
ASDF 3, or Why Lisp is Now an
Acceptable Scripting Language

François-René Rideau
Google

tunes@google.com

Abstract
ASDF, the de facto standard build system for Common Lisp, has
been vastly improved between 2012 and 2014. These and other im-
provements finally bring Common Lisp up to par with "scripting
languages" in terms of ease of writing and deploying portable code
that can access and "glue" together functionality from the underly-
ing system or external programs. "Scripts" can thus be written in
Common Lisp, and take advantage of its expressive power, well-
defined semantics, and efficient implementations. We describe the
most salient improvements in ASDF 3 and how they enable pre-
viously difficult and portably impossible uses of the programming
language. We discuss past and future challenges in improving this
key piece of software infrastructure, and what approaches did or
didn’t work in bringing change to the Common Lisp community.

Introduction
As of 2013, one can use Common Lisp (CL) to portably write the
programs for which one traditionally uses so-called "scripting" lan-
guages: one can write small scripts that glue together functionality
provided by the operating system (OS), external programs, C li-
braries, or network services; one can scale them into large, main-
tainable and modular systems; and one can make those new ser-
vices available to other programs via the command-line as well as
via network protocols, etc.

The last barrier to making that possible was the lack of a
portable way to build and deploy code so a same script can run
unmodified for many users on one or many machines using one or
many different compilers. This was solved by ASDF 3.

ASDF has been the de facto standard build system for portable
CL software since shortly after its release by Dan Barlow in 2002
(Barlow 2004). The purpose of a build system is to enable divi-
sion of labor in software development: source code is organized
in separately-developed components that depend on other compo-
nents, and the build system transforms the transitive closure of
these components into a working program.

ASDF 3 is the latest rewrite of the system. Aside from fixing
numerous bugs, it sports a new portability layer. One can now
use ASDF to write Lisp programs that may be invoked from the
command line or may spawn external programs and capture their
output ASDF can deliver these programs as standalone executable
files; moreover the companion script cl-launch (see section 2.9)
can create light-weight scripts that can be run unmodified on many
different kinds of machines, each differently configured. These
features make portable scripting possible. Previously, key parts
of a program had to be configured to match one’s specific CL
implementation, OS, and software installation paths. Now, all of
one’s usual scripting needs can be entirely fulfilled using CL,
benefitting from its efficient implementations, hundreds of software
libraries, etc.

In this article, we discuss how the innovations in ASDF 3 enable
new kinds of software development in CL. In section 1, we explain
what ASDF is about; we compare it to common practice in the C
world. In section 2, we describe the improvements introduced in
ASDF 3 and ASDF 3.1 to solve the problem of software delivery;
this section requires some familiarity with CL. In section 3, we
discuss the challenges of evolving a piece of community software,
concluding with lessons learned from our experience.

This is the short version of this article. It sometimes refers to
appendices present only in the extended version (Rideau 2014), that
also includes a few additional examples and footnotes.

1. What ASDF is
1.1 ASDF: Basic Concepts
1.1.1 Components
ASDF is a build system for CL: it helps developers divide soft-
ware into a hierarchy of components and automatically generates a
working program from all the source code.

Top components are called systems in an age-old Lisp tradition,
while the bottom ones are source files, typically written in CL. In
between, there may be a recursive hierarchy of modules.

Users may then operate on these components with various
build operations, most prominently compiling the source code (op-
eration compile-op) and loading the output into the current Lisp
image (operation load-op).

Several related systems may be developed together in the same
source code project. Each system may depend on code from other
systems, either from the same project or from a different project.
ASDF itself has no notion of projects, but other tools on top of
ASDF do: Quicklisp (Beane 2011) packages together systems
from a project into a release, and provides hundreds of releases
as a distribution, automatically downloading on demand required
systems and all their transitive dependencies.

Further, each component may explicitly declare a dependency
on other components: whenever compiling or loading a component
relies on declarations or definitions of packages, macros, variables,
classes, functions, etc., present in another component, the program-
mer must declare that the former component depends-on the latter.

1.1.2 Example System Definition
Below is how the fare-quasiquote system is defined (with
elisions) in a file fare-quasiquote.asd. It contains three
files, packages, quasiquote and pp-quasiquote (the
.lisp suffix is automatically added based on the component
class; see Appendix C). The latter files each depend on the first
file, because this former file defines the CL packages1:

1 Packages are namespaces that contain symbols; they need to be created
before the symbols they contain may even be read as valid syntax.

1 2017/5/13

http://fare.tunes.org/files/asdf3/asdf3-2014.html#pathnames

(defsystem "fare-quasiquote" ...
:depends-on ("fare-utils")
:components
((:file "packages")

(:file "quasiquote"
:depends-on ("packages"))

(:file "pp-quasiquote"
:depends-on ("quasiquote"))))

Among the elided elements were metadata such as :license
"MIT", and extra dependency information :in-order-to
((test-op (test-op "fare-quasiquote-test"))),
that delegates testing the current system to running tests on an-
other system. Notice how the system itself depends-on another sys-
tem, fare-utils, a collection of utility functions and macros
from another project, whereas testing is specified to be done by
fare-quasiquote-test, a system defined in a different file,
fare-quasiquote-test.asd, within the same project.

1.1.3 Action Graph
The process of building software is modeled as a Directed Acyclic
Graph (DAG) of actions, where each action is a pair of an oper-
ation and a component. The DAG defines a partial order, whereby
each action must be performed, but only after all the actions it (tran-
sitively) depends-on have already been performed.

For instance, in fare-quasiquote above, the loading of
(the output of compiling) quasiquote depends-on the compiling
of quasiquote, which itself depends-on the loading of (the
output of compiling) package, etc.

Importantly, though, this graph is distinct from the preceding
graph of components: the graph of actions isn’t a mere refinement
of the graph of components but a transformation of it that also
incorporates crucial information about the structure of operations.

ASDF extracts from this DAG a plan, which by default is a
topologically sorted list of actions, that it then performs in order,
in a design inspired by Pitman (Pitman 1984).

Users can extend ASDF by defining new subclasses of oper-
ation and/or component and the methods that use them, or by
using global, per-system, or per-component hooks.

