with arrays and uninterpreted func-
tions are interesting directions for future work. It might also be interesting to
compare our approach to the work presented in [22J2324125].

Binary of Boolector, the set of translated benchmarks (BVinimra) and all log files of
our experimental evaluation can be found at http://fmv. jku.at/tacas17.

15

http://fmv.jku.at/tacas17

References

10.

11.

Gulwani, S., Srivastava, S., Venkatesan, R.: Constraint-based invariant inference
over predicate abstraction. In Jones, N.D., Miiller-Olm, M., eds.: Verification,
Model Checking, and Abstract Interpretation, 10th International Conference, VM-
CAT 2009, Savannah, GA, USA, January 18-20, 2009. Proceedings. Volume 5403
of Lecture Notes in Computer Science., Springer (2009) 120-135

Cook, B., Kroening, D., Riilmmer, P., Wintersteiger, C.M.: Ranking function syn-
thesis for bit-vector relations. In Esparza, J., Majumdar, R., eds.: Tools and Al-
gorithms for the Construction and Analysis of Systems, 16th International Con-
ference, TACAS 2010, Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010. Pro-
ceedings. Volume 6015 of Lecture Notes in Computer Science., Springer (2010)
236250

Srivastava, S., Gulwani, S., Foster, J.S.: From program verification to program
synthesis. In Hermenegildo, M.V., Palsberg, J., eds.: Proceedings of the 37th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2010, Madrid, Spain, January 17-23, 2010, ACM (2010) 313-326

Jobstmann, B., Bloem, R.: Optimizations for LTL synthesis. In: Formal Meth-
ods in Computer-Aided Design, 6th International Conference, FMCAD 2006, San
Jose, California, USA, November 12-16, 2006, Proceedings, IEEE Computer Soci-
ety (2006) 117-124

Kovésznai, G., Frohlich, A., Biere, A.: Complexity of fixed-size bit-vector logics.
Theory Comput. Syst. 59(2) (2016) 323-376

Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanovic, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In Gopalakrishnan, G., Qadeer, S., eds.: Computer
Aided Verification - 23rd International Conference, CAV 2011, Snowbird, UT, USA,
July 14-20, 2011. Proceedings. Volume 6806 of Lecture Notes in Computer Science.,
Springer (2011) 171-177

de Moura, L.M., Bjgrner, N.: Z3: an efficient SMT solver. In Ramakrishnan, C.R.,
Rehof, J., eds.: Tools and Algorithms for the Construction and Analysis of Systems,
14th International Conference, TACAS 2008, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary,
March 29-April 6, 2008. Proceedings. Volume 4963 of Lecture Notes in Computer
Science., Springer (2008) 337-340

Dutertre, B.: Yices 2.2. In Biere, A., Bloem, R., eds.: Computer-Aided Verification
(CAV’2014). Volume 8559 of Lecture Notes in Computer Science., Springer (July
2014) 737-744

Reynolds, A., Deters, M., Kuncak, V., Tinelli, C., Barrett, C.W.: Counterexample-
guided quantifier instantiation for synthesis in SMT. In Kroening, D., Pasareanu,
C.S., eds.: Computer Aided Verification - 27th International Conference, CAV 2015,
San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part II. Volume 9207 of
Lecture Notes in Computer Science., Springer (2015) 198-216

Ge, Y., de Moura, L.M.: Complete instantiation for quantified formulas in sat-
isfiabiliby modulo theories. In Bouajjani, A., Maler, O., eds.: Computer Aided
Verification, 21st International Conference, CAV 2009, Grenoble, France, June 26
- July 2, 2009. Proceedings. Volume 5643 of Lecture Notes in Computer Science.,
Springer (2009) 306-320

Wintersteiger, C.M., Hamadi, Y., de Moura, L.M.: Efficiently solving quantified
bit-vector formulas. In Bloem, R., Sharygina, N., eds.: Proceedings of 10th In-

16

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

ternational Conference on Formal Methods in Computer-Aided Design, FMCAD
2010, Lugano, Switzerland, October 20-23, IEEE (2010) 239-246

Dutertre, B.: Solving exists/forall problems in yices. Workshop on Satisfiability
Modulo Theories (2015)

Jonds, M., Strejcek, J.: Solving quantified bit-vector formulas using binary decision
diagrams. In Creignou, N., Berre, D.L., eds.: Theory and Applications of Satis-
fiability Testing - SAT 2016 - 19th International Conference, Bordeaux, France,
July 5-8, 2016, Proceedings. Volume 9710 of Lecture Notes in Computer Science.,
Springer (2016) 267283

Alur, R., Bodik, R., Juniwal, G., Martin, M.M.K., Raghothaman, M., Seshia, S.A.,
Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis. In:
Formal Methods in Computer-Aided Design, FMCAD 2013, Portland, OR, USA,
October 20-23, 2013, IEEE (2013) 1-8

Robinson, J.A., Voronkov, A., eds.: Handbook of Automated Reasoning (in 2
volumes). Elsevier and MIT Press (2001)

Udupa, A., Raghavan, A., Deshmukh, J.V., Mador-Haim, S., Martin, M.M.K.,
Alur, R.: TRANSIT: specifying protocols with concolic snippets. In Boehm, H.,
Flanagan, C., eds.: ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013, ACM (2013)
287-296

Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program check-
ing. J. ACM 52(3) (2005) 365-473

Goultiaeva, A., Bacchus, F.: Exploiting QBF duality on a circuit representation.
In Fox, M., Poole, D., eds.: Proceedings of the Twenty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2010, Atlanta, Georgia, USA, July 11-15, 2010,
AAAI Press (2010)

Niemetz, A., Preiner, M., Biere, A.: Turbo-charging lemmas on demand with
don’t care reasoning. In: Formal Methods in Computer-Aided Design, FMCAD
2014, Lausanne, Switzerland, October 21-24, 2014, IEEE (2014) 179-186
Niemetz, A., Preiner, M., Biere, A.: Boolector 2.0 system description. Journal
on Satisfiability, Boolean Modeling and Computation 9 (2014 (published 2015))
53-58

Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org (2016)

Fedyukovich, G., Gurfinkel, A., Sharygina, N.: Automated discovery of simulation
between programs. In Davis, M., Fehnker, A., Mclver, A., Voronkov, A., eds.:
Logic for Programming, Artificial Intelligence, and Reasoning - 20th International
Conference, LPAR-20 2015, Suva, Fiji, November 24-28, 2015, Proceedings. Volume
9450 of Lecture Notes in Computer Science., Springer (2015) 606-621

John, A.K., Chakraborty, S.: A layered algorithm for quantifier elimination from
linear modular constraints. Formal Methods in System Design 49(3) (2016) 272
323

Bjgrner, N., Janota, M.: Playing with quantified satisfaction. In Fehnker, A.,
Meclver, A., Sutcliffe, G., Voronkov, A.; eds.: 20th International Conferences on
Logic for Programming, Artificial Intelligence and Reasoning - Short Presenta-
tions, LPAR 2015, Suva, Fiji, November 24-28, 2015. Volume 35 of EPiC Series in
Computing., EasyChair (2015) 15-27

Farzan, A., Kincaid, Z.: Linear arithmetic satisfiability via strategy improvement.
In Kambhampati, S., ed.: Proceedings of the Twenty-Fifth International Joint Con-
ference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016,
IJCAI/AAAT Press (2016) 735-743

17

	 Counterexample-Guided Model Synthesis

