
Can you ha
ndle it?

DEVELOPER
PRODUCTIVITY
REPORT
2012
JAVA TOOLS, TECH, DEVS AND DATA

All rights reserved. 2012 (c) ZeroTurnaround OÜ

01
02

03
04

CONTENTS
 Java versions
 JVM languages
 IDEs
 Build Tools
 Application Servers
 Web Frameworks
 Application Frameworks
 JVM Standards
 Continuous Integration Servers
 Frontend Technology
 Code Quality Tools
 Version Control Systems

Analysis: What keeps devel-
opers up at night?

Interview: Martijn “The Dia-
bolical Developer” Verburg
(Co-leader of the London
Java Community, CTO @
TeamSparq)

Analysis: What makes de-
velopers more/less efficient
at work?

Interview: Matt “Montana
Irish” Raible (Web Architec-
ture Consultant)

Analysis: How do Developers
spend their work week?

Interview: Lincoln “LB3”
Baxter III (Senior Software
Engineer @ Red Hat)

TABLE
O

F

TOOLS AND TECH
5-19

DEVELOPER
EFFICIENCY
25-27

DEVELOPER
TIMESHEET
20-24

DEVELOPER
STRESS
28-32

3
All rights reserved. 2012 (c) ZeroTurnaround OÜ

INTRODUC-
TION

Digging into data searching for insights is always an exciting
activity. Last year’s Java EE Productivity Report was focused
on tools/technologies/standards in use (exclusive selec-
tions) and turnaround time in Java (i.e. how much time is
spent per hour redeploying/restarting).

In this year’s productivity report, we expanded the selec-
tion of technologies and tools available to Java develop-
ment teams to choose from, made them non-exclusive, and
covered more areas, for example Version Control Systems
and Code Quality Tools. We also focused more on the
question, “What makes developers tick?” and learned a lot
about how devs spend their work week, what elements of
the developer worklife increases/decreases efficiency, and
what stresses out developers. We found a lot of interesting
trends and insights, and broke them down into 4 parts:

Part I: Developer Tools & Technologies Usage Report
coverage of Java versions, JVM languages, IDEs, Build Tools,
Application Servers (containers), Web Frameworks, Applica-
tion (server-side) Frameworks, JVM Standards, Continuous
Integration Servers, Frontend Technology, Code Quality
Tools, Version Control Systems

Part II: Developer Timesheet
How do devs spend their work week?

Part III: Developer Efficiency
What aspects of your job make devs more/less efficient?

Part IV: Developer Stress
What keeps devs awake at night?

Productivity Survey

http://zeroturnaround.com/java-ee-productivity-report-2011/

4
All rights reserved. 2012 (c) ZeroTurnaround OÜ

Although we ran the survey through an open call on the web, there is a certain amount of bias present in it. Obviously, our cus-
tomers are more likely to reply to the call than anyone else. Also, it’s likely that people who find and take such surveys are less
conservative in their technology choice than those who don’t. To protect against such bias, we asked for the size of the company
and the industry, to be able to normalize the data, if there is any overrepresentation. However the no size or industry was over-
represented, so aside from some “early adopter” bias there shouldn’t be a lot of misrepresentation.

Another thing to understand is what are we measuring. Popularity can be measured in different ways -- number of users,
number of organizations, number of lines of code, etc. In this survey we measure the penetration of tools & technology in the
market. So 10% of respondents means that likely 10% of the organizations that do Java development use this tool or technology
somewhere in the organization. It does not tell us whether it is critical for them or not, whether it is used a lot or only in rare
cases and whether it is used by everyone or only the respondent.

But before we go any deeper, let's review the data as a whole.

Java...

30% 23% 17% 17% 11%

Spring MVC Struts Groovy ScalaJSF

56% 54% 49% 48% 44%

Spring Hibernate Ant JPAJenkins/Hudson

88% 68% 67% 66% 59%

Java 6 Eclipse Maven Subversion Tomcat

Tools & Tech Leaderboard 2012

http://www.theserverside.com/discussions/thread.tss?thread_id=63502

5
All rights reserved. 2012 (c) ZeroTurnaround OÜ

PART I

When the Machines Took Over

DEVELOPER TOOLS
&TECHNOLOGIES

USAGE REPORT

Before getting into the stats and analysis, check out this
introduction, where we quickly review some things happening
in the industry, which are the de facto tools & technologies
used by the majority of developers, what tools are increasing
or losing market share compared to last year, and where things
generally stand among our respondents.

6
All rights reserved. 2012 (c) ZeroTurnaround OÜ

Java 6 is the overwhelming version of Java,
used by 88% of respondents. But more in-
teresting and exciting is the fact that 23% of
respondents are already using Java SE 7. This
is amazing penetration, considering it came
out less than half a year before the time of
this survey. This gives hope that as Java SE 8,
9 and 10 come out in the next 6 years or so,
a lot of engineers will be able to benefit from
the changes quickly.

The tools and technologies that are used
by about half of respondents are JPA, Ant,
Jenkins/Hudson, Tomcat, Spring and Hiber-
nate. These are all proven technologies and
with the exception of Jenkins have had a
stable large market share for years. Jenkins
has grown a great deal in past few years and
probably will continue to gain market share
unless challenger(s) emerge. Tomcat will
quite likely join the de facto standard group
next year (and see the jump in popularity

The tools with over two thirds of respond-
ents -- Eclipse, Maven and Subversion
-- are now the de facto standard in the Java
development environment. This universal
popularity does not mean that they are not
without challenge -- indeed, Maven is often
supplemented by Ant, itself used by almost
half the respondents. Subversion is slowly
losing ground to Git and to a lesser extent
Mercurial. In the IDE space, both IntelliJ IDEA
and NetBeans have made great progress in
challenging Eclipse since the last year.

behind Jetty in the App Servers section) and
Spring and Hibernate are still holding ground
well against Java EE, but it will be interest-
ing to see what will happen in the long run,
as Java EE keeps getting lighter, while Spring
keeps getting heavier.