1.1.4 In-image
ASDF is an "in-image" build system, in the Lisp defsystem
tradition: it compiles (if necessary) and loads software into the cur-
rent CL image, and can later update the current image by recom-
piling and reloading the components that have changed. For better
and worse, this notably differs from common practice in most other
languages, where the build system is a completely different piece of
software running in a separate process.2 On the one hand, it min-
imizes overhead to writing build system extensions. On the other
hand, it puts great pressure on ASDF to remain minimal.

Qualitatively, ASDF must be delivered as a single source file
and cannot use any external library, since it itself defines the code
that may load other files and libraries. Quantitatively, ASDF must
minimize its memory footprint, since it’s present in all programs
that are built, and any resource spent is paid by each program.

For all these reasons, ASDF follows the minimalist principle
that anything that can be provided as an extension should be
provided as an extension and left out of the core. Thus it cannot
afford to support a persistence cache indexed by the cryptographic
digest of build expressions, or a distributed network of workers,
etc. However, these could conceivably be implemented as ASDF
extensions.

2 Of course, a build system could compile CL code in separate processes,
for the sake of determinism and parallelism: our XCVB did (Brody 2009);
so does the Google build system.

1.2 Comparison to C programming practice
Most programmers are familiar with C, but not with CL. It’s there-
fore worth contrasting ASDF to the tools commonly used by C pro-
grammers to provide similar services. Note though how these ser-
vices are factored in very different ways in CL and in C.

To build and load software, C programmers commonly use
make to build the software and ld.so to load it. Additionally, they
use a tool like autoconf to locate available libraries and identify
their features. In many ways these C solutions are better engineered
than ASDF. But in other important ways ASDF demonstrates how
these C systems have much accidental complexity that CL does
away with thanks to better architecture.

• Lisp makes the full power of runtime available at compile-time,
so it’s easy to implement a Domain-Specific Language (DSL):
the programmer only needs to define new functionality, as an
extension that is then seamlessly combined with the rest of the
language, including other extensions. In C, the many utilities
that need a DSL must grow it onerously from scratch; since the
domain expert is seldom also a language expert with resources
to do it right, this means plenty of mutually incompatible, mis-
designed, power-starved, misimplemented languages that have
to be combined through an unprincipled chaos of expensive yet
inexpressive means of communication.

• Lisp provides full introspection at runtime and compile-time
alike, as well as a protocol to declare features and condition-
ally include or omit code or data based on them. Therefore you
don’t need dark magic at compile-time to detect available fea-
tures. In C, people resort to horribly unmaintainable configu-
ration scripts in a hodge podge of shell script, m4 macros, C
preprocessing and C code, plus often bits of python, perl,
sed, etc.

• ASDF possesses a standard and standardly extensible way to
configure where to find the libraries your code depends on,
further improved in ASDF 2. In C, there are tens of incompatible
ways to do it, between libtool, autoconf, kde-config,
pkg-config, various manual ./configure scripts, and
countless other protocols, so that each new piece of software
requires the user to learn a new ad hoc configuration method,
making it an expensive endeavor to use or distribute libraries.

• ASDF uses the very same mechanism to configure both runtime
and compile-time, so there is only one configuration mecha-
nism to learn and to use, and minimal discrepancy.3 In C, com-
pletely different, incompatible mechanisms are used at runtime
(ld.so) and compile-time (unspecified), which makes it hard
to match source code, compilation headers, static and dynamic
libraries, requiring complex "software distribution" infrastruc-
tures (that admittedly also manage versioning, downloading and
precompiling); this at times causes subtle bugs when discrepan-
cies creep in.

Nevertheless, there are also many ways in which ASDF pales
in comparison to other build systems for CL, C, Java, or other
systems:

• ASDF isn’t a general-purpose build system. Its relative sim-
plicity is directly related to it being custom made to build CL
software only. Seen one way, it’s a sign of how little you can
get away with if you have a good basic architecture; a simi-
larly simple solution isn’t available to most other programming
languages, that require much more complex tools to achieve a
similar purpose. Seen another way, it’s also the CL community

3 There is still discrepancy inherent with these times being distinct: the
installation or indeed the machine may have changed.

2 2017/5/13

failing to embrace the outside world and provide solutions with
enough generality to solve more complex problems.

• At the other extreme, a build system for CL could have been
made that is much simpler and more elegant than ASDF, if it
could have required software to follow some simple organiza-
tion constraints, without much respect for legacy code. A con-
structive proof of that is quick-build (Bridgewater 2012),
being a fraction of the size of ASDF, itself a fraction of the size
of ASDF 3, and with a fraction of the bugs — but none of the
generality and extensibility (See section 2.10).

• ASDF it isn’t geared at all to build large software in mod-
ern adversarial multi-user, multi-processor, distributed environ-
ments where source code comes in many divergent versions
and in many configurations. It is rooted in an age-old model of
building software in-image, what’s more in a traditional single-
processor, single-machine environment with a friendly single
user, a single coherent view of source code and a single target
configuration. The new ASDF 3 design is consistent and gen-
eral enough that it could conceivably be made to scale, but that
would require a lot of work.

2. ASDF 3: A Mature Build
2.1 A Consistent, Extensible Model
Surprising as it may be to the CL programmers who used it daily,
there was an essential bug at the heart of ASDF: it didn’t even try
to propagate timestamps from one action to the next. And yet it
worked, mostly. The bug was present from the very first day in
2001, and even before in mk-defsystem since 1990 (Kantrowitz
1990), and it survived till December 2012, despite all our robusti-
fication efforts since 2009 (Goldman 2010). Fixing it required a
complete rewrite of ASDF’s core.

As a result, the object model of ASDF became at the same
time more powerful, more robust, and simpler to explain. The dark
magic of its traverse function is replaced by a well-documented
algorithm. It’s easier than before to extend ASDF, with fewer lim-
itations and fewer pitfalls: users may control how their operations
do or don’t propagate along the component hierarchy. Thus, ASDF
can now express arbitrary action graphs, and could conceivably be
used in the future to build more than just CL programs.

The proof of a good design is in the ease of extending it.
And in CL, extension doesn’t require privileged access to the code
base. We thus tested our design by adapting the most elaborate ex-
isting ASDF extensions to use it. The result was indeed cleaner,
eliminating the previous need for overrides that redefined sizable
chunks of the infrastructure. Chronologically, however, we con-
sciously started this porting process in interaction with developing
ASDF 3, thus ensuring ASDF 3 had all the extension hooks required
to avoid redefinitions.

