
SWIG
Generating language bindings for C/C++ libraries

Klaus Kämpf
<kkaempf@suse.de>

© Novell Inc. All rights reserved

2

What and why ?

SWIG is an interface compiler that connects programs
written in C and C++ with scripting languages such as
Perl, Python, Ruby, and Tcl.

• Building more powerful C/C++ programs

• Make C libraries 'object oriented'

• Rapid prototyping and debugging

• Systems integration

• Construction of scripting language extension modules

© Novell Inc. All rights reserved

3

About SWIG

• Homepage: http://www.swig.org

• # zypper in swig

• History
Initially started in July, 1995 at Los Alamos National Laboratory.

First alpha release: February, 1996.

Latest release: April 7, 2008. SWIG-1.3.35

• Active development
3-4 releases per year

http://www.swig.org/

© Novell Inc. All rights reserved

4

Supported languages

Allegro Common Lisp CFFI (Common Lisp)

Chicken
(Scheme)

CLisp

MzScheme

Octave

© Novell Inc. All rights reserved

5

How SWIG works

lib.h

lib.i

lib_wrap.cC/C++ header

Interface description

SWIG

Binding code

lib_wrap.so

GCC

Target language
module

© Novell Inc. All rights reserved

6

How SWIG works (cont.)

lib.solib_wrap.so

Python module Library

Python

demo.py

import 'call'

Using SWIG

© Novell Inc. All rights reserved

8

Example interface description

Trivial example

%module example

%{

#include "satsolver/solver.h"

%}

%include satsolver/solver.h

© Novell Inc. All rights reserved

9

Running SWIG

● Generating
swig -ruby -I/usr/include example.i

● Compiling
gcc -fPIC -I /usr/lib64/ruby/1.8/x86_64-linux -c example_wrap.c

● Linking
gcc -shared example_wrap.o -lsatsolver -o example.so

● Running
irb

irb(main):001:0> require "example"

=> true

irb(main):002:0> s = Example::Solver.new

=> #<Example::Solver:0x7ffd300d4de8>

© Novell Inc. All rights reserved

10

Structure of interface descriptions

Comment

Namespace

C/C++ code

Declarations

Trivial example

%module example

%{

#include "satsolver/solver.h"

%}

%include satsolver/solver.h

• C syntax, no C compiler

• Only minimal syntax checking

© Novell Inc. All rights reserved

11

What does SWIG do for you ?

• Namespace

• Constants

• Type conversion
For simple types (int, float, char *, enum)

• Wraps complex types
Pointers to structs and classes

• Exposes functions

• Memory management
Constructors, destructors

© Novell Inc. All rights reserved

12

%module yui
%{
#include "YaST2/yui/YUI.h"
%}
%include YUI.h

Example (Python)
(taken from libyui-bindings)

class YUI

{

...

 static YWidgetFactory *
widgetFactory();

...

}

YaST2/yui/YUI.h demo.py

yui.i

import yui

factory = yui.YUI.widgetFactory()

dialog = factory.createPopupDialog()

vbox = factory.createVBox(dialog)

factory.createLabel(vbox, "Hello,
World!")

factory.createPushButton(vbox,

© Novell Inc. All rights reserved

13

Now how does it look like in ...

require 'yui'

factory = Yui::YUI::widget_factory

dialog = factory.create_popup_dialog

vbox = factory.create_vbox dialog

factory.create_label vbox, "Hello, World!"

Ruby

Perl
use yui;

my $factory = yui::YUI::widgetFactory;

my $dialog = $factory->createPopupDialog;

my $vbox = $factory->createVBox($dialog);

$factory->createLabel($vbox, "Hello, World!");

© Novell Inc. All rights reserved

14

Things to watch out for

• Function names (target language conventions)
factory.create_popup_dialog

$factory->createPopupDialog;

• Comparing objects
SWIG wraps pointers to structs/classes, resulting in target

languages objects (Python: PyObject*, Ruby: VALUE)

'a == b' compares PyObject* (resp. VALUE), not the wrapped
C++ object pointer

• Object ownership
No explicit 'free' in e.g. Ruby and Python

Controlling the bindings

© Novell Inc. All rights reserved

16

Exposure

• Swig recognizes C/C++ declarations
'struct' or 'class'

functions

• Hiding elements
%ignore solver::noupdate;

%include “satsolver/solver.h”

• Hiding everything
typedef struct solver {} Solver;

%extend Solver {

...