Tools & Technologies used by 66% + of Respondents

Tools and Technologies used by ~50% of respondents

check thes
e out

7
All rights reserved. 2012 (c) ZeroTurnaround OÜ

It is interesting to see that Groovy is
now at 17% and Scala at 11%. Groovy
has become the scripting language of
choice on the Java platform and a lot of
amazing tools are based on its use in a
Java environment, e.g. Gradle and Spock.
Scala has established itself as the Java
alternative on the JVM and is especially
gaining ground with those who need a
highly distributed environment or great
messaging, but don’t want to use Erlang.
Akka and Lift are the two killer frame-
works that enable such use.

The cool newcomer award goes to
Clojure, which managed to quickly gain
almost as much support as JRuby in a
short amount of time. The web frame-
work market remain as fragmented as
ever, with Spring MVC, JSF and Struts
leading the flock.

An interesting thing is that these num-
bers change little if we choose a par-
ticular sector: big companies, medium
companies, small companies, industry
verticals. There are a few correlations
here and there (e.g. small companies
have more preference for free tools and
technologies), but the picture does not
change a great deal. To us this says that
the community has a larger role in deter-
mining the tools and technologies used
than the business does, which means
that it’s a great time to be a software
engineer.

JVM languages & Web frameworks moving forward

Clojure
:

the co
ol new

comer

8
All rights reserved. 2012 (c) ZeroTurnaround OÜ

Java Versions

We were happy to see that Java 6 has
been adopted so widely, used by 88% of
respondents. It didn’t add much to the
language compared to Java 5, but brought
many performance improvements and
some additions to the library. It’s the most
stable version of Java currently and still
receives new improvements.

We like that Java 1.4 seems close to being
phased out, but 6% of users are still stuck
with it. It is likely that tools such as JRebel,
build tools and IDEs will continue to support
it for some time. Java 5 is still hanging on
with 1/3 of respondents using it.

Java 7 has been out for less than a year,
and at 23% adoption we were slightly
surprised at the speed of uptake. It
brought some new small language
features and VM improvements, but
had some serious issues at release time.
It is reasonable to assume that some
developers will skip Java 7 completely as
they expect the big release of Java 8, which
will bring closures and modularity to the
language and platform.

33%

6%

JAVA 7

JAVA 6

JAVA 5

JAVA 1.4
OR EARLIER

88%

23%

9
All rights reserved. 2012 (c) ZeroTurnaround OÜ

Alternative JVM Languages

Groovy has been the dynamic JVM lan-
guage of choice for years and this fact is
reflected in the survey results, although
we must admit feeling a bit suspicious
at the numbers. Groovy is also trying
to appeal to fans of static typing with
Groovy++, but Scala seems to have es-
tablished itself as the statically-typed Java
alternative on the JVM - a position which
newer languages such as Kotlin and Cey-
lon will find hard to overtake considering
Scala’s head start.

Clojure, JRuby and Jython remain as
rather niche languages, although Python
and Ruby are quite popular outside
of the JVM. However, considering the
plethora of JVM languages out there,
Clojure’s quick capture of even 1% of the
JVM developers is somewhat impressive.

2%

2%

11%

1%

GROOVY

SCALA

CLOJURE

JRUBY

JYTHON

17%

10
All rights reserved. 2012 (c) ZeroTurnaround OÜ

IDEs

The number of Eclipse users has been
around the two thirds mark (68%) for a
while. It’s by far the most popular IDE
among Java developers, and receives lots
of small improvements each year - the
devil is in the details. IntelliJ IDEA has a
number of users who swear by it and
would never switch to Eclipse, and it
seems to have gained more ground as well
(28%) compared to our last survey where
we saw 22% of Java developers using IDEA.
The free Community Edition might have
something to do with increased adoption.

NetBeans remains in the third place
among the free Java IDEs. It held a roughly
12% market share last year, and has seen
some increased use since, potentially after
the release of NetBeans 7. We saw Net-
Beans 7.1 came with many good improve-
ments and 7.2 is coming very soon (pre-
sumably, in June 2012). NetBeans seems
to be evolving quite actively, which is very
positive.

The two commercial options, MyEclipse
and IBM Rational Application Developer
hold small but presumably dedicated
market shares as well. With MyEclipse Blue
positioned as a more lightweight alterna-
tive to RAD, it will be interesting to see if
MyEclipse will be stealing away more RAD
users over the next couple of years.

4%

4%

17%

28%

ECLIPSE

NETBEANS

INTELLIJ IDEA

RAD

MYECLIPSE

68%

NetBeans uptake increased

80% since 2011

11
All rights reserved. 2012 (c) ZeroTurnaround OÜ

Build Tools
There’s no beating Maven - although some detest its verbose
XML files and ability to download the Internet now and then -
two-thirds (67%) of Java developers surveyed use it. Ant is not far
behind with almost half of the user base (48%).

This shows that both scripted builds (Ant) and declarative builds
with dependency management (Maven) have their place and nei-
ther build story will disappear. It is likely that many builds contin-
ue to be migrated from Ant to Maven, though, as some previous
surveys have shown them to be on more or less equal standing
(50% vs 53% in our survey last year).

While in the Alternative JVM languages section, it is somewhat
surprising that while more respondents reported using Groovy
(17%) than Scala (11%), SBT is slightly ahead of Gradle (6% vs 5%).
We guess that comes from the high percentage of Scala projects
that are using SBT, and Groovy’s use is probably more as scripting
language where build tools are not needed.