See the entire story in Appendix F.

2.2 Bundle Operations
Bundle operations create a single output file for an entire system or
collection of systems. The most directly user-facing bundle oper-
ations are compile-bundle-op and load-bundle-op: the
former bundles into a single compilation file all the individual out-
puts from the compile-op of each source file in a system; the
latter loads the result of the former. Also lib-op links into a li-
brary all the object files in a system and dll-op creates a dynam-
ically loadable library out of them. The above bundle operations
also have so-called monolithic variants that bundle all the files in a
system and all its transitive dependencies.

Bundle operations make delivery of code much easier. They
were initially introduced as asdf-ecl, an extension to ASDF

specific to the implementation ECL, back in the day of ASDF 1.
asdf-ecl was distributed with ASDF 2, though in a way that
made upgrade slightly awkward to ECL users, who had to explicitly
reload it after upgrading ASDF, even though it was included by
the initial (require "asdf"). In 2012, it was generalized to
other implementations as the external system asdf-bundle. It
was then merged into ASDF during the development of ASDF 3:
not only did it provide useful new operations, but the way that
ASDF 3 was automatically upgrading itself for safety purposes (see
Appendix B) would otherwise have broken things badly for ECL
users if the bundle support weren’t itself bundled with ASDF.

In ASDF 3.1, using deliver-asd-op, you can create both
the bundle from compile-bundle-op and an .asd file to use
to deliver the system in binary format only.

2.3 Understandable Internals
After bundle support was merged into ASDF (see section 2.2
above), it became trivial to implement a new concatenate-
source-op operation. Thus ASDF could be developed as multi-
ple files, which would improve maintainability. For delivery pur-
pose, the source files would be concatenated in correct dependency
order, into the single file asdf.lisp required for bootstrapping.

The division of ASDF into smaller, more intelligible pieces had
been proposed shortly after we took over ASDF; but we had re-
jected the proposal then on the basis that ASDF must not depend on
external tools to upgrade itself from source, another strong require-
ment (see Appendix B). With concatenate-source-op, an
external tool wasn’t needed for delivery and regular upgrade, only
for bootstrap. Meanwhile this division had also become more im-
portant, since ASDF had grown so much, having almost tripled in
size since those days, and was promising to grow some more. It
was hard to navigate that one big file, even for the maintainer, and
probably impossible for newcomers to wrap their head around it.

To bring some principle to this division, we followed the princi-
ple of one file, one package, as demonstrated by faslpath (Et-
ter 2009) and quick-build (Bridgewater 2012), though not yet
actively supported by ASDF itself (see section 2.10). This program-
ming style ensures that files are indeed providing related function-
ality, only have explicit dependencies on other files, and don’t have
any forward dependencies without special declarations. Indeed, this
was a great success in making ASDF understandable, if not by new-
comers, at least by the maintainer himself; this in turn triggered a
series of enhancements that would not otherwise have been obvi-
ous or obviously correct, illustrating the principle that good code
is code you can understand, organized in chunks you can each
fit in your brain.

2.4 Package Upgrade
Preserving the hot upgradability of ASDF was always a strong re-
quirement (see Appendix B). In the presence of this package refac-
toring, this meant the development of a variant of CL’s def-
package that plays nice with hot upgrade: define-package.
Whereas the former isn’t guaranteed to work and may signal an
error when a package is redefined in incompatible ways, the lat-
ter will update an old package to match the new desired definition
while recycling existing symbols from that and other packages.

Thus, in addition to the regular clauses from defpackage,
define-package accepts a clause :recycle: it attempts to
recycle each declared symbol from each of the specified packages
in the given order. For idempotence, the package itself must be
the first in the list. For upgrading from an old ASDF, the :asdf
package is always named last. The default recycle list consists in a
list of the package and its nicknames.

New features also include :mix and :reexport. :mix
mixes imported symbols from several packages: when multiple

3 2017/5/13

http://fare.tunes.org/files/asdf3/asdf3-2014.html#traverse
http://fare.tunes.org/files/asdf3/asdf3-2014.html#Upgradability
http://fare.tunes.org/files/asdf3/asdf3-2014.html#Upgradability
http://fare.tunes.org/files/asdf3/asdf3-2014.html#Upgradability

packages export symbols with the same name, the conflict is auto-
matically resolved in favor of the package named earliest, whereas
an error condition is raised when using the standard :use clause.
:reexport reexports the same symbols as imported from given
packages, and/or exports instead the same-named symbols that
shadow them. ASDF 3.1 adds :mix-reexport and :use-
reexport, which combine :reexport with :mix or :use
in a single statement, which is more maintainable than repeating a
list of packages.

2.5 Portability Layer
Splitting ASDF into many files revealed that a large fraction of
it was already devoted to general purpose utilities. This fraction
only grew under the following pressures: a lot of opportunities for
improvement became obvious after dividing ASDF into many files;
features added or merged in from previous extensions and libraries
required new general-purpose utilities; as more tests were added
for new features, and were run on all supported implementations,
on multiple operating systems, new portability issues cropped up
that required development of robust and portable abstractions.

The portability layer, after it was fully documented, ended up
being slightly bigger than the rest of ASDF. Long before that
point, ASDF was thus formally divided in two: this portability
layer, and the defsystem itself. The portability layer was ini-
tially dubbed asdf-driver, because of merging in a lot of
functionality from xcvb-driver. Because users demanded a
shorter name that didn’t include ASDF, yet would somehow be
remindful of ASDF, it was eventually renamed UIOP: the Utili-
ties for Implementation- and OS- Portability4. It was made avail-
able separately from ASDF as a portability library to be used on
its own; yet since ASDF still needed to be delivered as a single file
asdf.lisp, UIOP was transcluded inside that file, now built us-
ing the monolithic-concatenate-source-op operation.
At Google, the build system actually uses UIOP for portability
without the rest of ASDF; this led to UIOP improvements that will
be released with ASDF 3.1.2.

