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What and why ?

SWIG is an interface compiler that connects programs 
written in C and C++ with scripting languages such as 
Perl, Python, Ruby, and Tcl.

• Building more powerful C/C++ programs

• Make C libraries 'object oriented'

• Rapid prototyping and debugging

• Systems integration

• Construction of scripting language extension modules
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About SWIG

• Homepage: http://www.swig.org

• # zypper in swig

• History
Initially started in July, 1995 at Los Alamos National Laboratory. 

First alpha release: February, 1996. 

Latest release: April 7, 2008. SWIG-1.3.35

• Active development
3-4 releases per year

http://www.swig.org/
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Supported languages

Allegro Common Lisp CFFI (Common Lisp)

Chicken
(Scheme)

CLisp

MzScheme

Octave
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How SWIG works

 
lib.h

lib.i

lib_wrap.cC/C++ header

Interface description

SWIG

Binding code

lib_wrap.so

GCC

Target language
module
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How SWIG works (cont.)

 

lib.solib_wrap.so

Python module Library

Python

demo.py

import 'call'



Using SWIG
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Example interface description

# Trivial example

%module example

%{

#include "satsolver/solver.h"

%}

%include satsolver/solver.h
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Running SWIG

●  Generating
swig -ruby -I/usr/include example.i

● Compiling
gcc -fPIC -I /usr/lib64/ruby/1.8/x86_64-linux -c example_wrap.c

● Linking
gcc -shared  example_wrap.o -lsatsolver -o example.so

● Running
irb

irb(main):001:0> require "example"

=> true

irb(main):002:0> s = Example::Solver.new

=> #<Example::Solver:0x7ffd300d4de8>
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Structure of interface descriptions

Comment

Namespace

C/C++ code

Declarations

# Trivial example

%module example

%{

#include "satsolver/solver.h"

%}

%include satsolver/solver.h

• C syntax, no C compiler

• Only minimal syntax checking



©  Novell Inc.  All rights reserved

 

11

 

What does SWIG do for you ?

• Namespace

• Constants

• Type conversion
For simple types (int, float, char *, enum)

• Wraps complex types
Pointers to structs and classes

• Exposes functions

• Memory management
Constructors, destructors
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%module yui
%{
#include "YaST2/yui/YUI.h"
%}
%include YUI.h

Example (Python)
(taken from libyui-bindings)

class YUI

{

...

    static YWidgetFactory * 
widgetFactory();

...

}

YaST2/yui/YUI.h demo.py

yui.i

import yui

factory = yui.YUI.widgetFactory()

dialog = factory.createPopupDialog()

vbox = factory.createVBox( dialog )

factory.createLabel( vbox, "Hello, 
World!" )

factory.createPushButton( vbox, 
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Now how does it look like in ...

require 'yui'

factory = Yui::YUI::widget_factory

dialog = factory.create_popup_dialog

vbox = factory.create_vbox dialog

factory.create_label vbox, "Hello, World!"

Ruby

Perl
use yui;

my $factory = yui::YUI::widgetFactory;

my $dialog = $factory->createPopupDialog;

my $vbox = $factory->createVBox( $dialog );

$factory->createLabel( $vbox, "Hello, World!" );
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Things to watch out for

• Function names (target language conventions)
factory.create_popup_dialog

$factory->createPopupDialog;

• Comparing objects
SWIG wraps pointers to structs/classes, resulting in target 

languages objects (Python: PyObject*, Ruby: VALUE)

'a == b' compares PyObject* (resp. VALUE), not the wrapped 
C++ object pointer

• Object ownership
No explicit 'free' in e.g. Ruby and Python



Controlling the bindings
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Exposure

• Swig recognizes C/C++ declarations
'struct' or 'class'

functions

• Hiding elements
%ignore solver::noupdate;

%include “satsolver/solver.h”

• Hiding everything
typedef struct solver {} Solver;

%extend Solver {

...
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Memory management

• Complex types (struct/class) as pointers

• SWIG runs constructor ('malloc (sizeof struct)')

• Might not be useful
%nodefault solver;

• Explicit constructor/destructor
%extend Solver {

  Solver( Pool *pool, Repo *installed = NULL )

  { return solver_create( pool, installed ); }

  ~Solver()

  { solver_free( $self ); }
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Making C object-oriented

• Swig maps function calls 1:1, Ok for C++, bad for C
 void solver_solve(Solver *solv, Queue *job);

(Ruby)
solver = Solver.new

solver_solve solver, job # Bad

solver.solve job # Good

• The power of %extend
%extend Solver {

  int solve( Queue *job )

  {

    solver_solve( $self, job);

    return $self->problems.count == 0;

  }
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Multiple target languages

• .i files are generic

• The target language is a SWIG runtime parameter
swig -ruby bindings.i

• Use #if defined(SWIG<lang>)
#if defined (SWIGRUBY)

...

#endif
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Useful commands

• Renaming
%rename("to_s") asString();

%rename( "name=" ) set_name( const char *name );

%rename("empty?") empty();

• Aliasing
%alias get "[]";

• Constants
%constant int Script = C_CONSTANT;

• Defines
%define YUILogComponent "bindings"

%enddef

%define %macro(PARAMETER)

...
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Type conversions

• SWIG has default conversions for most types

• Look at the SWIG 'library'
/usr/share/swig/<version>

%include “carray.i”

• Typemaps
#if defined(SWIGRUBY)

%typemap(in) (int bflag) {

$1 = RTEST( $input );

}

%typemap(out) int problems_found

"$result = ($1 != 0) ? Qtrue : Qfalse;";

%rename("problems?") problems_found();

#endif
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Target specifics

• Bypassing SWIG type conversion

• Use target-specific types

Ruby: VALUE

Python: PyObject *

• Example 
%rename( "attr?" ) attr_exists( VALUE attrname );

VALUE attr_exists( VALUE attrname )

{

...
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Generating Documentation

• SWIG can generate target-specific documentation

e.g. rdoc for Ruby, pydoc for Python

• Enable with %feature("autodoc","1");

• Converts C-style comments in .i files

• Needs fixing ...



Inversion of control
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Inversion of control

 

Daemon plug_wrap.so

Python moduleBinary

Python

demo.py

dlopen()

'call'

PyInitialize()
PyImport_ImportModule()

PyObject_CallObject()
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Wrap up / Lessons learned

• SWIG is a tool, use it wisely

• Take the (script language) programmers view
How should it look in Python/Ruby/Perl/... ?

• Tweak the bindings, not the target language

• Look at other SWIG code

• SWIG is very well documented
But not without bugs ...

• Memory ownership is tricky
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Links for inspiration

• C++ Library

libyui-bindings (YaST user interface)
http://svn.opensuse.org/svn/yast/trunk/libyui-bindings

• C Library

Sat-solver (package dependency resolver)
http://svn.opensuse.org/svn/zypp/trunk/sat-solver/bindings

openwsman (Web Services for Management protocol)
http://www.openwsman.org/trac/browser/openwsman/trunk/bindings

• Inversion of control

cmpi-bindings (CIM Provider interface)
http://omc.svn.sourceforge.net/viewvc/omc/cmpi-bindings
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