6%

67
%

5%

A
N

T

M
A

VE
N

G
RA

D
LE SB

T

48
%

http://zeroturnaround.com/java-ee-productivity-report-2011/#build_tools

12
All rights reserved. 2012 (c) ZeroTurnaround OÜ

Application Servers & Containers

With no surprise, Apache Tomcat remains
the most widely-used open-source
application server. JBoss remains popular,
but the major usage increase we see
here is with Jetty, which scored only 8% of
users in the last report.

Considering the popularity of open-
source application servers, it’s makes
sense to see Tomcat, JBoss and Jetty filling
the ranks, but there are small increases
in use for all app servers, and Weblogic
is a good example to view. Speaking with
customers all over the world, we’re seeing
more and more the use of multiple
application servers in development
teams in a single organization. That is,
using a lightweight container (Tomcat,
Jetty) during development, and deploying
to a full-blown application server - like
Weblogic - in live environments.

Speaking of the containers, there were a
few noticeable releases: Jetty 8, JBoss7,
WebSphere 8.5 with Liberty profile,
WebLogic 12c and Glassfish 3.1.

27%

28%

14%

10%

11%

TOMCAT

JBOSS

WEBSPHERE

GLASSFISH

WEBLOGIC

JETTY

59%

Jetty is a great container, and many
developers enjoy the fact that it is
lightweight, embeddable and you can
even get some “enterprise-y” stuff done
with it. Jetty 8, first released in October
2011, is the next major version being
developed under the Eclipse Foundation
umbrella. The main feature is Servlet 3.0
support.

Jetty questions are very popular at
StackOverflow and the documentation is
quite clean and easy to follow. Combined
the facts above, it makes it clear why Jetty
is so beloved by developers.

http://stackoverflow.com/tags/jetty/hot

13
All rights reserved. 2012 (c) ZeroTurnaround OÜ

According to the stats, JBoss adoption
bumped up since last year. And we think
it is due to the awesome startup times for
JBoss 7. For the developers who spent a
lot of time developing with JBoss 5, whose
startup takes nearly a minute, JBoss 7 is a
breeze. JBoss 7 is lightning fast compared
to the previous JBossAS versions - it starts
in nearly 3 seconds. The whole Java EE
stack in 3 seconds - that is very cool. For
sure, such an improvement couldn’t
go unnoticed by developers, hence the
popularity.

The coolest feature of the upcoming
WebSphere Application Server 8.5 release
(to be released on June 15th) is definitely
Liberty Profile - a lightweight application
server with blazing fast startup. If you
have promised to eat your hat when
WebSphere starts up as fast as Tomcat
then you’d better start shopping for a

chocolate hat. Liberty Profile implements
a subset of Java EE 6 and is small enough
to fit in a 33 MiB zip archive. WebSphere
die-hards who don’t trust such a tiny app
server or don’t wish to limit themselves
with the trimmed down feature set of
Liberty Profile, have no fear, you can still
get your beloved full-featured WebSphere
Application Server for your mission
critical applications.

WebLogic 12c has 200 new features
and lots of improvements. What we
really liked is that it is now distributed
as a zip archive. No installers, just unzip
the archive and you’re ready to go. This
is very convenient for development
and testing when you want to quickly
install a clean instance for an application
server just to verify the setup or test the
application in a clean environment.

That said, WebLogic is now a bit friendlier
to developers. Also the download archive
has shrunk quite a bit: only 166MB for
WL 12c versus 318MB for the 11g zip
distribution.

However, the gained popularity is
hardly related to the new version as this
application server is mostly used in large
enterprises, where the migration process
might take a while and new versions of
middleware aren’t adopted from day one.

New stuff from
 JBoss, WebSphere

and WebLogic!

https://blogs.oracle.com/emeapartnerweblogic/entry/weblogic_12c_over_200_new

14
All rights reserved. 2012 (c) ZeroTurnaround OÜ

Web Frameworks
The results of Web Frameworks are sadly
very boring, and more or less align with
last years results, with only small changes
accounted as measurement defects.

As expected Spring is the first with 30%
of the market share. 30% is big drop from
48%, but that comes from the separation
of Spring MVC and Spring. JSF-s is next
with 23% which is 1% lower than last year
and can be accounted for a measurement
defect. Struts is 3rd this year, but the
results of Struts include both Struts 1 and
Struts 2 so the sum is the same as last
time. The first framework that has risen is
GWT with 2% increase to 14% but this is
not much.

We omitted Play! and Vaadin (uninten-
tionally) from last year's report, but they
both have comfortable midpoints in the
distribution.

The lack of large changes in this area can
potentially be explained by the fact that
changing web frameworks is a somewhat
difficult, time-consuming and costly pro-
cess. There are a lot of legacy, business-
critical applications out there, who cannot
risk a switch if their application will be
broken for a few months due to a huge
refactoring.

8%
PL

A
Y!

23
%

JS
F

2%
ST

RI
PE

S

7%
G

RA
IL

S

7%
VA

A
D

IN

7%
W

IC
KE

T

2%
TA

PE
ES

TR
Y

17
%

ST
RU

TS

14
%

G
O

O
G

LE
 W

EB
TO

O
KI

T

SP
RI

N
G

 M
VC

30
%

Any changes in framework usage would
therefore occur in new projects where
there is freedom in choosing different
technologies, but it would seem that new
projects have either too little weight or
the preferences have not really changed.

15
All rights reserved. 2012 (c) ZeroTurnaround OÜ

Application Frameworks
In the Application Frameworks category,
Spring (56%) and Hibernate (54%) are
still the most popular. After a big drop
comes AspectJ with only 13% of usage.
According to the users of this survey
other frameworks are not much used.

The % of Spring and Hibernate is almost
the same because they are usually used
together. And compared to the survey
results of the last year (48% and 45%)
they are still at the very top. So we expect
to see the same results from them in the
next year also, and 3rd place will possibly
change as well.