Most of the utilities deal with providing sane pathname ab-
stractions (see Appendix C), filesystem access, sane input/output
(including temporary files), basic operating system interaction —
many things for which the CL standard lacks. There is also an ab-
straction layer over the less-compatible legacy implementations, a
set of general-purpose utilities, and a common core for the ASDF
configuration DSLs.5 Importantly for a build system, there are
portable abstractions for compiling CL files while controlling all
the warnings and errors that can occur, and there is support for the
life-cycle of a Lisp image: dumping and restoring images, initial-
ization and finalization hooks, error handling, backtrace display,
etc. However, the most complex piece turned out to be a portable
implementation of run-program.

2.6 run-program

With ASDF 3, you can run external commands as follows:

(run-program `("cp" "-lax" "--parents"
"src/foo" ,destination))

On Unix, this recursively hardlinks files in directory src/foo into
a directory named by the string destination, preserving the
prefix src/foo. You may have to add :output t :error-
output t to get error messages on your *standard-output*

4 U, I, O and P are also the four letters that follow QWERTY on an anglo-
saxon keyboard.
5 ASDF 3.1 notably introduces a nest macro that nests arbitrarily many
forms without indentation drifting ever to the right. It makes for more
readable code without sacrificing good scoping discipline.

and *error-output* streams, since the default value, nil,
designates /dev/null. If the invoked program returns an error
code, run-program signals a structured CL error, unless you
specified :ignore-error-status t.

This utility is essential for ASDF extensions and CL code in
general to portably execute arbitrary external programs. It was a
challenge to write: Each implementation provided a different un-
derlying mechanism with wildly different feature sets and count-
less corner cases. The better ones could fork and exec a process and
control its standard-input, standard-output and error-output; lesser
ones could only call the system(3) C library function. More-
over, Windows support differed significantly from Unix. ASDF 1
itself actually had a run-shell-command, initially copied over
from mk-defsystem, but it was more of an attractive nuisance
than a solution, despite our many bug fixes: it was implicitly call-
ing format; capturing output was particularly contrived; and what
shell would be used varied between implementations, even more so
on Windows.

ASDF 3’s run-program is full-featured, based on code orig-
inally from XCVB’s xcvb-driver (Brody 2009). It abstracts
away all these discrepancies to provide control over the program’s
standard-output, using temporary files underneath if needed. Since
ASDF 3.0.3, it can also control the standard-input and error-output.
It accepts either a list of a program and arguments, or a shell com-
mand string. Thus your previous program could have been:

(run-program
(format nil "cp -lax --parents src/foo „S"

(native-namestring destination))
:output t :error-output t)

where (UIOP)’s native-namestring converts the path-
name object destination into a name suitable for use by the
operating system, as opposed to a CL namestring that might be
escaped somehow.

You can also inject input and capture output:

(run-program '("tr" "a-z" "n-za-m")
:input '("uryyb, jbeyq") :output :string)

returns the string "hello, world". It also returns secondary
and tertiary values nil and 0 respectively, for the (non-captured)
error-output and the (successful) exit code.

run-program only provides a basic abstraction; a separate
system inferior-shell was written on top of UIOP, and
provides a richer interface, handling pipelines, zsh style redirec-
tions, splicing of strings and/or lists into the arguments, and im-
plicit conversion of pathnames into native-namestrings, of symbols
into downcased strings, of keywords into downcased strings with
a -- prefix. Its short-named functions run, run/nil, run/s,
run/ss, respectively run the external command with outputs to
the Lisp standard- and error- output, with no output, with output to
a string, or with output to a stripped string. Thus you could get the
same result as previously with:

(run/ss '(pipe (echo (uryyb ", " jbeyq))
(tr a-z (n-z a-m))))

Or to get the number of processors on a Linux machine, you can:

(run '(grep -c "^processor.:"
(< /proc/cpuinfo))

:output #'read)

2.7 Configuration Management
ASDF always had minimal support for configuration management.
ASDF 3 doesn’t introduce radical change, but provides more usable
replacements or improvements for old features.

4 2017/5/13

http://fare.tunes.org/files/asdf3/asdf3-2014.html#pathnames

For instance, ASDF 1 had always supported version-checking:
each component (usually, a system) could be given a version string
with e.g. :version "3.1.0.97", and ASDF could be told to
check that dependencies of at least a given version were used,
as in :depends-on ((:version "inferior-shell"
"2.0.0")). This feature can detect a dependency mismatch
early, which saves users from having to figure out the hard way
that they need to upgrade some libraries, and which.

Now, ASDF always required components to use "semantic ver-
sioning", where versions are strings made of dot-separated numbers
like 3.1.0.97. But it didn’t enforce it, leading to bad surprises
for the users when the mechanism was expected to work, but failed.
ASDF 3 issues a warning when it finds a version that doesn’t fol-
low the format. It would actually have issued an error, if that
didn’t break too many existing systems.

Another problem with version strings was that they had to be
written as literals in the .asd file, unless that file took painful
steps to extract it from another source file. While it was easy for
source code to extract the version from the system definition, some
authors legitimately wanted their code to not depend on ASDF it-
self. Also, it was a pain to repeat the literal version and/or the
extraction code in every system definition in a project. ASDF 3 can
thus extract version information from a file in the source tree, with,
e.g. :version (:read-file-line "version.text")
to read the version as the first line of file version.text. To
read the third line, that would have been :version (:read-
file-line "version.text" :at 2) (mind the off-by-
one error in the English language). Or you could extract the
version from source code. For instance, poiu.asd specifies
:version (:read-file-form "poiu.lisp" :at (1
2 2)) which is the third subform of the third subform of the
second form in the file poiu.lisp. The first form is an in-
package and must be skipped. The second form is an (eval-
when (...) body...) the body of which starts with a (def-
parameter *poiu-version* ...) form. ASDF 3 thus
solves this version extraction problem for all software — except
itself, since its own version has to be readable by ASDF 2 as well
as by who views the single delivery file; thus its version informa-
tion is maintained by a management script using regexps, of course
written in CL.

Another painful configuration management issue with ASDF 1
and 2 was lack of a good way to conditionally include files de-
pending on which implementation is used and what features it sup-
ports. One could always use CL reader conditionals such as #+(or
sbcl clozure) but that means that ASDF could not even see
the components being excluded, should some operation be invoked
that involves printing or packaging the code rather than compil-
ing it — or worse, should it involve cross-compilation for another
implementation with a different feature set. There was an obscure
way for a component to declare a dependency on a :feature,
and annotate its enclosing module with :if-component-dep-
fails :try-next to catch the failure and keep trying. But
the implementation was a kluge in traverse that short-circuited
the usual dependency propagation and had exponential worst case
performance behavior when nesting such pseudo-dependencies to
painfully emulate feature expressions.