© Novell Inc. All rights reserved

17

Memory management

• Complex types (struct/class) as pointers

• SWIG runs constructor ('malloc (sizeof struct)')

• Might not be useful
%nodefault solver;

• Explicit constructor/destructor
%extend Solver {

 Solver(Pool *pool, Repo *installed = NULL)

 { return solver_create(pool, installed); }

 ~Solver()

 { solver_free($self); }

© Novell Inc. All rights reserved

18

Making C object-oriented

• Swig maps function calls 1:1, Ok for C++, bad for C
 void solver_solve(Solver *solv, Queue *job);

(Ruby)
solver = Solver.new

solver_solve solver, job # Bad

solver.solve job # Good

• The power of %extend
%extend Solver {

 int solve(Queue *job)

 {

 solver_solve($self, job);

 return $self->problems.count == 0;

 }

© Novell Inc. All rights reserved

19

Multiple target languages

• .i files are generic

• The target language is a SWIG runtime parameter
swig -ruby bindings.i

• Use #if defined(SWIG<lang>)
#if defined (SWIGRUBY)

...

#endif

© Novell Inc. All rights reserved

20

Useful commands

• Renaming
%rename("to_s") asString();

%rename("name=") set_name(const char *name);

%rename("empty?") empty();

• Aliasing
%alias get "[]";

• Constants
%constant int Script = C_CONSTANT;

• Defines
%define YUILogComponent "bindings"

%enddef

%define %macro(PARAMETER)

...

© Novell Inc. All rights reserved

21

Type conversions

• SWIG has default conversions for most types

• Look at the SWIG 'library'
/usr/share/swig/<version>

%include “carray.i”

• Typemaps
#if defined(SWIGRUBY)

%typemap(in) (int bflag) {

$1 = RTEST($input);

}

%typemap(out) int problems_found

"$result = ($1 != 0) ? Qtrue : Qfalse;";

%rename("problems?") problems_found();

#endif

© Novell Inc. All rights reserved

22

Target specifics

• Bypassing SWIG type conversion

• Use target-specific types

Ruby: VALUE

Python: PyObject *

• Example
%rename("attr?") attr_exists(VALUE attrname);

VALUE attr_exists(VALUE attrname)

{

...

© Novell Inc. All rights reserved

23

Generating Documentation

• SWIG can generate target-specific documentation

e.g. rdoc for Ruby, pydoc for Python

• Enable with %feature("autodoc","1");

• Converts C-style comments in .i files

• Needs fixing ...

Inversion of control

© Novell Inc. All rights reserved

25

Inversion of control

Daemon plug_wrap.so

Python moduleBinary

Python

demo.py

dlopen()

'call'

PyInitialize()
PyImport_ImportModule()

PyObject_CallObject()

© Novell Inc. All rights reserved

26

Wrap up / Lessons learned

• SWIG is a tool, use it wisely

• Take the (script language) programmers view
How should it look in Python/Ruby/Perl/... ?

• Tweak the bindings, not the target language

• Look at other SWIG code

• SWIG is very well documented
But not without bugs ...

• Memory ownership is tricky

© Novell Inc. All rights reserved

27

Links for inspiration

• C++ Library

libyui-bindings (YaST user interface)
http://svn.opensuse.org/svn/yast/trunk/libyui-bindings

• C Library

Sat-solver (package dependency resolver)
http://svn.opensuse.org/svn/zypp/trunk/sat-solver/bindings

openwsman (Web Services for Management protocol)
http://www.openwsman.org/trac/browser/openwsman/trunk/bindings

• Inversion of control

cmpi-bindings (CIM Provider interface)
http://omc.svn.sourceforge.net/viewvc/omc/cmpi-bindings

Unpublished Work of Novell, Inc. All Rights Reserved.
This work is an unpublished work and contains confidential, proprietary, and trade secret information of Novell, Inc.
Access to this work is restricted to Novell employees who have a need to know to perform tasks within the scope
of their assignments. No part of this work may be practiced, performed, copied, distributed, revised, modified,
translated, abridged, condensed, expanded, collected, or adapted without the prior written consent of Novell, Inc.
Any use or exploitation of this work without authorization could subject the perpetrator to criminal and civil liability.

General Disclaimer
This document is not to be construed as a promise by any participating company to develop, deliver, or market a
product. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in
making purchasing decisions. Novell, Inc. makes no representations or warranties with respect to the contents
of this document, and specifically disclaims any express or implied warranties of merchantability or fitness for any
particular purpose. The development, release, and timing of features or functionality described for Novell products
remains at the sole discretion of Novell. Further, Novell, Inc. reserves the right to revise this document and to
make changes to its content, at any time, without obligation to notify any person or entity of such revisions or
changes. All Novell marks referenced in this presentation are trademarks or registered trademarks of Novell, Inc.
in the United States and other countries. All third-party trademarks are the property of their respective owners.

	Title-Burst
	Vision
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Break-Burst
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Logo
	Disclaimer Slide