Spring and Hibernate are probably so
popular because they are relatively
easy to use and have a lot of use cases.
Like many other actively developed
products, they have an active release
cycle: the latest version of Hibernate
was just released in Q2 2012 weeks ago
(Hibernate ORM 4.1.2 on 2012.04.04) and
Spring earlier in 2012 (3.1.1 was release
on 2012.02.16).

But enough about Spring and Hibernate.
Let’s take a quick look at AspectJ. The
current version is 1.7.0.M1, meaning that
1.7.0.M2 should be around the corner.
Last year’s survey omitted AspectJ, and
now we can see that it is a reasonably

well-used framework. We’ll be sure to
include AspectJ in our next report, and
make a better comparison then.

7%

13%

2%

4%

7%

56%

HIBERNATE

SEAM

SPRING
FRAMEWORK

GOOGLE GUICE

ASPECTJ

FELIX

EQUINOX

54%

16
All rights reserved. 2012 (c) ZeroTurnaround OÜ

Java Standards
Java EE’s lesson learned in lightweightness
is paying off - both EJB 3.0, CDI and
JPA have seen rapid improvements in
adoption.

JPA is performing exceptionally well, but
that’s due to lacking any real competition.
JPA is supported by both Hibernate and
EclipseLink and is easier to set up than
“pure” Hibernate, for example.

Talking about competition, JDO is
light-years behind after lacking a good
implementation for years and Spring
JDBC templates are too disparate to be
compared. In fact, JPA’s share might be
even bigger, because many developers
might be using Hibernate with JPA
annotations but without EntityManager.

CDI is aggressively taking ground from
Spring in the dependency injection arena,
almost doubling its market share.

While EJB 2.0 is steadily going away with
its distributed transactions, the continued
presence of EJB 1.0 teaches us a lesson

that programs we write today will be
hanging around as legacy software for
many, many years in the future.

We don’t have a direct comparison with
OSGi adoption in previous years, but
it seems like the 10-year-old system
has carved out a zone for itself and is
not seeing a lot of growth. IDE’s and
application servers seem to be the ideal

use case for it, but for general application
development it seems to be remaining
a relatively niche solution, probably due
to the uncomfortable switch required to
bring OSGi into a development team.

It will be interesting to see whether Jigsaw
(the Java 8 module system) will make
modularity in general more popular and
whether it will affect OSGi.

2%
JD

O

9%
EJ

B
2.

0

8%
O

SG
I

44
%

JP
A

23
%

EJ
B

3.
0

CD
I

11
%

EJ
B

1.
0

1%

17
All rights reserved. 2012 (c) ZeroTurnaround OÜ

Continuous Integration Servers

These results show Jenkins/Hudson to be
the de facto standard method for building
a Continuous Integration environment.
The reasons behind that are being free,
open-source, cross-platform, more or less
user-friendly and easy to install.

This picture will not likely to change in
the nearest future as the community of
Jenkins/Hudson is actively working on
fixing bugs, implementing new features
and writing new plugins.

Commercial solutions, such as Bamboo
(7%) and TeamCity (5%), have their own
small niche and are continuing to gain
ground in light of the Jenkins/Hudson rift,
and the value propositions offered by
paid products. Satisfied customers from
Atlassian and JetBrains will trust tertiary
products from the same companies;

Bamboo integrates very well with Jira, and
TeamCity with IntelliJ IDEA, for example..

Every CI server has it pros and cons and
if you have some doubts which one to
choose, we suggest getting started with
Jenkins/Hudson as the safe bet.

4%

7%

5%

JENKINS/
HUDSON

TEAMCITY

BAMBOO

CRUISECONTROL

49%

18
All rights reserved. 2012 (c) ZeroTurnaround OÜ

Front End Technologies

Code Quality Tools

There are very few surprises in the answers to our front end technology sec-
tion of the survey. We can tell from these results that Java is still very strongly
positioned for web application development and speaks well to Java’s contin-
ued success as the primary language and environment for enterprise devel-
opment as the trend of moving applications to the cloud continues.

When we look to the other responses in the section, we see that RCP is
becoming increasingly more important and used as a front end technology.
If we combine the data points from NetBeans and Eclipse RCPs we see RCP
beating SWT and almost overtaking Swing. This speaks to Swing’s continued
downward usage trend and the growing importance of modularity through-
out the application’s code base.

This is the first year we asked about code quality tools. Findbugs and PMD look
for bugs in your code and Checkstyle checks that your source code adheres to
your coding rules. Sonar is actually a code quality tools suite, which is somewhat
of a different beast, and includes the aforementioned tools, offering the same
results but observable as trends over time. In the next report, we also plan to
include code coverage tools, like Cobertura and Emma.

From the results we can’t say much more than the Java ecosystem definitely
trusts static code analysis and uses tools to find “mistakes that matter” early. The
market appears to be spread more or less evenly, with Findbugs, the well-known
University of Maryland project, in the lead. Each tool (all these tools are comple-
mentary of each other) is used by a nearly quarter of our respondents.

16%

6%

5%

5%

HTML/CSS
/JAVASCRIPT

SWT

NETBEANS RCP

ECLIPSE RCP

SWING

74%

23%

33%

29%

23%

CHECKSTYLE

PMD

FINDBUGS

SONAR

19
All rights reserved. 2012 (c) ZeroTurnaround OÜ

Version Control Systems

As has been the case for several years now,
Subversion is by far the most-used version
control system for Java development. This is
generally because of the reasonably smooth
transition between CVS (the historical titan
of version control) to Subversion.

The most interesting part of the result set is
how prevalent Git and Mercurial are becom-
ing. Git is most people’s introduction to a dis-
tributed version control system. Subversion
still has the edge due to the extensive histo-
ries people have in their existing subversion
repositories. As the tooling for Git improves
and the culture around source control moves
to a distributed paradigm, it is likely we will
continue to see CVS and Subversion slowly
giving way to Git and Mercurial.