ASDF 3 gets rid of :if-component-dep-fails: it didn’t
fit the fixed dependency model at all. A limited compatibility mode
without nesting was preserved to keep processing old versions of
SBCL. As a replacement, ASDF 3 introduces a new option :if-
feature in component declarations, such that a component is
only included in a build plan if the given feature expression is true
during the planning phase. Thus a component annotated with :if-
feature (:and :sbcl (:not :sb-unicode)) (and its
children, if any) is only included on an SBCL without Unicode sup-

port. This is more expressive than what preceded, without requiring
inconsistencies in the dependency model, and without pathological
performance behavior.

2.8 Standalone Executables
One of the bundle operations contributed by the ECL team was
program-op, that creates a standalone executable. As this was
now part of ASDF 3, it was only natural to bring other ASDF-
supported implementations up to par: CLISP, Clozure CL, CMUCL,
LispWorks, SBCL, SCL. Thus UIOP features a dump-image
function to dump the current heap image, except for ECL and
its successors that follow a linking model and use a create-
image function. These functions were based on code from xcvb-
driver, which had taken them from cl-launch.

ASDF 3 also introduces a defsystem option to specify an
entry point as e.g. :entry-point "my-package:entry-
point". The specified function (designated as a string to be read
after the package is created) is called without arguments after the
program image is initialized; after doing its own initializations, it
can explicitly consult *command-line-arguments*6 or pass
it as an argument to some main function.

Our experience with a large application server at ITA Software
showed the importance of hooks so that various software compo-
nents may modularly register finalization functions to be called be-
fore dumping the image, and initialization functions to be called
before calling the entry point. Therefore, we added support for im-
age life-cycle to UIOP. We also added basic support for running
programs non-interactively as well as interactively: non-interactive
programs exit with a backtrace and an error message repeated
above and below the backtrace, instead of inflicting a debugger on
end-users; any non-nil return value from the entry-point function
is considered success and nil failure, with an appropriate program
exit status.

Starting with ASDF 3.1, implementations that don’t support
standalone executables may still dump a heap image using the
image-op operation, and a wrapper script, e.g. created by cl-
launch, can invoke the program; delivery is then in two files
instead of one. image-op can also be used by all implementations
to create intermediate images in a staged build, or to provide ready-
to-debug images for otherwise non-interactive applications.

2.9 cl-launch

Running Lisp code to portably create executable commands from
Lisp is great, but there is a bootstrapping problem: when all you
can assume is the Unix shell, how are you going to portably invoke
the Lisp code that creates the initial executable to begin with?

We solved this problem some years ago with cl-launch. This
bilingual program, both a portable shell script and a portable CL
program, provides a nice colloquial shell command interface to
building shell commands from Lisp code, and supports delivery
as either portable shell scripts or self-contained precompiled ex-
ecutable files.

Its latest incarnation, cl-launch 4 (March 2014), was up-
dated to take full advantage of ASDF 3. Its build specification in-
terface was made more general, and its Unix integration was im-
proved. You may thus invoke Lisp code from a Unix shell:
cl -sp lisp-stripper \

-i "(print-loc-count \"asdf.lisp\")"
You can also use cl-launch as a script "interpreter", except

that it invokes a Lisp compiler underneath:

6 In CL, most variables are lexically visible and statically bound, but spe-
cial variables are globally visible and dynamically bound. To avoid subtle
mistakes, the latter are conventionally named with enclosing asterisks, also
known in recent years as earmuffs.

5 2017/5/13

#!/usr/bin/cl -sp lisp-stripper -E main
(defun main (argv)

(if argv
(map () 'print-loc-count argv)
(print-loc-count *standard-input*)))

In the examples above, option -sp, shorthand for --system-
package, simultaneously loads a system using ASDF during the
build phase, and appropriately selects the current package; -i,
shorthand for --init evaluates a form at the start of the execution
phase; -E, shorthand for --entry configures a function that is
called after init forms are evaluated, with the list of command-
line arguments as its argument.7 As for lisp-stripper, it’s a
simple library that counts lines of code after removing comments,
blank lines, docstrings, and multiple lines in strings.

cl-launch automatically detects a CL implementation in-
stalled on your machine, with sensible defaults. You can eas-
ily override all defaults with a proper command-line option, a
configuration file, or some installation-time configuration. See
cl-launch --more-help for complete information. Note
that cl-launch is on a bid to homestead the executable path
/usr/bin/cl on Linux distributions; it may slightly more
portably be invoked as cl-launch.

A nice use of cl-launch is to compare how various imple-
mentations evaluate some form, to see how portable it is in practice,
whether the standard mandates a specific result or not:
for l in sbcl ccl clisp cmucl ecl abcl \

scl allegro lispworks gcl xcl ; do
cl -l $l -i \
'(format t "'$l': „S„%" `#5(1 ,@`(2 3)))' \
2>&1 | grep "^$l:" # LW, GCL are verbose

done
cl-launch compiles all the files and systems that are speci-

fied, and keeps the compilation results in the same output-file cache
as ASDF 3, nicely segregating them by implementation, version,
ABI, etc. Therefore, the first time it sees a given file or system, or
after they have been updated, there may be a startup delay while
the compiler processes the files; but subsequent invocations will be
faster as the compiled code is directly loaded. This is in sharp con-
trast with other "scripting" languages, that have to slowly interpret
or recompile everytime. For security reasons, the cache isn’t shared
between users.

2.10 package-inferred-system

ASDF 3.1 introduces a new extension package-inferred-
system that supports a one-file, one-package, one-system style
of programming. This style was pioneered by faslpath (Etter
2009) and more recently quick-build (Bridgewater 2012).
This extension is actually compatible with the latter but not the
former, for ASDF 3.1 and quick-build use a slash "/" as a
hierarchy separator where faslpath used a dot ".".