10%

66%

33%

12%

GIT

CVS

SUBVERSION

MERCURIAL

Keep an eye
out for Git

20
All rights reserved. 2012 (c) ZeroTurnaround OÜ

Part II

It’s 3pm. Do you know where your dev team is?
DEVELOPER TIMESHEET
How do developers spend their work week? What are they actually DOING all day?

Among lots of other information that we unearthed from the depths of the coding den,
we wanted to introduce these 3 interesting findings, and get some running commen-
tary from Lincoln Baxter III, Senior Software Engineer at Red Hat (JBoss Forge), founder
of OCPsoft, and opensource author / advocate / speaker:

Finding #1:
Devs spend less time writing code than you might think. The median is 15 hours, programmers spend about 3
hours each work day writing code.

Finding #2:
Devs spend more time on non-development activities than you might think. For each coding hour, devs spend
nearly 30min in meetings, reporting, writing emails and dealing with timesheets (7 hours to 15 hours)

Finding #3:
Devs spend more time fighting fires than building solutions

Disclaimer: As with any type of research undertaking, here are a couple of disclaimers: a) We asked respondents to estimate the time they spend doing activities, so
100% accuracy is not guaranteed. b) Not only developers responded, but also architects, QA folks and system admins, so averages may reflect this too.

http://twitter.com/#!/lincolnthree
https://docs.jboss.org/author/display/FORGE/Home
http://ocpsoft.org/

21
All rights reserved. 2012 (c) ZeroTurnaround OÜ

How do Developers spend their work week?
Check out this breakdown of what devs spend their time doing (the top 3 time-consuming activities are marked):

Here are a breakdown of the categories a bit more. We tried to get
everything a dev might do during the week, so if you can think of
anything we missed, it would be cool to hear about that.

 •Writing Code (programming, coding, hacking away)

 •Overhead (Building, Deploying, Hardware, Software)

 •Communication (Meetings, Chats, Teleconferences, etc)

 •Problem-Solving (Debugging, Profiling, Performance Tuning)

 •Firefighting (Crashes, Slowdowns, Security, etc)

 •QA (Manual & Automatic Testing, Code Reviews)

 •Strategy (Architecture, Refactoring, Thinking)

 •Process (Bureaucracy, Reporting, Time-keeping, etc)

 •Procrastination (slashdot.org, reddit.com, Twitter, Facebook)

We can see that actually writing code is still the dominant activity
of the day, but by no means a majority by itself. There is a distinc-
tion between “writing code” and “coding”; “Coding” includes writing
code + problem solving, QA, strategy etc.

If we assume a 45-hour work week (9 hours per day, incl. lunch
and breaks), developers spend 1/3 of their entire work week pro-
ducing code.

WRITING
CODE

15h

PROBLEM
SOLVING

5h

COMMU-
NICATION

5h
OVERHEAD

4h

STRATEGY

4h

PROCRASTI-
NATION

3h
QA

2h

FIRE
FIGHTING

2h
PROCESS

2h

22
All rights reserved. 2012 (c) ZeroTurnaround OÜ

Extended Interview with Guest Geek Lincoln Baxter III

ZT: Hey Lincoln, thanks for joining us.
LB3: Glad to be here.
ZT: Can I ask....does it say “The Third”
on your passport?
LB3: No, just the Roman Numerals.
ZT: Darn. Anyway, what do you think
about Finding #1: Devs spend less time
writing code than you think? I mean,
according to this, devs spend less than
3 hours each work day writing code?
LB3: To be perfectly honest - and
I’m always perfectly honest - I’m not
surprised one bit. The biggest drain on
productivity is the constant interruptions
to our concentration; that can be co-
workers, running a build, running tests to
check your work, meetings.
It can take up to 25 minutes to regain
your focus once you’ve been distracted
from your original task#, and if like me,
you consider “writing code” to be the task

that developers should be focus on, then
the size of other pieces in your pie chart
begin to make a lot of sense.
Think of a brain as if it were a computer.
There is waste every time a computer
shifts from one activity to another (called
a context switch,) a very expensive
operation. But computers are better
at this than we are because once the
switch is complete they can immediately
resume where they left off; we are not so
efficient.
When considering context switching,
builds and everything else considered
“Overhead” are the biggest distractions
from writing code. Even though this piece
of the pie is only responsible for 4.63
hours of a developer’s week, in reality,
the true impact of this problem is much
greater.
Once you add in all of the other

distractions of the workplace, I’m
impressed anyone gets work done at all.
Every re-deployment is going to cost you
an extra 25 minutes of wasted focus, in
addition to the deployment cost itself.
ZT: Alright, on to Finding #2: Devs
spend more time on non-development
activities than you might think.
Based on these numbers, for every 1
hour devs spend writing code, they
spend over 30 minutes in meetings,
reporting, writing emails and dealing
with timesheets (8.25 hours to 14.75
hours). Has it always been like this,
or is this something new coming as
more IT shops join forces with large
enterprise and corporate parents?
LB3: In a desperate attempt to measure
and estimate the work that programmers
do, we try more and stranger ways to
try to gain some kind of understanding.

“
Linconln Baxter III, Senior Software Engineer at Red Hat (JBoss Forge), founder of
OCPsoft, and opensource author / advocate / speaker

http://twitter.com/#!/lincolnthree
http://twitter.com/#!/lincolnthree

23
All rights reserved. 2012 (c) ZeroTurnaround OÜ

because unlike when building a bridge,
the type and amount of work changes
frequently in software development.
Agile focuses less on measuring
how much work on a task has been
completed, but instead how much work
remains, and how that relates to how
much work can be done during the
project timeline.
In fact, at OCPsoft we’re working
on a new open-source agile project
management called SocialPM, which
is being designed specifically for the
purpose of creating as few distractions
as are necessary, while helping teams
stay organized and keep more accurate
schedules in an environment prone to
change. (You know, to keep managers
happy.)
Traditional estimation techniques, they’ve
got no hope until we have more standard
practices for software development. Let’s
give our guys a break eh? Stop with the
time-sheets.
ZT: Cool. Ok, so now to our last
finding. Finding #3: Devs spend more
time fixing problems than creating
solutions. Let’s pretend the non-
coding, non-communicating part
of the dev day could be split into

Think about it - in every other type of
engineering field, we perform estimates
up front, send out quotes, sign a
contract, and work follows.
When writing software, however, try as
we might, we still have difficulty with
this process. Why? Because writing
software today has very little to do with
engineering.
The cognitive requirements for
programming (software engineering) are
much more akin to those of composing
music, or painting a picture than they
are to building a bridge or installing
a drainage culvert. The common
misconception about us “geeks” is that
we are boring, uncreative and dull, but if
that’s true then Mozart, Beethoven, and
Daft Punk are just as dull.
So why do we insist on measuring
software development as if it were an
engineering science? We can apply these
statistics to bridge building because we
have built bridges for thousands of years,
and the laws of physics have not changed
since then. The laws of computing,
however, change daily, and we cannot
possibly hope to measure the same way.
This is why the Agile software
methodology has had so much success,

two parts--Firefighting and Building.
Firefighting includes emergencies plus
problem solving like debugging and
performance tuning. Building includes
code reviews and tests, plus strategic
planning, daydreaming, refactoring and
thinking over architecture.If we break
down the work day into parts where
devs are spending time actively solving
problems or working towards creating
solutions, devs spend more time putting
out fires.

 Firefighting -
 Median 7 hours per week

 Building -
 Median 6 hours per week

If we use science, we can see that
Firefighting consumes 16% more time
per week than Building. What can you
see from this?
LB3: To be quite frank, we’re all lazy, and
not nearly as smart as we think we are.
With the level of complexity in today’s
software steadily on the rise, with layers
upon layers of software depending
on software, there’s no hope for us to
understand every possible condition or
scenario, and thus there is a huge lack of
real testing in our field.

24
All rights reserved. 2012 (c) ZeroTurnaround OÜ

Test driven development has been a
hugely overlooked part of our world, not
to mention my previous jobs. There are
two parts of your job that should be so
simple, you don’t have to waste any time
on them.

 #1 - Writing a test.
 #2 - Running that test.

We have hugely complex builds that
are not properly modularized, and
certainly not very testable because
how can you test without a database?
How can you test without real business
logic?If you don’t have automated builds
and automated test suites that run in
a reasonable amount of time (a few
seconds or minutes,) then you are going
to spend a good amount of your time
running builds and trying to write and
run tests; not to mention, you may not
see the real issue until you deploy the
software to a production environment,
because mocks can never hope to
replicate a real system.
In terms of Java, we’re seeing new
advances in the field of testing - namely
a project from JBoss called Arquillian,

which allows us to automate the
deployment of real tests to a real
environment in which all services are
available. The fact that you have access
to your database, business services,
and more is why “Don’t mock me,” is the
Arquillian slogan.
If there’s one thing that surprises me
about this statistic, it’s that we don’t
spend more time fighting fires, because
without a good automated build and a
solid suite of real tests, we’re going to
have problems.

25
All rights reserved. 2012 (c) ZeroTurnaround OÜ

Part III

Even the Death Star had a project plan...
DEVELOPER EFFICIENCY
What aspects of developer life makes
you more/less effcient?

The majority of respondents felt that Too Much Multitasking
was the primary reason for not getting work done. Over 1/3 of
devs also mentioned that Boring Tasks where responsible for
under-efficiency in the cubicle. This begs the question wheth-
er or not it is better to get “boring” tasks over and finished
as quickly as possible, but we all understand how feeling
uninspired to attack your work with enthusiasm will lead to
procrastination.

It is fair to conclude that Boring tasks, Bad management and
Lack of motivation are indicative of a sizable gap in commu-
nication between management and development teams, or,
more interestingly, a lack of self-management for organizing
one’s time, one’s mind and one’s life.

26%

39%

30%

53%

LACK OF
MOTIVATION

TOO MUCH
MULTITASKING

BORING TASKS

BAD
MANAGMENT

BUGGY
SOFTWARE

26%

26
All rights reserved. 2012 (c) ZeroTurnaround OÜ

Extended Interview with Guest Geek Matt Raible

ZT: Hey Matt, thanks for joining us.
Hey, I heard this rumor that you are
mostly Irish-Montanan?
MR: Yep, I grew up in the back woods
of Montana with no electricity and I’m
mostly Irish. So keep that in mind when
asking me how I get things done at work.
ZT: Understood. So what do you think
about issues regarding “Too much
multitasking”?
MR: I’ve got a couple of suggestions that
work for me:

Work disconnected. To further
facilitate not checking e-mail or
reading blogs, I’ve found that going to
a coffee shop w/o connectivity is my
most productive environment. They
have liquid motivation in the form of
coffee, and you can feed your brain
with breakfast/lunch or some kind of
snack. My most productive days are

the ones where I show up at my local
Einstein’s (bagel shop) at 6 a.m., have
two cups of coffee, and work with
my headphones on. After the coffee
and uber-productivity, I often have
an awesome ride to work and barely
notice the miles. NOTE: I’ve found that
I’m more productive writing code late
at night and authoring articles/books
in the early morning.
Stop reading e-mail, Twitter and
Facebook. One of the ways I can tell
I’m in uber-productive mode is my
unread (or starred) mail piles up
and I haven’t read any blog posts (or
blogged myself) in a couple days.
Sleep. While working late nights can
be productive in the short term, doing
it consecutively will burn you out
quickly. Getting a good night’s sleep
can often lead to greater productivity

We asked Matt Raible, Web architecture consultant, frequent speaker and father with a
passion for skiing, mountain biking and good beer, to give us some of his insight on the factors
that keep developers from finishing their work, so here we go!

because you’re refreshed and ready
to go.