This style consists in every file starting with a defpackage
or define-package form; from its :use and :import-
from and similar clauses, the build system can identify a list
of packages it depends on, then map the package names to the
names of systems and/or other files, that need to be loaded first.
Thus package name lil/interface/all refers to the file
interface/all.lisp under the hierarchy registered by sys-
tem lil, defined as follows in lil.asd as using class package-
inferred-system:

(defsystem "lil" ...
:description "LIL: Lisp Interface Library"

7 Several systems are available to help you define an evaluator for your
command-line argument DSL: command-line-arguments, clon,
lisp-gflags.

:class :package-inferred-system
:defsystem-depends-on ("asdf-package-system")
:depends-on ("lil/interface/all"

"lil/pure/all" ...)
...)

The :defsystem-depends-on ("asdf-package-system")
is an external extension that provides backward compatibility with
ASDF 3.0, and is part of Quicklisp. Because not all package names
can be directly mapped back to a system name, you can register new
mappings for package-inferred-system. The lil.asd
file may thus contain forms such as:

(register-system-packages :closer-mop
'(:c2mop :closer-common-lisp :c2cl ...))

Then, a file interface/order.lisp under the lil hierarchy,
that defines abstract interfaces for order comparisons, starts with
the following form, dependencies being trivially computed from
the :use and :mix clauses:

(uiop:define-package :lil/interface/order
(:use :closer-common-lisp

:lil/interface/definition
:lil/interface/base
:lil/interface/eq :lil/interface/group)

(:mix :fare-utils :uiop :alexandria)
(:export ...))

This style provides many maintainability benefits: by imposing
upon programmers a discipline of smaller namespaces, with ex-
plicit dependencies and especially explicit forward dependencies,
the style encourages good factoring of the code into coherent units;
by contrast, the traditional style of "everything in one package" has
low overhead but doesn’t scale very well. ASDF itself was rewritten
in this style as part of ASDF 2.27, the initial ASDF 3 pre-release,
with very positive results.

Since it depends on ASDF 3, package-inferred-system
isn’t as lightweight as quick-build, which is almost two or-
ders of magnitude smaller than ASDF 3. But it does interoperate
perfectly with the rest of ASDF, from which it inherits the many
features, the portability, and the robustness.

2.11 Restoring Backward Compatibility
ASDF 3 had to break compatibility with ASDF 1 and 2: all opera-
tions used to be propagated sideway and downward along the com-
ponent DAG (see Appendix F). In most cases this was undesired;
indeed, ASDF 3 is predicated upon a new operation prepare-op
that instead propagates upward.8 Most existing ASDF extensions
thus included workarounds and approximations to deal with the is-
sue. But a handful of extensions did expect this behavior, and now
they were broken.

Before the release of ASDF 3, authors of all known ASDF
extensions distributed by Quicklisp had been contacted, to make
their code compatible with the new fixed model. But there was
no way to contact unidentified authors of proprietary extensions,
beside sending an announcement to the mailing-list. Yet, whatever
message was sent didn’t attract enough attention. Even our co-
maintainer Robert Goldman got bitten hard when an extension used
at work stopped working, wasting days to figure out the issue.

Therefore, ASDF 3.1 features enhanced backward-compatibility.
The class operation implements sideway and downward prop-
agation on all classes that do not explicitly inherit from any

8 Sideway means the action of operation o on component c depends-on the
action of o (or another operation) on each of the declared dependencies
of c. Downward means that it depends-on the action of o on each of c’s
children; upward, on c’s parent (enclosing module or system).

6 2017/5/13

http://fare.tunes.org/files/asdf3/asdf3-2014.html#traverse

of the propagating mixins downward-operation, upward-
operation, sideway-operation or selfward-operation,
unless they explicitly inherit from the new mixin non-propagating-
operation. ASDF 3.1 signals a warning at runtime when an
operation class is instantiated that doesn’t inherit from any of the
above mixins, which will hopefully tip off authors of a proprietary
extension that it’s time to fix their code. To tell ASDF 3.1 that their
operation class is up-to-date, extension authors may have to define
their non-propagating operations as follows:
(defclass my-op (#+asdf3.1 non-propagating-
operation operation) ())

This is a case of "negative inheritance", a technique usually
frowned upon, for the explicit purpose of backward compatibility.
Now ASDF cannot use the CLOS Meta-Object Protocol (MOP),
because it hasn’t been standardized enough to be portably used
without using an abstraction library such as closer-mop, yet
ASDF cannot depend on any external library, and this is too small
an issue to justify making a sizable MOP library part of UIOP.
Therefore, the negative inheritance is implemented in an ad hoc
way at runtime.

3. Code Evolution in a Conservative Community
3.1 Feature Creep? No, Mission Creep
Throughout the many features added and tenfold increase in size
from ASDF 1 to ASDF 3, ASDF remained true to its minimalism —
but the mission, relative to which the code remains minimal, was
extended, several times: In the beginning, ASDF was the simplest
extensible variant of defsystem that builds CL software (see Ap-
pendix A). With ASDF 2, it had to be upgradable, portable, mod-
ularly configurable, robust, performant, usable (see Appendix B).
Then it had to be more declarative, more reliable, more predictable,
and capable of supporting language extensions (see Appendix D).
Now, ASDF 3 has to support a coherent model for representing de-
pendencies, an alternative one-package-per-file style for declaring
them, software delivery as either scripts or binaries, a documented
portability layer including image life-cycle and external program
invocation, etc. (see section 2).

3.2 Backward Compatibility is Social, not Technical
As efforts were made to improve ASDF, a constant constraint was
that of backward compatibility: every new version of ASDF had to
be compatible with the previous one, i.e. systems that were defined
using previous versions had to keep working with new versions.
But what more precisely is backward compatibility?

In an overly strict definition that precludes any change in be-
havior whatsoever, even the most uncontroversial bug fix isn’t
backward-compatible: any change, for the better as it may be, is
incompatible, since by definition, some behavior has changed!

One might be tempted to weaken the constraint a bit, and de-
fine "backward compatible" as being the same as a "conservative
extension": a conservative extension may fix erroneous situations,
and give new meaning to situations that were previously undefined,
but may not change the meaning of previously defined situations.
Yet, this definition is doubly unsatisfactory. On the one hand, it pre-
cludes any amendment to previous bad decisions; hence, the jest if
it’s not backwards, it’s not compatible. On the other hand, even
if it only creates new situations that work correctly where they were
previously in error, some existing analysis tool might assume these
situations could never arise, and be confused when they now do.

Indeed this happened when ASDF 3 tried to better support sec-
ondary systems. ASDF looks up systems by name: if you try to
load system foo, ASDF will search in registered directories for a
file call foo.asd. Now, it was common practice that programmers
may define multiple "secondary" systems in a same .asd file, such

as a test system foo-test in addition to foo. This could lead to
"interesting" situations when a file foo-test.asd existed, from
a different, otherwise shadowed, version of the same library, result-
ing in a mismatch between the system and its tests. To make these
situations less likely, ASDF 3 recommends that you name your sec-
ondary system foo/test instead of of foo-test, which should
work just as well in ASDF 2, but with reduced risk of clash. More-
over, ASDF 3 can recognize the pattern and automatically load
foo.asd when requested foo/test, in a way guaranteed not
to clash with previous usage, since no directory could contain a file
thus named in any modern operating system. In contrast, ASDF 2
has no way to automatically locate the .asd file from the name
of a secondary system, and so you must ensure that you loaded the
primary .asd file before you may use the secondary system. This
feature may look like a textbook case of a backward-compatible
"conservative extension". Yet, it’s the major reason why Quicklisp
itself still hasn’t adopted ASDF 3: Quicklisp assumed it could al-
ways create a file named after each system, which happened to be
true in practice (though not guaranteed) before this ASDF 3 inno-
vation; systems that newly include secondary systems using this
style break this assumption, and will require non-trivial work for
Quicklisp to support.

What then, is backward compatibility? It isn’t a technical con-
straint. Backward compatibility is a social constraint. The new
version is backward compatible if the users are happy. This doesn’t
mean matching the previous version on all the mathematically con-
ceivable inputs; it means improving the results for users on all the
actual inputs they use; or providing them with alternate inputs they
may use for improved results.

3.3 Weak Synchronization Requires Incremental Fixes
Even when some "incompatible" changes are not controversial,
it’s often necessary to provide temporary backward compatible
solutions until all the users can migrate to the new design. Changing
the semantics of one software system while other systems keep
relying on it is akin to changing the wheels on a running car: you
cannot usually change them all at once, at some point you must
have both kinds active, and you cannot remove the old ones until
you have stopped relying on them. Within a fast moving company,
such migration of an entire code base can happen in a single
checkin. If it’s a large company with many teams, the migration
can take many weeks or months. When the software is used by a
weakly synchronized group like the CL community, the migration
can take years.

When releasing ASDF 3, we spent a few months making sure
that it would work with all publicly available systems. We had to
fix many of these systems, but mostly, we were fixing ASDF 3 itself
to be more compatible. Indeed, several intended changes had to be
forsaken, that didn’t have an incremental upgrade path, or for which
it proved infeasible to fix all the clients.

A successful change was notably to modify the default encod-
ing from the uncontrolled environment-dependent :default to
the de facto standard :utf-8; this happened a year after adding
support for encodings and :utf-8 was added, and having fore-
warned community members of the future change in defaults, yet a
few systems still had to be fixed (see Appendix D).

On the other hand, an unsuccessful change was the attempt
to enable an innovative system to control warnings issued by the
compiler. First, the *uninteresting-conditions* mecha-
nism allows system builders to hush the warnings they know they
don’t care for, so that any compiler output is something they care
for, and whatever they care for isn’t drowned into a sea of unin-
teresting output. The mechanism itself is included in ASDF 3, but
disabled by default, because there was no consensually agreeable
value except an empty set, and no good way (so far) to configure it

7 2017/5/13

http://fare.tunes.org/files/asdf3/asdf3-2014.html#asdf1
http://fare.tunes.org/files/asdf3/asdf3-2014.html#asdf1
http://fare.tunes.org/files/asdf3/asdf3-2014.html#asdf2
http://fare.tunes.org/files/asdf3/asdf3-2014.html#asdf2.26
http://fare.tunes.org/files/asdf3/asdf3-2014.html#Encoding_Support

both modularly and without pain. Second, another related mech-
anism that was similarly disabled is deferred-warnings,
whereby ASDF can check warnings that are deferred by SBCL
or other compilers until the end of the current compilation-unit.
These warnings notably include forward references to functions
and variables. In the previous versions of ASDF, these warnings
were output at the end of the build the first time a file was built,
but not checked, and not displayed afterward. If in ASDF 3 you
(uiop:enable-deferred-warnings), these warnings are
displayed and checked every time a system is compiled or loaded.
These checks help catch more bugs, but enabling them prevents
the successful loading of a lot of systems in Quicklisp that have
such bugs, even though the functionality for which these systems
are required isn’t affected by these bugs. Until there exists some
configuration system that allows developers to run all these checks
on new code without having them break old code, the feature will
have to remain disabled by default.

3.4 Underspecification Creates Portability Landmines
The CL standard leaves many things underspecified about path-
names in an effort to define a useful subset common to many then-
existing implementations and filesystems. However, the result is
that portable programs can forever only access but a small subset
of the complete required functionality. This result arguably makes
the standard far less useful than expected (see Appendix C). The
lesson is don’t standardize partially specified features. It’s bet-
ter to standardize that some situations cause an error, and reserve
any resolution to a later version of the standard (and then follow up
on it), or to delegate specification to other standards, existing or
future.

There could have been one pathname protocol per operating
system, delegated to the underlying OS via a standard FFI. Li-
braries could then have sorted out portability over N operating sys-
tems. Instead, by standardizing only a common fragment and let-
ting each of M implementations do whatever it can on each oper-
ating system, libraries now have to take into account N*M combi-
nations of operating systems and implementations. In case of dis-
agreement, it’s much better to let each implementation’s variant
exist in its own, distinct namespace, which avoids any confusion,
than have incompatible variants in the same namespace, causing
clashes.

Interestingly, the aborted proposal for including defsystem
in the CL standard was also of the kind that would have specified
a minimal subset insufficient for large scale use while letting the
rest underspecified. The CL community probably dodged a bullet
thanks to the failure of this proposal.

3.5 Safety before Ubiquity
Guy Steele has been quoted as vaunting the programmability of
Lisp’s syntax by saying: If you give someone Fortran, he has
Fortran. If you give someone Lisp, he has any language he pleases.
Unhappily, if he were speaking about CL specifically, he would
have had to add: but it can’t be the same as anyone else’s.