ZT: Yeah, sleep is nice. *yawn*
Sorry, where were we? Ah, “Boring
Tasks”.
MR: Some tasks are boring and there is
nothing really to do about it. I find that
music can make a big difference and
potentially grow some inspiration where
it didn’t exist before. If you’ve got outside
projects that you find more interesting,
position them at the right time of day.
 Listen to music while you work. Some
noise-cancelling headphones and your
favorite music can do wonders for your
productivity. Of course, earbuds work
just as well - whatever makes the music
sound good. Good music can really help
you “get into the groove” of what you’re
working on, regardless of whether it’s

http://raibledesigns.com/

27
All rights reserved. 2012 (c) ZeroTurnaround OÜ

writing or coding.
 Work on open source late at night, with
a beer on your desk. While I sometimes
get the opportunity to work on open
source at my day job, I still find that I’m
most productive at night. Maybe this is
because no one bugs me via e-mail or
IM, or maybe it’s just because the world
is asleep. The strange thing is I often
find myself motivated at 3 p.m. for my
11 p.m. workload. However, when I get
to 11 p.m., I’m not motivated to work on
anything. I’ve found that cracking open
a beer at 11 when I start helps me focus
and quit worrying about all the other
computer-related tasks I need to do.
ZT: What can you say about “Bad
Management”? In your case, you deal
with a lot of self-management for
your time and resources...what can
you tell us that would apply to both
contractors and those of us working in
teams?
MR: Yeah, what works great for me is to
get used to non-standard work hours,
and avoiding inefficient wastes of time.

Work long hours on Monday and
Tuesday. This especially applies if

you’re a contractor. If you can only
bill 40 hours per week, working 12-14
hours on Monday can get you an early-
departure on Friday. Furthermore, by
staying late early in the week, you’ll get
your productivity ball-rolling early. I’ve
often heard the most productive work-
day in a week is Wednesday.
Avoid meetings at all costs. Find a
way to walk out of meetings that are
unproductive, don’t concern you, or
spiral into two co-workers bitching at
each other. While meetings in general
are a waste of time, some are worse
than others. Establish your policy of
walking out early on and folks will
respect you have stuff to do. Of course,
if you aren’t a noticeably productive
individual, walking out of a meeting
can be perceived as simply “not a team
player”, which isn’t a good idea.

ZT: One of the responses was about
“Buggy software”. Now, this could
refer to buggy software that is being
used or developed, but I rather think
the latter.
MR: Yeah, I would assume they are
talking about productivity inhibitors they

use professionally. Well, I could make a
suggestion that Java developers might
enjoy - start using IntelliJ IDEA instead of
other IDEs :-)
ZT: We’ll actually get to see how
popular IntelliJ IDEA is compared
to other IDEs in the final Developer
Productivity Report 2012 ... finally,
Lack of motivation was cited as
another factor preventing developers
from being more efficient. Any final
thoughts on that?
MR: Look, you have to work on
something you’re passionate about. If
you don’t like what you’re doing for a
living, quit. Find a new job as soon as
possible. It’s not about the money, it’s
all about happiness. Of course, the best
balance is both. It’s unlikely you’ll ever
realize this until you have a job that
sucks, but pays well. I think one of the
most important catalysts for productivity
is to be happy at your job. If you’re not
happy at work, it’s unlikely you’re going
to be inspired to be a more efficient
person. Furthermore, if you like what you
do, it’s not really “work” is it?

28
All rights reserved. 2012 (c) ZeroTurnaround OÜ

Part IV

Something keeping you up at night?
DEVELOPER STRESS

“Usually I sleep like a baby”

The good news is that the most common response to What
keeps you up at night? was “Nothing. I sleep like a baby”. But it
was followed very closely by some aspects of development that
warrant a deeper look.

The following 5 stressors were listed as the top things keeping
developers up at night.

 1. Making deadlines - 25.00%
 2. Application performance issues - 24.10%
 3. Is my code good enough? - 23.70%
 4. What new stuff do I need to learn? - 23.50%
 5. Did I do X in the best way? - 22.50%

Developers are quite concerned that their code is correct,
innovative and following best practices. It would seem that
training and continuing education is also an important factor
that gets a lot of thought. What can companies and teams do
to make sure devs are able to feel confident about their code,
level of expertise and understanding of best practices?

29
All rights reserved. 2012 (c) ZeroTurnaround OÜ

Extended Interview with Guest Geek Martijn Verburg

ZT: Hey Martijn, thanks for being here
with us.
MV: It’s a pleasure. I was just thinking to
myself, “Hmm, I’ve got sooo much extra
time these days, I wonder if anyone
wants to interview me!”
ZT: Wow, really?
MV: Nah, I’m totally slammed actually.
ZT: Nice one. So Martijn, as a simple
marketing droid I was surprised to
see that developers are primarily
concerned about Making Deadlines.
Isn’t that something The Suits should
be worrying about more?
MV: Managing deadlines is something
that a lot of developers feel that they
cannot learn or is out of their control
(e.g. Their manager tells them what
the deadline is). However, managing
deadlines is a skill that can definitely be
learned! For example, developers can
learn to:

Scope work into manageable (e.g. 1
day) chunks
Define what _done_ means (95% is not
done)
Factor in contingencies
Communicate risks and issues to
stakeholders
Learn to prototype ideas to keep the
overall project flowing

There are a number of tools to assist
you in managing the scope and
communication around deadlines, but
always remember, “Whatever they tell
you, it’s a people problem”, so developers
should look at their communication and
expectation setting first.
ZT: I think that developers can
definitely take steps to empower
themselves a bit more in this process.
Can you recommend any specific tools
tools or techniques for managing
deadlines better?

To get some valuable perspective on the matter, we’ve invited Martijn “The Diabolical
Developer” Verburg, Java community leader, speaker and CTO at TeamSparq

MV: Absolutely. For example:
Simple Lean/Kanban style planning
with sticky notes and a whiteboard
Electronic versions of the above (e.g.
Atlassian’s Greenhopper)
BDD style tests with an electronic
wallboard (therefore the whole
business can see exactly where
progress is at)
A publicly shareable issue tracker that
tracks timings (e.g. Atlassian’s JIRA)

ZT: I’m sure devs will find that helpful.
Next, why do you think Performance
Issues would rank so highly on the list
of developer stress?
MV: Performance and performance
tuning is terrifying for most developers
because they have no idea where to
start. Modern software applications
are so complex that it can feel like
finding a needle in a haystack. However,
performance and performance tuning

https://twitter.com/#!/karianna
http://www.java7developer.com/
http://www.java7developer.com/

30
All rights reserved. 2012 (c) ZeroTurnaround OÜ

is actually a _science_, not an art and
definitely not guesswork. Kirk Pepperdine
(one of Java’s foremost expert in this
field) always hammers home the point
“Measure, don’t guess”.
By following the sort of scientific
methodology that Kirk and others like
him teach, you can systematically track
down and fix performance issues as
well as learning to bake performance in
right from the beginning. There is a host
of tooling that can assist in this area as
well, but it’s the methodology that’s truly
important. I can highly recommend Kirk’s
course (www.kodewerk.com - he runs
courses worldwide, not just in Crete, so
drop him a line).
ZT: Have you ever been asked if you
think your Code is Beautiful (or simply
“good enough”)?
MV: This is a question that all developers
secretly fear. The fact is you can’t
definitively state what good code is! The
Softwarecraftsmanship folks will beg to
differ here ;-). Define what Clean Code
is! At the end of the day there are many
differing opinions on what defines ‘good
code’. However, I’d suggest that there are

some clear traits of what is commonly
perceived as good code:

It’s broken up into small classes/
methods/blocks each that perform one
thing and one thing well
Some level of interface is used so
alternative implementations can be used
The code is easy to test against
You can ascertain by the naming used in
the code, what the code is used for, e.g.
it’s problem domain
Common language pitfalls are avoided -
type1, the sorts of things that static code
analysers warn you against
Common language pitfalls are avoided -
type2, the sorts of things you pick up in
Josh Bloch’s “Effective Java” title.
There’s more, the list is fairly long.

So my advice is to try to follow the better
practices out there (note I avoid using
‘best practices’, horribly overloaded
term), make sure that you’re using the
static code analysis tools, try to practice
TDD and above all else get a 2nd pair
of eyes on the code, preferably via Pair
programming to begin with.

ZT: Is it fair to suggest that when devs
worry about their code being good
enough, it might speak to their next
concern about Learning New Stuff?
MV: There’s always the fear of being left
behind, can you as a developer guess
what’s going to be big next? If your
technology CV is out of date you might
struggle to find that next job!
Take a deep breathe and relax. Most
new technologies are simply short lived
fads and it’s impossible to keep up with
everything!
There’s no way a developer can stay up
to date with the latest Java libraries, learn
Scala, pick up Clojure, hack some iOS,
and then deploy all that to the cloud on a
NoSQL distributed grid environment. See
what I mean?
The trick is to identify trends. Cloud is
a trend, so you should learn about the
principles behind it, but don’t sweat if
you haven’t learned to deploy to the 5+
different Java cloud providers out there
today. Functional programming is a
trend, so learn _why_ (hint - Multi-core
processors and concurrency) it is and see
if it’s something that you need to learn

http://www.kodewerk.com/

31
All rights reserved. 2012 (c) ZeroTurnaround OÜ

about now or whether you can wait a few
years. The same goes for any new craze
you read about or hear at a conference.
At the end of the day, our industry spends
a lot of time re-inventing the wheel, and
we have memories like goldfish :-). For
example, some of the older hands are
certainly chuckling away at this new
functional fad, they were doing it over 20
years ago...
ZT: I think it’s fair to say that any
professional will be concerned about
doing X in the “Best Practices” way.
You mentioned above that you dislike
how “best practices” is poorly used.
As a long-time coder yourself, how do
developers feel about this?
MV: This is definitely related to developer
concerns over “beautiful code”, but I’m
going to assume this is more of a fear

at the macro design level. Developers
can fear that if they chose the wrong
web framework or picked the wrong app
server or designed the n-tier architecture
wrong that they’re doomed.
A common problem here is that
developers aren’t standing on the
shoulders of Giants, most problems
are not actually that unique and there
is a wealth of free advice on sites like
programmers.stackexchange.com, on
mailing lists, in books, at conferences and
of course at your local user groups.
Another common problem is in
the prototyping space, not enough
developers prototype the risky parts
of their projects soon enough. Are you
worried for example that JBoss might
not support AMQP? Well, spend a day
upfront proving that it does or doesn’t!

32
All rights reserved. 2012 (c) ZeroTurnaround OÜ

Thanks fo
r reading

Estonia
Ülikooli 2, 5th floor
Tartu, Estonia, 51003
Phone: +372 740 4533

USA
545 Boylston St., 4th flr.
Boston, MA, USA, 02116
Phone: 1(857)277-1199

Contact
Us

Twitter: @RebelLabs
Web: http://zeroturnaround.com/rebellabs
Email: labs@zeroturnaround.com

https://twitter.com/RebelLabs
http://zeroturnaround.com/rebellabs
labs@zeroturnaround.com