Indeed, syntax in CL is controlled via a fuzzy set of global
variables, prominently including the *readtable*. Making non-
trivial modifications to the variables and/or tables is possible, but
letting these modifications escape is a serious issue; for the author
of a system has no control over which systems will or won’t be
loaded before or after his system — this depends on what the user
requests and on what happens to already have been compiled or
loaded. Therefore in absence of further convention, it’s always a
bug to either rely on the syntax tables having non-default values
from previous systems, or to inflict non-default values upon next
systems. What is worse, changing syntax is only useful if it also
happens at the interactive REPL and in appropriate editor buffers.

Yet these interactive syntax changes can affect files built interac-
tively, including, upon modification, components that do not de-
pend on the syntax support, or worse, that the syntax support de-
pends on; this can cause catastrophic circular dependencies, and
require a fresh start after having cleared the output file cache. Sys-
tems like named-readtables or cl-syntax help with syntax
control, but proper hygiene isn’t currently enforced by either CL or
ASDF, and remains up to the user, especially at the REPL.

Build support is therefore strongly required for safe syntax
modification; but this build support isn’t there yet in ASDF 3.
For backward-compatibility reasons, ASDF will not enforce strict
controls on the syntax, at least not by default. But it is easy to
enforce hygiene by binding read-only copies of the standard syntax
tables around each action. A more backward-compatible behavior
is to let systems modify a shared readtable, and leave the user
responsible for ensuring that all modifications to this readtable used
in a given image are mutually compatible; ASDF can still bind
the current *readtable* to that shared readtable around every
compilation, to at least ensure that selection of an incompatible
readtable at the REPL does not pollute the build. A patch to this
effect is pending acceptance by the new maintainer.

Until such issues are resolved, even though the Lisp ideal is
one of ubiquitous syntax extension, and indeed extension through
macros is ubiquitous, extension though reader changes are rare in
the CL community. This is in contrast with other Lisp dialects, such
as Racket, that have succeeded at making syntax customization
both safe and ubiquitous, by having it be strictly scoped to the
current file or REPL. Any language feature has to be safe before
it may be ubiquitous; if the semantics of a feature depend on
circumstances beyond the control of system authors, such as the
bindings of syntax variables by the user at his REPL, then these
authors cannot depend on this feature.

3.6 Final Lesson: Explain it
While writing this article, we had to revisit many concepts and
pieces of code, which led to many bug fixes and refactorings
to ASDF and cl-launch. An earlier interactive "ASDF walk-
through" via Google Hangout also led to enhancements. Our expe-
rience illustrates the principle that you should always explain your
programs: having to intelligibly verbalize the concepts will make
you understand them better.

Bibliography
Daniel Barlow. ASDF Manual. 2004. http://common-lisp.net/

project/asdf/
Zach Beane. Quicklisp. 2011. http://quicklisp.org/
Alastair Bridgewater. Quick-build (private communication). 2012.
François-René Rideau and Spencer Brody. XCVB: an eXtensible Com-

ponent Verifier and Builder for Common Lisp. 2009. http://
common-lisp.net/projects/xcvb/

Peter von Etter. faslpath. 2009. https://code.google.com/p/
faslpath/

François-René Rideau and Robert Goldman. Evolving ASDF: More Co-
operation, Less Coordination. 2010. http://common-lisp.net/
project/asdf/doc/ilc2010draft.pdf

Mark Kantrowitz. Defsystem: A Portable Make Facility for Com-
mon Lisp. 1990. ftp://ftp.cs.rochester.edu/pub/
archives/lisp-standards/defsystem/pd-code/
mkant/defsystem.ps.gz

Kent Pitman. The Description of Large Systems. 1984. http://www.
nhplace.com/kent/Papers/Large-Systems.html

François-René Rideau. ASDF3, or Why Lisp is Now an Acceptable Script-
ing Language (extended version). 2014. http://fare.tunes.
org/files/asdf3/asdf3-2014.html

8 2017/5/13

http://fare.tunes.org/files/asdf3/asdf3-2014.html#pathnames
http://common-lisp.net/project/asdf/
http://common-lisp.net/project/asdf/
http://quicklisp.org/
http://common-lisp.net/projects/xcvb/
http://common-lisp.net/projects/xcvb/
https://code.google.com/p/faslpath/
https://code.google.com/p/faslpath/
http://common-lisp.net/project/asdf/doc/ilc2010draft.pdf
http://common-lisp.net/project/asdf/doc/ilc2010draft.pdf
ftp://ftp.cs.rochester.edu/pub/archives/lisp-standards/defsystem/pd-code/mkant/defsystem.ps.gz
ftp://ftp.cs.rochester.edu/pub/archives/lisp-standards/defsystem/pd-code/mkant/defsystem.ps.gz
ftp://ftp.cs.rochester.edu/pub/archives/lisp-standards/defsystem/pd-code/mkant/defsystem.ps.gz
http://www.nhplace.com/kent/Papers/Large-Systems.html
http://www.nhplace.com/kent/Papers/Large-Systems.html
http://fare.tunes.org/files/asdf3/asdf3-2014.html
http://fare.tunes.org/files/asdf3/asdf3-2014.html

	Introduction
	1 What ASDF is
	1.1 ASDF: Basic Concepts
	1.1.1 Components
	1.1.2 Example System Definition
	1.1.3 Action Graph
	1.1.4 In-image

	1.2 Comparison to C programming practice

	2 ASDF 3: A Mature Build
	2.1 A Consistent, Extensible Model
	2.2 Bundle Operations
	2.3 Understandable Internals
	2.4 Package Upgrade
	2.5 Portability Layer
	2.6 run-program
	2.7 Configuration Management
	2.8 Standalone Executables
	2.9 cl-launch
	2.10 package-inferred-system
	2.11 Restoring Backward Compatibility

	3 Code Evolution in a Conservative Community
	3.1 Feature Creep? No, Mission Creep
	3.2 Backward Compatibility is Social, not Technical
	3.3 Weak Synchronization Requires Incremental Fixes
	3.4 Underspecification Creates Portability Landmines
	3.5 Safety before Ubiquity
	3.6 Final Lesson: Explain it

	Bibliography

